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Blur detection (BD) is an important and challenging task in digital imaging and computer vision applications. Accurate seg-
mentation of homogenous smooth and blur regions, low-contrast focal regions, missing patches, and background clutter, without
having any prior information about the blur, are the fundamental challenges of BD. Previous work on BD has emphasized much
effort on designing local sharpness metric maps from the images. However, the smooth/blurred regions having the same patterns
as sharp regions make them problematic. +is paper presents a robust novel method to extract the local metric map for blurred
and nonblurred regions based on multisequential deviated patterns (MSDPs). Unlike the preceding, MSDP extracts the local
sharpness metric map on the images at multiple scales using different adaptive thresholds to overcome the problems of smooth/
blur regions and missing patches. By using the integral values of the image along with image masking and Otsu thresholding,
highly accurate segmented regions of the images are acquired. We argue/hypothesize that the local sharpness map extraction by
using direct integral information of the image is highly affected by the threshold selected for distinction between the regions,
whereas MSDP feature extraction overcomes the limitations substantially by using automatic threshold computation over
multiple scales of the images. Moreover, the proposed method extracts the relatively accurate sharp regions from the high-dense
blur and noisy images. Experiments are conducted on two commonly used SHI and DUT datasets for blur and sharp region
classifications. +e results indicate the effectiveness of the proposed method in terms of sharp segmented regions. Experimental
results of qualitative and quantitative comparisons of the proposed method with ten comparative methods demonstrate the
superiority of our method. Moreover, the proposed method is also computationally efficient over state-of-the-art methods.

1. Introduction

With the exponential growth of digital image capturing
devices, i.e., DSLR cameras, cellphone cameras, wearable
cameras, etc., we have witnessed a massive collection of
digital photos captured and uploaded on social media on a
daily basis. A good quality photo must be sharp and not
contain any degradation such as noise and blurred regions.
As for many applications, we need to highlight the target
object from the images. To make the object highlighted,
many techniques are being used nowadays, e.g., using high-
definition camera sensors, adding blurriness to the back-
ground objects, etc. However, the high-definition image
sensors impose blurriness in the background of the images to

make the foreground objects more prominent. Conse-
quently, blurriness is being used as an editing effect that is
added purposely in modern-day image capturing.

Image blurriness can be categorized into motion blur
and defocus blur. +e motion blur can occur due to two
potential reasons: (a) when you try to capture the moving
objects and (b) camera motion either intentionally or un-
intentionally, whereas the defocus blur usually occurs due to
special effects used by the photographers to highlight the
focus and out-of-focus regions in the image. It is a visual
effect added by the photographer using highly sophisticated
techniques to make the target object sharp and the rest of the
image blur. An image contains useful information that can
be used in various computer vision and image processing
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applications, i.e., background tracing, text retrieval, image
retrieval, person authentication, etc. However, blur affects
the contrast and sharpness details of the image that made the
retrieval of information challenging. Similarly, photos are
used as the key evidence in a criminal investigation, where it
can be very challenging to extract the immersed information
about the target object(s) in the presence of high-density
blurred regions. For this purpose, we need to classify the
image into blur and nonblur regions initially. +e infor-
mation of the objects lying in the nonblur regions is more
reliable in comparison with those in blurred regions, as the
information can be distorted in blur regions like an increase
of edge thickness. +us, blur detection and sharpening are
required for the accurate extraction of the information from
the images.

Defocus blur detection (DBD) is the classification
problem of intentionally added blur by the highly sophis-
ticated modern-day digital cameras. +is classification has
been paid substantial attention due to their significant po-
tential applications, e.g., object detection [1], image seg-
mentation [2], object augmentation [3], etc. Defocus blur
affects the information and the sharpness details of the
image making it more challenging for objects/regions de-
tection. +e DBD without having any prior information
about the blur densities, blur type, or sensor settings of the
camera is a challenging task.

