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a b s t r a c t

Voice-controlled systems (VCSs), a new class of cyber-physical systems (CPS), and Internet of Things (IoT)
devices are increasingly employing smart speakers such as Google Home and Amazon Alexa, and other
voice assistants to enable management of various remote operations at home and offices. However, these
smart speakers and hence VCSs are susceptible to various voice spoofing attacks i.e. replay, cloning, etc.,
in a non-network environment as well as in a multi-hop network setup. These diverse spoofing threats on
VCSs require an urgent need to develop a robust spoofing countermeasure for VCSs capable of detecting a
variety of voice spoofing attacks. This paper presents a spoofing countermeasure that uses novel acoustic
ternary patterns (ATP) with Gammatone cepstral coefficients (GTCC) features to counter the voice spoof-
ing attacks on VCSs in single- and multi-hop network environments. Our experimental analysis demon-
strates that the proposed ATP features when combined with GTCC can effectively detect the distortions in
replayed samples, unnatural prosody present in the cloned samples, and both distortions and unnatural
patterns of stress and intonation in cloned-replay samples. The proposed ATP-GTCC features are used to
train the SVM for development of a spoofing countermeasure to cater all possible forgeries. Experimental
results based on highly diversified ASVspoof 2019 and VSDC datasets signify the effectiveness of the pro-
posed countermeasure for reliable detection of 1st- and 2nd-order replay, cloning, and cloned-replay
attacks.

� 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The feature of smart speakers (e.g. Amazon Echo, Google Home)
to control various home/office appliances and actuators etc., is
making them an essential component of Internet of Things (IoT)
and Cyber-physical systems (CPS). Although smart speakers and
other voice assistants, acting as interface of voice-controlled sys-
tems (VCSs), have transformed the IoT and CPS domains, but also
resulted in the generation of new potential threats. For example,
impostors may retrieve sensitive data from healthcare and/or
financial applications through executing the voice spoofing attacks
on VCSs to commit financial frauds [1], or to gain unwanted remote
access of smart homes and offices [2]. Additionally, Covid-19 crisis
is expected to accelerate the use of voice as an authentication
mechanism for many businesses and service industry, as other

authentication mechanism (e.g. use of keypad, finger scan, etc.)
could cause transmission of infection.

Existing voice spoofing attacks, also known as voice presenta-
tion attacks [3] i.e. replays, cloning, etc., can easily be used to spoof
the VCSs. Voice replays are generated by playing the recorded voice
of the actual speaker with the intention of deceiving the VCS. Voice
cloning, which refers to creating a synthetic voice of the target
speaker, can easily be generated due to the advancement of sophis-
ticated deep learning algorithms.

Various spoofing countermeasures (CMs) have been proposed
to detect either replay, cloning, or both attacks. In [4], constant
Q-transform cepstral coefficients (CQCC) were used, whereas, in
[5], constant-Q variance-based octave coefficients and constant-Q
mean-based octave coefficients were used with Gaussian mixture
model (GMM) for replay attack detection. Some spoofing CMs
[6,7] have examined high-frequency bands of the audio using dif-
ferent features including the amplitude and frequency-based mod-
ulation [6] and various cepstral coefficients features [7] with the
GMM for replay spoofing detection. These methods [6,7] provide

https://doi.org/10.1016/j.apacoust.2021.108283
0003-682X/� 2021 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: mahmood@oakland.edu (K.M. Malik).

Applied Acoustics 183 (2021) 108283

Contents lists available at ScienceDirect

Applied Acoustics

journal homepage: www.elsevier .com/locate /apacoust

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apacoust.2021.108283&domain=pdf
https://doi.org/10.1016/j.apacoust.2021.108283
mailto:mahmood@oakland.edu
https://doi.org/10.1016/j.apacoust.2021.108283
http://www.sciencedirect.com/science/journal/0003682X
http://www.elsevier.com/locate/apacoust


better detection performance over the baseline model [4], however
with increased features computation cost. Existing replay spoofing
CMs [8,9] have also used deep learning models. In [8], MFCC and
CQCC features were used with hybrid classification model consist-
ing of GMM, deep neural network and ResNet to classify between
the genuine/bonafide and replay signal. In [9], deep generative
variational auto-encoder framework was employed for replay
detection.