Existing blur image detection approaches are divided
into two categories: single image detection and multi-image
detection. For multi-image detection, the knowledge of the
blur densities, type, sensor information of the cameras, and
other additional information is required [4]. In contrast, a
single image can be split into sharp and blur regions without
having any prior information about the blur and the device
used to capture that image [5, 6]. Moreover, the existing
approaches presented for DBD can be categorized into
frequency-based [7–13], depth-based [14–17], or local
sharpness metric map-based for segmentation of blur and
nonblur regions [6, 18–21]. In [22], Zhu et al. used the local
coherent map generated by the evaluation of gradient fields
of the local spectrum. However, the use of flat areas in-
formation and color edges is not enough for accurate DBD
detection. In [23], Chakrabarti et al. proposed a Point Spread
Function (PSF) using the local frequency analysis to obtain
the segmented map for DBD.+is method has the limitation
of generating erroneously labeled regions of the image. Su
et al. [24] presented a method called singular value de-
composition (SVD) based on single thresholding on image
features to detect the blurred and nonblurred regions.
Similarly, Xiao et al. extended the single threshold SVD into
multiscale SVD in [8]. +e fusion-based method is used to
overcome the smooth/blur region problems from the im-
ages. In [25], Golestaneh estimated the level of blurriness at
each location using a method called high-frequency mul-
tiscale Fusion and Sort Transform (HiFST) based on gra-
dient magnitudes.

Depth-based methods [9, 14–17] also proved to be ef-
fective in defocus blur detection using the information about
the blur densities and blurry edges. In [9], Liu et al. presented
different local features, i.e., association congruence,

saturation, gradient histogram, and power bands to specify
the type of blur from the images. In [26], a cross ensemble
network is used along with a smaller defocus detector for
diversity enhancement. However, this approach is compu-
tationally expensive and unable to differentiate the nonblur
regions accurately in the presence of smooth regions. Fur-
thermore, DBD measurements such as local variance,
higher-order statistics, and variance of wavelength coeffi-
cient are also used in DBD with images containing a narrow
depth of field (DOF) [27].

Most of the algorithms [6, 18, 19, 21] used the local
sharpness metric approach for the detection of blur and
nonblur regions. +e local sharpness metric is like a filtering
method such as energy function estimating the results based
on the responses of blur energy from images.+e low energy
indicates the blur region, whereas the high energy represents
the sharp region. In [12], Shi et al. introduced peculiar
sharpness features, gradient histogram, and kurtosis span for
DBD of local image regions. +is method is unreliable and
causes problems in the accurate detection of blur and sharp
regions due to smooth homogenous regions. Zhu et al.
analyze the blur from the images using PSF [22]. +is
method is unable to perform well in lightly blurred regions.
In [21], Local Binary Patterns (LBP) are taken into con-
sideration for defocus blur detection. +e local metric map
generated using the LBP segments the blur and nonblur
regions but is unable to perform well in the presence of noisy
images even in sharp regions. In our prior method [18], we
proposed the Local Directional Mean Patterns (LDMP) to
overcome the limitation of the sharp metric map in noisy
situations. However, our prior method [18] is unable to
detect simultaneous smooth blur and low-contrast regions.

Recently, deep learning methods have been heavily
employed in various computer vision and image processing
applications, i.e., saliency detection [1], semantic segmen-
tation [2], automatic shadow detection [28] airplane de-
tection using remote sensing images [29], ship detection
from real-time images [30], vehicle detection [31], etc. +e
significance of deep learning algorithms is proven to be
effective for defocus blur detection and segmentation,
however, at the expense of increased computational cost. In
[32], Kim introduced a deep learning method based on a
convolution neural network (CNN) for the detection of
sharp and blur regions of the image. +e multiscale re-
construction loss function was used for the segmentation of
blur regions. In [33], Park et al. encounter the DBD problem
with patch level detection based on CNN. Unfortunately, the
patch level DBD led to suppression in low-contrast regions.
Tang et al. [34] proposed a Deep Neural Network (DNN)
based technique Diffusion Network (DNet) that fused the
refined features extracted by the networks to obtain the
segmented blur and sharp regions. In [35], the author in-
troduced global context-guided hierarchically residual fea-
ture refinement network “HRFRNet.” +e hierarchical
features are used to enhance the final outcomes. Further-
more, a deep-guided fusion module is used for the refining
process.

Accurate DBD has initiated extensive research interest
from the last few years. However, it is still a significant yet
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challenging computer vision problem. Although the afore-
mentioned techniques can detect the defocus blur and
nonblur regions, however, these approaches fail in certain
cases, i.e., the presence of smooth blurry regions, missing
sharp patterns, low contrast, etc. +e DNN methods per-
formed well for DBD, but all of these methods are com-
putationally more complex and required high
computational resources, i.e., GPUs, memory, etc. We aim
to develop a robust method for DBD that can effectively
extract the sharp targeted regions of the image in the
presence of noise, smooth/blur, and low-contrast images.
To address the aforementioned problems, we propose an
efficient and robust Multisequential Deviated Patterns
(MSDP) for accurate sharp region extraction from images
at multiple scales. +e extracted multiscale sharpness maps
are further fused to get the refined map of the image. We
used Otsu thresholding to segment the extracted sharp
region into comparable binary representation. +e pro-
posed method is efficient due to using the local integral
values of the images directly instead of using time-con-
suming matting approaches used by the preceding methods
to segment the binary images. +e major contributions of
the proposed work are as follows:

(i) We propose efficient and robust multisequential
deviated patterns for accurate blur detection from
high-density blur and noisy images

(ii) For feature computation, we extract the sharpness
metric using adaptive thresholding on multiple
image scales to overcome the smooth blur and
missing sharp region problem of manual
thresholding

(iii) For image segmentation, we fused the multiscale
sharpness maps extracted from MSDP along with
the image masking

(iv) Rigorous experiments were performed against
several state-of-the-art methods over the latest DUT
and SHI datasets to prove the effectiveness of the
system

+e rest of the paper is organized as follows. Section 2
presents the details of the proposed method. Section 3
provides the discussion on results of different experiments
conducted to evaluate the performance of our method.
Finally, Section 4 concludes our work.

2. Methods

+is paper presents a novel method based on the integral use
of the image, which detects the blur and sharp regions from
high-dense blurry and noisy images. +e proposed method
used the local window of different sizes based on the input
image scale to extract the sharp regions in the image. Firstly,
the image is divided into three different scales S1, S2 and S3.
Secondly, MSDP is used to extract a sharpness map from
each scaled image using an adaptive threshold. Lastly, image
masking is used over the extracted sharpness maps, and
fusion is performed to produce a more accurate single
sharpness map. Next, Otsu thresholding is used to retrieve

the accurate binary images for comparison with state-of-the-
art methods. +e flow of the proposed method is shown in
Figure 1.

2.1. Preprocessing and Image Scaling. +e extraction of
features using integral values of the image is challenging due
to the influence of different factors, i.e., color, camera, object
detail, etc., on the values. For accurate extraction of sharp
regions, we used the RGB input image Ib consisting of sharp
and blur regions. First, we convert the RGB color image into
grayscale and apply the two-dimensional median filtering to
reduce the noise.

Ib � PS + PB,

Ig � rgb2gray Ib( 􏼁,

ImF � medfilt2 Ig􏼐 􏼑,

(1)

where PS and PB denote the sharp and blur pixel values of
the image, and Ig represents the grayscale image. ImF

represents the 2D median filtered image with reduced
noise obtained after applying the 2D median filtering
function (medfilt2). Next, we represent the image into
three different scales (S1, S2 and S3) after employing the
medfilt2.

2.2.MultisequentialDeviatedPatterns (MSDPs). Selecting an
appropriate threshold for integral extraction is a compli-
cated task. For example, the use of a high threshold in local
feature extraction leads to exclusion of low/lesser sharp
regions, whereas the selection of low threshold value causes
the inclusion of additional useless details in the features, i.e.,
background object and noise, etc. +e relationship of high
and low thresholds in integral feature extraction is shown in
Figure 2. For MSDP maps, we computed the upper and
lower patterns of the image. In integral extraction of fea-
tures, the three-level thresholding is proven effective [18] as
compared to the two-level thresholding [21]. Moreover, two-
level thresholding is not effective in the presence of a high
density of noise in the images. +erefore, we employ 3-level
thresholding for the extraction of sharp integral upper and
lower features of the images. We extract the upper and lower
features as follows:

ULP � 􏽘
8

P�1
3p

s imp − imc􏼐 􏼑,

δ �

���������

􏽐 qi − μ( 􏼁
2

N

􏽳

,

(2)