Existing techniques [10–16] have used different magnitude-
and phase-based features for voice cloning/synthesis detection. In
[10,11], relative phase shift features were used, whereas, cochlear
filter cepstral coefficients (CFCC) and CFCC-instantaneous fre-
quency features were employed in [12] with the GMM for voice
cloning detection. In [13], inverted constant-Q coefficients,
inverted CQCC, inverted C-Q block coefficients, and inverted C-Q
linear block coefficients were employed for speech synthesis
detection. In [14], a non-learning technique based on higher-
order spectral features was employed for voice cloning detection.
Although, this method [14] achieves better performance, but has
a high features computation cost. In [15], an end-to-end ensemble
model was proposed to detect the replay and cloning attacks. Light
convolutional neural network based on angular margin-based soft-
max activation function was proposed in [16] for voice replay and
cloning attacks detection.

In our prior work [4], we proved that the latest VCSs are suscep-
tible to replay attacks and can be exploited to cause severe dam-
ages in cyber-physical systems e.g. home and office automation
control. Further, we also validated in [4] that Google Home and
Amazon Alexa devices are vulnerable to multi-order replay attacks
even in multi-hop/chained scenarios. Fig. 1(b) shows chained VCS
scenario that generate multi-order replays when input is human
speaker or its cloned voice. It occurs when one VCS replays the
genuine or synthetic voice to next connected one in the chain.
For example, a hacker uses his cellphone to replay the recorded
voice command of human speaker e.g.‘‘Alexa, turn off the heat”
(1st-order replay) on the baby monitor (VCS-2) that is accessed
by invading the wireless LAN using tools i.e.Aircrack. Next, the
voice command is replayed (2nd-order replay) to the VCS of tar-
geted person’s home (VCS-3) to turn off the heat. Unlike traditional
applications which consider spoof detection as a binary problem,

we consider this as a multiclass problem for chained VCSs, because,
it is possible for a certain VCS, which itself has robust binary spoof
detection mechanism, to receive cloned or playback voice from
other VCSs that are either compromised or prone to voice spoofing
attacks due to a weak or absent spoof detection approach. Thus, the
received audio will be considered genuine and the spoofing detec-
tor will ultimately fail for all the chained devices. Moreover, this
work introduces a new voice spoofing threat i.e. cloned-replay that
can also be generated in multi-hop scenarios. We generated the
1st- and 2nd-order cloned-replay recordings using the cloning
samples of ASVspoof 2019 LA dataset. Similarly, our analysis shows
that these VCSs are also vulnerable to voice cloning attacks. As
shown in Fig. 1(a), a cloned voice command is directly played on
the VCS to generate a single-order cloning attack to control the
lighting system.

Literature shows that countermeasures trained with one class
of spoofing attacks fail to generalize well for other classes of spoof-
ing attacks [25,26]. For example, systems trained with speech clon-
ing show poor performance for replay detection [27]. Additionally,
the existing methods are not designed for detection of multi-order
attacks either. Therefore, there is need to develop model which can
capture microphone induced distortions in the replay/playback
samples, differentiate high-order distortions when same voice is
played back in the chain, and the natural pauses of human model
of speech production are missing from the synthetic voice gener-
ated by deep learning based speech cloning algorithms. To meet
these requirements of VCSs which are connected via single- or
multi-hop IoT and CPS networks, we propose a robust spoofing
countermeasure that can reliably detect the various single-order
and multi-order (i.e. chained) voice spoofing attacks (i.e. replay,
cloned, and cloned-replay) using the proposed acoustic-ternary
patterns (ATP). The human speaker’s speech has dynamic charac-
teristics due to speaker induced variations, whereas, the cloned
voice generated by various state-of-art deep learning-based speech
synthesis algorithms [24] contains unnatural prosody such as
emphasis on the wrong syllables or words, absence of natural
pauses, lack of unvoiced consonants, unnatural pitch, and small
percentage of mispronunciation. This introduction of deviation in
patterns of rhythm and sound in synthesized speech calls for
capturing time-domain specific aspects in generated speech.