P imp, imc, δ􏼐 􏼑 �

1 if imp ≥ imc + δ,

−1 if imp ≤ imc − δ,

0, if imp > imc − δ& imp < imc + δ,

⎧⎪⎪⎨

⎪⎪⎩

(3)

where 3p and qi represent the 3-level thresholds and integral
values of the pixels, N and μ denote the total number of
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integral and mean values, and imp and imc are the neigh-
boring and center pixels of the image windows, while δ
represents the adaptive threshold, which is calculated by the
sequential deviation of the existing window as shown in
equation (2). Instead of adopting the threshold selection
approach of the existing methods, we computed an adaptive
threshold for each region of the image by rotating the ex-
traction window over the image. +e adaptive threshold is
computed automatically by adding and subtracting the
center pixel value imc of the window along with the standard
deviation δ as shown in equation (3). An adaptive threshold
based on δ and imc is responsible for the extraction of sharp
pixels from the images; i.e., high threshold value leads to
highly sharp regions, and low threshold value leads to the
inclusion of noise and other unwanted content. In contrast,
the preceding methods mostly used a hard-coded threshold
value in their algorithms, whichmakes these methods unable
to effectively extract the low-dense sharp regions locally
[18, 21]. Consequently, we applied three-level thresholding

with an adaptive threshold for the extraction of three values
including 1, −1, and 0 from the image. For instance, as
shown in Figure 3, if a 3× 3 window is used over the image
integral values having a central pixel value (imc) of 23 with
the deviation of the neighboring pixel (δ) of 10.2, then the
range of extraction lies between 13.2 and 33.2, which is
shown as imp > imc − δ&imp < imc + δ in equation (3). For
three-level value extraction from the image, the neighboring
pixel in the window lies between 13.2 and 33.2 and is
converted into “0,” whereas the integral value of 1 is assigned
to values greater than the threshold imc + δ (33.2 in
Figure 3), and −1 is assigned to the values below the
threshold imc − δ (13.2 in Figure 3). After replacing the
integral values of the images, we obtained P(imp, imc, δ),
which contains three-level values comprising 1, 0, and −1.
+e overall extraction of three-level values is shown in
Figure 3. For instance, the image with Qn window from the
integral values of pixels where n represents the 3× 3 window
having 9 values is shown in equation (4).

S1 S2 S3

Original
Image

Preprocessing and
Image Scalling

Feature
Extraction

Multi Fusion and
Otsu �resholding

Image
Masking

Figure 1: Flow diagram of the proposed method.

Original
Image

Low
�resholding

Average
�resholding

High
�resholding

Figure 2: Impact of the threshold in local integral pattern extraction.
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ImF � 􏽘
n

i�1
Qne×e,

Q3×3 � Q0, Q1, Q2 . . . Q7{ },

(4)

where e denotes the dimension of the rotating window. In
order to compute the sharp region, the upper and lower
features of the image have to be computed separately.
However, the proposed P(imp, imc, δ) extracts the combined
features of the image. +erefore, to reduce the noise in the
images, the three-level extracted patterns are further con-
verted into two levels, i.e., upper and lower image patterns.
For two levels of extraction, we need to replace the negative
values from the obtained P(imp, imc, δ). For extracting the
upper patterns of the image, we converted all −1 values from
P(imp, imc, δ) into 0. And for lower patterns, 1 and −1 are
replaced with 0 and 1 as shown in Figure 3. Ultimately, the
resultant upper and lower patterns of the image are con-
verted into binary bit streams using equation (5) that are
further represented into their equivalent decimal values.