Fig. 1. Voice spoofing attacks scenarios.
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Therefore, we propose ATP features to better capture these
dynamic attributes of speech variations between genuine and syn-
thesized speech. Moreover, replay samples contain the microphone
induced distortions, and cloned samples contain robotic ’whine’
which can be effectively captured by both the ATP and the gamma-
tone cepstral coefficients (GTCC) due to their robustness against
the environmental noise. Therefore, we fused the ATP with the
GTCC features to develop a unified countermeasure to detect
multi-order replay, cloning, and cloned-replay forgeries. Moreover,
since these distortions increase in higher-order replays therefore
our proposed features can provide even better detection perfor-
mance in such scenarios. The main contributions of this paper
are as follows:

� We propose a novel acoustic ternary pattern features for audio
representation to differentiate spoofed samples from the
bonafide.

� We present the groundwork for a spoofing countermeasure cap-
able of detecting the multi-order replay, cloning, and cloned-
replay attacks using the proposed ATP-GTCC features.

� We present a new voice spoofing attack (cloned-replay) that
can be generated by replaying the cloned audios.

� We performed rigorous experimentation against existing state-
of-the-art voice spoofing countermeasures to indicate the effec-
tiveness of the proposed method.

2. Proposed method

This section provides a discussion on the proposed spoofing
countermeasure to detect multiple voice spoofing attacks. The
architecture of our spoofing countermeasure is shown in Fig. 2.

2.1. Features extraction

To better capture the traits of multiple voice spoofing attacks,
we propose a novel ATP feature descriptor and fused it with GTCC
to represent the audio. The details of the features extraction pro-
cess are presented in the subsequent sections.

2.1.1. Acoustic ternary patterns (ATP)
This paper presents a novel features representation scheme,

acoustic ternary patterns for audio signals representation. For a

given audio signal X ¼ Y ðiÞ½m�i¼Mf

i¼1 , we partition it into Mf

non-overlapping frames Y ðiÞ½m� having frame length of L. Let Y ðiÞ½j�
represents the central sample having Nk neighboring samples,
and k represent the neighbor index against the central sample.
To compute the acoustic ternary code for each frame, we calculate

the magnitude difference of the signal between Y ðiÞ½j� and neighbor-

ing samples ðNkÞ by applying the threshold t. To compute the value
of t, we employ a linear search scheme where we initialize the t to
zero and optimize it to search the convergence point in the range of
0 to 1. For our experiments, t = 0.00015 provides the most accurate
results. Next, we quantize the signal values in the range of �t

around Y ðiÞ½j� to zero, whereas the values above Y ðiÞ½j� � t are quan-

tized to 1 and below Y ðiÞ½j� � t to 1. Thus, we get a three valued ATP
code as:

FðNk;Y ðiÞ½j�; tÞ ¼
�1; Nk � ðY ðiÞ½j� � tÞ 6 0;

0; ðY ðiÞ½j� þ tÞ < Nk < ðY ðiÞ½j� � tÞ
þ1; Nk � ðY ðiÞ½j� þ t P 0Þ

8><
>: ð1Þ

where FðNk;Y ðiÞ½j�; tÞ represents the speech signal using a three val-
ued ternary code/pattern. Later, we split the patterns ðFÞ into upper

ðFupÞ and lower ðFlowÞ patterns. We retain all values quantized to +1
in ðFupÞ and replace all remaining values with zeros as follows:

FupðNk;Y ðiÞ½j�; tÞ ¼ 1; FðNk;Y ðiÞ½j�; tÞ ¼ þ1
0; Otherwise

(
ð2Þ

For lower patterns, we retain all values quantized to �1 in Flow

and replace the other values with zeros as:

FupðNk;Y ðiÞ½j�; tÞ ¼ 1; FðNk;Y ðiÞ½j�; tÞ ¼ �1
0; Otherwise

(
ð3Þ

Thus, we can represent the ternary patterns as:

TPðY ðiÞ½j�Þ ¼

Xr¼1

r¼�1

Xs¼1

s¼�1

Fup½ðY ðiÞ½r; s� � Y ðiÞ½j�Þk

. . .
Xr¼1

r¼�1

Xs¼1

s¼�1

Flow½ðY ðiÞ½r; s� � Y ðiÞ½j�Þ

8>>>><
>>>>:

ð4Þ

Next, we obtain the uniform patterns for acoustic features rep-
resentation as uniform patterns represent primitive information
and hold maximum attributes of the signal over non-uniform pat-
terns [17]. More specifically, we computed the upper uniform and

lower uniform ternary patterns from the Fupð:Þ and Flowð:Þ, and
transformed these binary representations of patterns into decimal
form as follows:

UðTPupÞ ¼
Xk¼7

k¼0

FupðNk;Y ðiÞ½j�; tÞ � 2k ð5Þ

UðTPlowÞ ¼
Xk¼7

k¼0

FlowðNk;Y ðiÞ½j�; tÞ � 2k ð6Þ

where the U value of the ternary patterns represents the number of
bitwise transitions (0/1 changes) in the pattern, and those having
minimal discontinuities are denoted as uniform, i.e. 00000000 and
01000000 patterns have U values of 0 and 2, respectively. During
histogram encoding, we can considerably reduce the histogram bins
by assigning all non-uniform patterns to a single bin without losing
significant information. For this, we computed the histogram of TPup

and TPlow, and assigned one histogram bin for each uniform pattern,
placing all non-uniform patterns in a single bin. Histograms are cal-
culated as:

Hup
TP
ðTPup; bÞ ¼

XQ
q¼1

dðTPup
q ; bÞ ð7Þ

Hlow
TP

ðTPlow; bÞ ¼
XQ
q¼1

dðTPlow
q ; bÞ ð8Þ

where b represents the histogram bins corresponding to the uni-
form TP codes, and dð:Þ is the Kronecker delta function. After per-
forming extensive experiments, our analysis showed that the first
ten upper- and lower-uniform patterns each were enough to cap-
ture all traits available in the genuine and spoof samples, as we
didn’t achieve any performance improvement when used more pat-

terns. Thus, we concatenated the 10-D Hup
TP

and 10-D Hlow
TP

to create a
20-D ATP features descriptor as:

ATP ¼ ½Hup
TP
jjHlow

TP
� ð9Þ

ATP Features Analysis. As the voice interfaces of VCSs and IoT
devices are susceptible to replay, cloning, and cloned-replay
attacks, therefore, an effective spoofing detector/countermeasure
should take into account these facts during feature extraction:
(1) The microphone adds a layer of non-linearity due to
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inter-modulation distortions, which induce the detectable patterns
[19], thus must be exploited to develop an effective countermea-
sure, (2) The subsequent recordings of the same recording thus
bring higher-order non-linearities in the audio to make it more
detectable, (3) Audio synthesis algorithms also introduce certain
artifacts. Thus, all these observations can be utilized to develop a
noise resistant and robust countermeasure for real-time applica-
tions. As the proposed ATP method analyzes the patterns of the

audio, thus effectively captures these artifacts to differentiate
between the bonafide and spoofed audios. To suppress the additive
noise, upper and lower threshold values are also considered with

the central sample Y ðiÞ½j� in Mf that also lowers the probability of
wrong ternary code generation. Furthermore, less complex ATP
features enable fast model retraining; thus, makes our technique
efficient for applications involving automatic speaker verification
with continuous user enrollment.

Fig. 2. Architecture of proposed method.
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2.1.2. Gammatone cepstral coefficients (GTCC)
GTCC features [18] can be used to capture the distortions in the

frequency scale of the audio. Since the voice spoofing datasets con-
tain audio samples collected in noisy environments, we need a
descriptor capable of effectively capturing the traits of spoof sig-
nals under noisy conditions. GTCC is more robust to noise [18] over
other spectral features i.e. MFCC, therefore, we used GTCC features
along-with ATP for audio representation. To extract the GTCC fea-
tures, we computed the fast Fourier transform (FFT) of the audio.
Next, we computed the energy of each sub-band En by applying
the gammatone filter bank on the FFT of signal. The logarithm of
each energy band En is computed, and discrete cosine transform
is employed to extract the GTCC features as:

GTCCp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
z

XZ

z¼1

log En cos
pz
Z

p� 1
2

� �� �vuut ð10Þ

where En; Z, and P represents the signal energy for nth spectral
band, number of gammatone filters and number of GTCC respec-
tively. We obtain a 13-dimensional GTCC vector using a window
length of 30 ms and overlap factor of 20 ms. Finally, we fused the
13D GTCC features with the 20D ATP features to create a 33D
ATP-GTCC feature vector to effectively capture the attributes of gen-
uine and spoof samples. The implementation of the proposed fea-
tures can be found at [20].

2.2. Classification

For classification, we employed the multi-class SVM classifier to
distinguish between the bonafide, 1st-order, and 2nd-order spoof-
ing samples. More specifically, replay and cloned-replay spoofing
are detected for both 1st- and 2nd-order, whereas, for voice clon-
ing we trained a binary SVM classifier to detect the genuine and
cloned samples. We selected the SVM in the proposed method
due to the following reasons: 1) SVM has a property of convex opti-
mization which helps to achieve optimal results via global mini-
mum rather than the local minimum. 2) SVM is also effective in
case of imbalance dataset. Since the ASVspoof 2019 dataset con-
tains more spoofing samples as compared to the bonafide ones
(Table 1), therefore, SVM was considered to handle the data imbal-
ance problem for the ASVspoof 2019 dataset. We employed the
proposed features to train the SVM for classification. We tuned
the SVM using different kernels and achieved best results with
higher-order polynomial kernel (cubic). Therefore, we used the
SVM tuned with the cubic kernel. We tuned two parameters during
the experiments. The penalty parameter a.k.a box constraint was
set to 1, and the kernel scale a.k.a gamma was set to 1.4, as we
achieved optimal results with these parameter settings.

3. Experimental results and discussion

3.1. Dataset

We evaluated the performance of the proposed spoofing coun-
termeasure on our voice spoofing detection corpus (VSDC) [21] and
the ASVspoof 2019 dataset [22]. VSDC consists of two main collec-
tions, one contains the 1st- and 2nd-order replays against the gen-

uine samples, whereas the second contains the 1st- and 2nd-order
replays of cloned samples. Our VSDC replays collection is more
diverse in comparison of the ASVspoof 2019 corpus as VSDC con-
tains both the 1st- and 2nd-order replay samples against the gen-
uine audios. The details of the VSDC can be found at [21]. ASVspoof
2019 dataset comprises of two collections i.e. PA (replay) and LA
(cloning); both collections contain the training, development
(dev), and evaluation (eval) sets. The training set contains 54000
and 25380 samples; the dev set contains 33534 and 24844 sam-
ples; and the eval set contains 153522 and 71933 samples; from
the PA and LA collections, respectively.

3.2. Performance evaluation of proposed countermeasure

Performance of our voice spoofing countermeasure is evaluated
using the min-tDCF, equal error rate (EER), precision, recall, f1-
score, and accuracy. For replay attacks, we evaluated the results
on both VSDC and ASVspoof 2019 datasets. Whereas, we used only
the ASVspoof 2019 corpus to evaluate the performance of speech
synthesis and VSDC for cloned-replay detection. For VSDC, we used
70% samples for training and remaining 30% for testing, whereas,
for the ASVspoof 2019 corpus, we used the training and eval sets
for model training and testing respectively. The details of dataset
partitioning for experiments are shown in Table 1.

3.2.1. Performance evaluation of ATP and GTCC features
We designed a multi-stage experiment to examine the perfor-

mance of ATP, GTCC, and ATP-GTCC features fusion for voice spoof-
ing detection. First, we used the proposed ATP features to train the
SVM on VSDC and ASVspoof 2019 datasets individually and results
are shown in Table 2. Next, we repeat the same with GTCC features.
Finally, we employed the ATP-GTCC features for voice spoofing
detection. From Table 2, we can observe that the ATP provides bet-
ter detection performance over GTCC, however, the fusion of ATP
and GTCC outperforms both the ATP and GTCC features alone.
Therefore, we employed the ATP-GTCC features with SVM to detect
the replay, cloning, and cloned-replay attacks.

3.2.2. Performance evaluation of the proposed ATP-GTCC features for
multiple voice spoofing detection

We designed an experiment to select the best performing kernel
for our SVM. For this purpose, we employed the proposed ATP-
GTCC features to train the SVM using different kernels on both
VSDC and ASVspoof 2019 datasets. The results are shown in
Table 3. We can observe from the results that the SVM with
higher-order polynomial kernel (cubic) provides better classifica-
tion performance over other kernels. More specifically, we
achieved an EER of 0.6% on VSDC and 1.1% on ASVspoof dataset
for replay detection. Whereas, obtained an EER of 0.1% and 0.09%
for cloning and cloned-replay detection respectively. This signify
the effectiveness of higher-order polynomial kernel for detecting
the distortions in 1st- and 2nd-order spoofing samples. Radial basis
function (RBF) kernel achieves second best results by a small mar-
gin. Whereas, SVM tuned with linear kernel performs the worst.
Thus, we claim that SVM tuned with the cubic kernel using our
ATP-GTCC features effectively classifies the genuine and spoof
samples.