UppF � 0⇔ if P imp, imc, δ􏼐 􏼑 � −1􏽮 􏽯,

LowF �
1⇔ if P imp, imc, δ􏼐 􏼑 � −1,

0⇔ if P imc, imc, δ( 􏼁 � 1,

⎧⎨

⎩

(5)

where UppF denotes the upper features of the image, and
LowF represents the lower features. +e Z × Z window is
used to obtain the decimal values of upper and lower pat-
terns using equation (6), where Z denotes the size of the
window varying for each scale of the image. At last, we need
to pick the sharp and blur patterns smartly by retrieving only
the sharp pixels and neglecting the blur once. +e proposed
method uses the deviation of the pixels twice to observe the
change in the patterns of blur and sharp regions. We
computed the standard deviation of two-level patterns
consisting of the upper and lower patterns of the image
obtained from the last step. For this purpose, first, we have to
convert the binary two-level patterns into their equivalent
decimal numbers by using the window Z × Z. All the
neighboring pixels values in the window covert into their
equivalent decimal number as follows:

Imupp � 􏽘
8

k�1
UppF SP( 􏼁 × 2k− 1

,

Imlow � 􏽘
8

k�1
LowF SP( 􏼁 × 2k− 1

,

(6)

Imupp and Imlow are the upper and lower patterns of
equivalent decimal numbers from the extracted two-level
binary patterns from equation (5). After that, we computed
the deviation of the neighboring pixels again with decimal
values of the upper and lower patterns computed from
equation (6). +e values higher than the deviation (δ) are
considered as the sharp region values and retained, while the
rest are neglected for being the blurry region. +e extraction
of Multilayered Sequential Pattern is shown in equations (7)
and (8).

δupp �

������������

􏽘(qi − μ)
2/N

􏽱

,

δlow �

������������

􏽘(qi − μ)
2/N

􏽱

,

(7)

MSDP � Imupp > δupp ⊕ Imlow > δlow􏽮 􏽯, (8)

where δupp and δlow represent the deviation value of upper
and lower patterns of the image, respectively. Finally, the
sharpness map of sharp regions is extracted as MSDP shown
in equation (8). Moreover, we extracted three MSDP

sharpness maps for each scale of the image (S1, S2 and S3) as
shown in Figure 4.

2.3. Image Masking. +e extracted features MSDP contain
only the sharp regions of the images at three scales S1, S2 and
S3. However, there are some regional variations among the
images at all scales caused by the adaptive thresholding and
different dimensions. +e main reason for this variation is
missing regions among the extracted maps. +e empty in-
tegral values in the patterns usually occur due to the noise or
background objects that ultimately lead tomissing regions in
the image. We applied a morphological operation on this
image to fill the holes and gaps between the pixels. More

Q0 Q1 Q2 Q3 Q Q4 Q5 Q6 Q7

1010 20 40 12 23 17 25 39

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

0 -1 1 0 0 0 1 0

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

0 0 0 0 001 1

Upper sequences

Binary sequences

3 level thresholding

Input sequence by 3×3 window having
δ = 10.2

1 2 4 8 16 32 64 128

34 80

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

0 1 1 0 000 0

Lower Sequences

1 2 4 8 16 32 64 128

Figure 3: Extraction of upper and lower binary sequences.
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specifically, we employed a binary filling operation to fill the
gaps and holes using equation (9). Similarly, this filling process
is applied at every scale (S1, S2 and S3) of the image. In addition,
we created an image mask containing sharp regions of the
image before applying the Otsu thresholding for segmentation.
For this purpose, we applied the Otsu global thresholding to
select the sharp regions from the obtained image.

TrimapIM � BF(MSDP). (9)

2.4.Multifusion andOtsu0resholding. In the last phase, we
fused the scales (S1, S2 and S3) into a single sharpness map
and employed the Otsu thresholding [36] for binarization of
the images. +e masked image obtained from the previous
phase is converted into a segmented binary image of the
sharp and blur regions. +e variance-based thresholding is
used along with linear discriminant principles to segment
the target object (foreground) from the heterogeneous and
diverse background regions. +e threshold for segmentation
in Otsu thresholding is based on the variation of the integral
values. +e extracted patterns in TrimapIM are divided into
two classes, i.e., sharp region and the background blur re-
gion. +e global threshold is computed according to the
variance of the classes. +e regions with values higher than
the threshold value are selected, whereas the regions below
the threshold value are ignored. Finally, the highly seg-
mented binary image with the sharp object as foreground
and the black background is obtained as follows:

Bimg � c0(ε)υ
2
0(ε) + c1(ε)υ

2
1(ε),

c0(ε) � 􏽘
rw−1

j�1
i(img),

c1(ε) � 􏽘

cl−1

j�ε
i(img),

(10)

where c0 and c1 are the integral values of sharp and blur
region classes separated by a threshold ε, whereas υ20 and υ21
denote the variance of the classes. Overall, we extracted the
MSDP from images at multiple scales (S1, S2 and S3) using
Z × Z windows of multiple sizes (i.e. 3× 3, 5× 5, 7× 7). +e
reason behind the extraction of the same MS DP at different
scales (S1, S2, S3) is to overcome the missing region problem
from the extracted sharp regions. +e sharpness map is
extracted from single MSDP image containing some
missing areas inside the sharp regions, whereas the ex-
traction of sharpness map over different scales overcomes
this problem to some extent as discussed in Section 4. +e
intensity of the blur varies in each region of the image; i.e.,
some regions are highly affected by the blur, whereas regions
far away from the sharp objects are less affected. +erefore,
the extraction of the integral value is highly affected by the
selected threshold value for classification of pixels as sharp
and blur. We employed an adaptive threshold calculated
from the deviated ratio of the patches along with the central
pixel values of the regions. +e combination of local central
pixel values of the regions and the overall deviation between
the pixels for thresholding make our method robust in the
extraction of the sharp regions from the blurry images. +e
overall computation process at multiple scales of the image is
shown in Figure 4.

3. Experimental Results

+is section provides a discussion on the results of different
experiments performed to measure the performance of the
proposed method. We have provided a detailed comparison
of qualitative and quantitative results along with the analysis
of the computational complexity of our method. +e details
of the datasets and evaluation metrics are also presented in
this section.

3.1. Datasets. +e performance of our method is evaluated
on two standard and commonly used datasets (Shi and
DUT) for blur detection. Shi dataset [12] is the first public
dataset collected and evaluated for blur detection [12]. +is
dataset [12] is used by almost all state-of-the-art descriptors
to show the effectiveness of the methods. Shi dataset [12]
contains 1000 blur images, where 704 images are partially
blurred using defocus, and the rest of the images contain the
motion blur. Additionally, the manually annotated ground
truth images are also available along with the blur images.
Most of the images in the Shi dataset are of 640× 427
resolution.

DUTdataset [37] is the second commonly used publicly
available dataset consisting of 500 images with defocus blur.
Similarly, this dataset is also provided with manually an-
notated ground truth images. In comparison with the Shi
dataset [12], the DUT dataset [37] is more challenging for
blur detection and segmentation for various reasons; i.e.,
many of the images contain homogeneous smooth blur
regions, have cluttered background, and are low in contrast
images.

Original Multi-scale
Image

S1
Z=7×7

S2
Z=5×5

S3
Z=3×3

Multi-scale Sharp
Regions

Multi-scale
Image Masks

Segmented Output
Image

Figure 4: Multiscale image masking and Otsu thresholding.
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3.2. EvaluationMetrics. +ree standard and commonly used
metrics including precision, recall, and F1-score are used to
evaluate the performance of the proposed method. We se-
lected these metrics as adopted by the comparative methods
for performance evaluation. We calculated the precision and
recall as

pre �
ImE ∩ ImG

ImE

,

rec �
ImE ∩ ImG

ImG

,

(11)

where ImE represents the pixels within the detected sharp
areas, and ImG corresponds to the pixels in the manually
annotated ground truth image. Similarly, F1-score is com-
puted as

F1 � 2 ×
pre∗ rec

pre + rec
, (12)

where pre and rec denote the precision and recall of the
proposed method.

3.3. Performance Evaluation of the Proposed Method. +e
objective of this experiment is to evaluate the effectiveness of
the proposed method for blur detection on two diverse
datasets. For this purpose, we computed the results of our
method on the images of Shi [12] and DUT [37] datasets
separately and reported the results in Table 1. In the case of
Shi [12] dataset, the proposed method dominates in every
comparison, i.e., quantitative analysis, qualitative analysis,
and PR curve. However, in DUT [37] dataset, the precision
of the proposed system slightly deteriorates. +e DUT [37]
dataset is more challenging than Shi dataset [12] due to
exceeding homogenous and low cluttered regions. +e
homogenous regions are always difficult to locate in the local
extraction of the regions. Although the precision of the
proposed system is a little low, however, the other quanti-
tative results (recall, F1-score, and computational cost)
prove the effectiveness of the method.

3.4. Performance Comparison of the Proposed and Existing
Methods. +e objective of this experiment is to measure the
robustness of the proposed method for blur detection over
state-of-the-art methods. For this purpose, we have provided
both the qualitative and quantitative analyses of the pro-
posed and comparative approaches.

3.4.1. Qualitative Comparative Analysis. +is experiment is
designed to show the qualitative analysis of the proposed and
comparative methods on Shi [12] and DUT [37] datasets.
+e visual quality of processed images is presented in
Figures 5 and 6 to show the effectiveness of the proposed
method over state-of-the-art methods. From the images
depicted in Figures 5 and 6, we can observe that the pro-
posed method can detect highly accurate results from Shi
[12] and the DUT [37] datasets. Specifically, in Figure 6, we
can see that images of DUT dataset [37] contain more

homogenous smooth regions and low local cluttered regions
that are effectively classified using our proposed method.

3.4.2. Quantitative Comparative Analysis. +is experiment
is designed to evaluate the performance of our method in
terms of quantitative analysis. For this purpose, we used
three standard metrics, i.e., precision, recall, and F1-score, to
measure the performance of our system against the com-
parative methods. +e precision-recall (PR) curve is cal-
culated on the results of the proposed method from Shi [12]
and DUT [37] datasets and presented in Figures 7 and 8,
respectively. A separate PR curve comparison is shown for
Shi [12] and DUT [37] datasets. +e PR curves demonstrate
that our method consistently outperforms all the compar-
ative methods. On the other hand, our method effectively
addresses the problems of homogenous smooth and low
local cluttered regions in the images of a more challenging
DUTdataset [37]. +e PR curve of the proposed method on
DUT [37] dataset continuously dominates throughout the
period as shown in Figure 7.

Additionally, the F1-score is measured and compared for
both the Shi [12] and DUT [37] datasets as shown in Fig-
ures 9 and 10. Although DNet [34] achieves almost com-
parable results as of the proposed method, however, our
method is computationally very efficient over the DNet
method [34] as shown in Table 2. +is comparative analysis
illustrates the superiority of the proposed method for
defocus blur detection over the comparative approaches.

3.4.3. Computational Cost Analysis. Although DFD
methods must be effective in terms of detecting blurred
regions from the images, however, producing such accurate
results in a minimum time is also crucial, especially in real-
time applications. +is experiment is designed to evaluate
the efficiency of the proposed and comparative approaches
for defocus blur detection. +e results of this comparative
analysis of time complexity for both the detection and
segmentation are provided in Table 2. +e proposed method
not only dominates in terms of accurate blur detection over
the state-of-the-art methods, but also executes exceptionally
fast and computationally very efficient over comparative
approaches. From the results, we can clearly observe that the
proposed method has the 2nd lowest computational cost
after LBP [21] as compared to all comparative methods.
More precisely, [21] performs the best by achieving 5 sec-
onds to segment an image into blur and sharp regions,
whereas our method performed second best and achieved
the time complexity of 7 sec. On the contrary, [22] per-
formed the worst by taking the highest computational cost of
12 minutes. +e main reason behind achieving such low
time complexity of our method is the direct extraction of
the local sharpness metric and removal of the time-
consuming matting procedures used by several compet-
itive methods. Moreover, image masking and Otsu
thresholding used to produce the segmented maps are also
very fast in the execution. In our method, the multiscale
inference phase consumes the majority of the execution
times.
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For this comparative analysis, we used the codes of
comparative methods that are publicly available along with
our own implementation. In the proposed method, the
original image was scaled into 256× 256, 128×128 and
64× 64 dimensions for S1, S2 and S3. Additionally, the
window size Z × Z is selected as 3× 3, 5× 5 and 7× 7 for
image scale S1, S2 and S3 respectively. +e final values of
window size Z for the specific scale Sn are selected after the
detailed observations and experiments. Moreover, automatic
global thresholding is used in image masking and Otsu
thresholding for binarization of the images. We have
implemented the proposed and comparative methods on
Intel(R) Core (TM) m3-7Y30 CPU @ 1.00GHz, 1.61GHz
with 8GB memory system.