Table 1
Dataset partition for experiments.

Dataset Training Testing

Sample set No. of samples Sample set No. of samples

ASVspoof-LA Train set 25,380 Evaluation set 71,933
ASVspoof-PA Train set 54,000 Evaluation set 1,53,522
VSDC 70% 8397 30% 3603
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3.2.3. Performance comparison of proposed features with different
features-combinations

To evaluate the effectiveness of the proposed features for spoof-
ing detection, we generated different feature-combinations of ATP
and spectral (i.e. ATP-GTCC, ATP-MFCC, and MFCC-GTCC). For clas-
sification, we used the SVM tuned with cubic kernel and results are
shown in Table 4. From these results, we can conclude that our
ATP-GTCC features outperform other features by achieving the
lowest min-tDCF and EER. More precisely, we achieved the min-
tDCF and EER of 0.04 and 0.6% on VSDC, whereas, 0.069 and 1.1%
on ASVspoof 2019 dataset respectively. Similarly, we achieved
the lowest min-tDCF and EER of 0.015 and 0.1% for cloning,
whereas, 0.014 and 0.09% for cloned-replay attacks. It is important
to mention that the fusion involving ATP features achieved better
results over spectral features fusion (i.e.MFCC-GTCC). This shows
the effectiveness of ATP features for voice spoofing detection.

3.2.4. Performance comparison of proposed features on different
classifiers

To measure the effectiveness of SVM over other classifiers for
voice spoofing detection, we performed a comparative analysis of
SVM against other classifiers such as k-nearest neighbor (KNN),
naïve bayes, decision trees, ensemble bagged trees, and BiLSTM
deep learning model. For this experiment, we employed the pro-
posed features to train all of these classifiers separately and results
are presented in Table 5. We followed the same experimentation
protocol as done for other experiments. From the results of this
experiment, we observed that SVM performs the best and Naïve
Bayes is the worst for all three spoofing categories. More
specifically, SVM achieves the lowest min-tDCF and EER of 0.04
and 0.6%, 0.01 and 0.15%, and 0.006 and 0.09%, whereas Naïve
Bayes achieves the highest min-tDCF and EER of 0.528 and 27%,
0.098 and 2.8%, and 0.072 and 1.41% for replay, cloning, and

Table 2
Performance evaluation of ATP, GTCC, and ATP-GTCC features.

Spoofing Type Dataset Features min-tDCF EER% Precision% Recall% Accuracy%

Replay VSDC ATP 0.194 2.9 96.8 97.4 97
GTCC 0.497 7.5 91.4 93.5 92.4
ATP-GTCC 0.04 0.6 99.3 99.3 99.4

ASVspoof ATP 0.24 3.4 96.4 96.6 96.5
GTCC 0.561 8.4 91.2 92 91.5
ATP-GTCC 0.069 1.1 99.25 99.25 99.2

Cloning ASVspoof ATP 0.06 0.9 99 99.1 99
GTCC 0.42 6.1 93.8 94.3 94
ATP-GTCC 0.015 0.1 99.9 99.9 99.9

Cloned-Replay VSDC ATP 0.072 1.2 98.6 99 98.9
GTCC 0.29 4.1 96 96 96
ATP-GTCC 0.014 0.09 99.9 99.9 99.9

Table 3
Voice spoofing detection of the proposed method on different SVM kernels.

Spoofing Type Dataset SVM Kernel EER% Precision% Recall% F1-Score% Accuracy%

Replay VSDC Linear 18 82 82 82 82.2
Quadratic 1.16 98.3 98.3 98.3 98.3
Cubic 0.6 99.3 99.3 99.3 99.4
RBF 0.6 99.3 99.3 99.3 99.4

ASVspoof Linear 2 93.47 93 93.23 93.1
Quadratic 1.5 98.5 98.5 98.5 98.8
Cubic 1.1 99.25 99.25 99.25 99.2
RBF 1 99 99 99 99.1

Cloning ASVspoof Linear 0.5 99.4 99.5 99.45 99.4
Quadratic 0.3 99.6 99.8 99.7 99.6
Cubic 0.1 99.9 99.9 99.9 99.9
RBF 0.15 99.8 99.9 99.85 99.9

Cloned-Replay VSDC Linear 0.44 99.6 99.6 99.6 99.6
Quadratic 0.2 99.8 99.8 99.8 99.7
Cubic 0.09 99.9 99.9 99.9 99.9
RBF 0.15 99.8 99.9 99.85 99.8

Table 4
Comparative analysis of different features combination for voice spoofing detection.