4. Discussion

+e present study analyzes the findings about the selection
of adaptive threshold and the impact of neighboring pixels
in local extraction of the image regions. Experimental
results demonstrate two facts. First, the global or hard-
coded fix threshold value is not reliable for all types of
images. Second, the neighboring pixels used to differen-
tiate the integral values have a major impact on the
extracted patterns. +is is an important finding in the
understanding of the local patterns and direct integral
extraction from the images. Some sample results from
LBP [21] and LDMP [18] are shown in Figure 11 to defend
this fact. Figure 11 clearly demonstrates that the

Table 1: Precision, recall, and F1-score of the proposed method.

Precision Recall F1-score
Shi dataset 0.91 0.90 0.92
DUT dataset 0.89 0.91 0.88

Original Ours FFT
[23]

SVD
[24]

LBP
[21]

Shi
[35]

Liu
[9]

Hifst
[25]

LDMP
[18]

LTP GT

Figure 5: Visual comparison of the proposed method against comparative methods on the Shi dataset.

8 International Journal of Optics



comparative methods LBP [21] and LDMP [18] are unable
to perform well for many images. Two methods [18, 21]
used a similar approach of extraction from local integral

values of the images but used either a fixed static threshold
or from a specified range. +is hard-coded threshold
scheme results in performance degradation, as shown in

Input Ours BTB
[34]

DHDE
[30]

DNET
[31]

HIFST
[25]

KSFV
[27]

LBP
[21]

SHI
[12]

SVD
[24]

DBDF
[35]

LDMP
[18]

LTP GT

Figure 6: Visual comparison of the proposed method against comparative methods on the DUT dataset.
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Figure 7: PR curve comparison on the Shi dataset.
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Figure 11 where [21] is unable to detect the regions in the
image, whereas the proposed method used an adaptive
threshold computed using the deviation between the
neighboring pixels and performed very well. Our exper-
iments further reveal that the results of [18, 21] indicate
the gaps between the extracted sharp regions, whereas the
proposed method produced the filled regions approximately.

Extraction of the pixels using a small number of neighboring
pixels can cause the overall selection of the region. We have
used varying numbers of adjacent neighbors (3× 3, 5× 5, 7× 7)
to extract the regions based on the deviation between the
neighbors. +is provides significantly better results due to the
large deviation of the region. Our results indicate that the pixel
selection based on a small number of adjacent pixels affects the
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Figure 8: PR curve comparison on the DUT dataset.
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Figure 9: Quantitative comparison on the DUT dataset.
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results, whereas using a large number of adjacent pixels to
determine the pixel selection leads to good results. Existing
defocus blur detection methods, based on using the integral

values directly, fail to operate well for the motion blur. High
variation in the integral values makes these methods unable to
perform better on themotion blur.We aim to develop a unified

Original LBP
[21]

LDMP
[18]

GTProposed
Method

Figure 10: Comparison of local pattern-based approaches.

Table 2: Computational cost comparison of the proposed method against state-of-the-art methods.

DBD methods Avg. computational cost (detection, segmentation)
DBDF [38] 7m, 13m
LBP [21] 5 s, 58ms
Vu [13] 1m 20 s, 35 s
SVD [24] 50 s, 55 s
Shi [12] 55 s
Zhou [28] 45 s
Zhu [22] 12min
Proposed method 7 s

1
Quantitative comparison on Shi dataset

0.9
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Figure 11: Quantitative analysis on the Shi dataset.
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method in the future that can effectively detect both themotion
and focus blur.

5. Conclusion

We have proposed an effective and efficient method for
defocus blur detection problem without having the prior
information about blur, camera configuration, pixels den-
sities, etc. +e local sharpness metric map is extracted di-
rectly from the images at different scales along with different
patch sizes of the images. +e local deviations between the
neighboring pixels are used for the extraction of sharp re-
gions. +e automatic image masking and Otsu thresholding
provide highly accurate and optimal segmented results over
state-of-the-art methods. Our experimental results dem-
onstrated that the proposed method performs far better than
many hard-coded threshold-based algorithms. Additionally,
the proposed method has a significant speed advantage over
several comparative segmentation algorithms, i.e., alpha
matting, KNN matting, global matting by GPU imple-
mentation, etc.
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