Dataset Features Replay Cloning Cloned-Replay

min-tDCF EER% min-tDCF EER% min-tDCF EER%

ASVspoof MFCC-GTCC 0.63 9.25 0.21 3.1 0.19 2.8
ATP-MFCC 0.108 1.75 0.037 0.5 0.031 0.35
ATP-GTCC 0.069 1.1 0.015 0.1 0.014 0.09

VSDC MFCC-GTCC 0.49 7.33 – – – –
ATP-MFCC 0.089 1.33 – – – –
ATP-GTCC 0.04 0.6 – – – –
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cloned-replay spoofing detection respectively. Therefore, we claim
that SVM trained on our ATP-GTCC features can effectively be used
to classify the bonafide and spoof audios.

We also observed that all machine learning classifiers achieved
reasonably well for replay attacks detection, however, performs
remarkably well for voice cloning and cloned replay detection.
The main reason of this significant difference in performance
between replay and cloning spoofing attacks is the lack of high-
quality cloning audio samples in ASVspoof 2019 dataset. This also
highlights the need to develop more high-quality cloning audios
that can make this problem reasonably challenging.

3.2.5. Performance comparison with existing countermeasures
To evaluate the significance of the proposed countermeasure for

voice spoofing detection, we compared it with existing state-of-
the-art voice spoofing countermeasures [5,13,15,16,23]. The
results obtained on the ASVspoof 2019 dataset are shown in
Table 6. For PA set, [5] performs worst and [23] performs the best,
whereas, the proposed method also achieved remarkable results
with min-tDCF of 0.069 and EER of 1.1%. Similarly, for LA set,
[13] performs worst, whereas, the proposed method performs best
and achieved min-tDCF of 0.015 and EER of 0.1%. From this analy-
sis, we can conclude that our spoofing countermeasure can reliably
be used to detect a variety of voice spoofing attacks.

3.2.6. Performance comparison with existing features
To evaluate the significance of ATP and our fused ATP-GTCC fea-

ture descriptor, we compared it against the comparative features
for voice spoofing detection. We selected those features that was
used for both PA and LA attacks detection. More specifically, we
compared our proposed features against the baseline (CQCC and
LFCC), and CQT-LFCC-DCT features using the SVM classifier. Perfor-
mance obtained on the ASVspoof 2019 dataset is presented in
Table 7. The proposed features achieved the best results by obtain-
ing min-tDCF and EER of 0.069 and 1.1% for PA, and 0.015 and 0.1%
for LA collection of ASVspoof 2019 dataset over other features.
LFCC features perform second best and achieves the min-tDCF
and EER of 0.762 and 29.44% for PA, and 0.769 and 29.75% for LA
collection. Whereas, CQCC performed the worst and achieved the
highest min-tDCF and EER of 0.812 and 36.82% for PA, and 0.815
and 36.98% for LA. From these results, we can conclude that our
proposed features outperform the existing state-of-the-art features
for voice spoofing detection. These results indicate the significance
of our ATP-GTCC features for effectively capturing the dynamic
speaker induced variations in bonafide signal, algorithmic artifacts
in cloning algorithm and microphone distortions in the replay
signal.

3.3. Discussion

To develop a robust method to detect various voice spoofing/
presentation attacks is an important requirement for applications
of countermeasure/presentation attack detectors and automated
speaker recognition systems. Literature shows that countermea-
sures trained with one class of spoofing attacks fail to generalize
well for other classes of spoofing attacks [25,26]. For example, sys-
tems trained with speech cloning show poor performance for
replay detection [27]. The findings of the first two ASVspoof chal-
lenges also reveal that the playback voice recording in a new replay
session is difficult to detect [3]. To address this important problem,
this paper lay the foundation for developing spoofing detector to

Table 5
Detection performance of different classifiers with proposed features.

Dataset Classifiers Replay Cloning Cloned-Replay

min-tDCF EER% min-tDCF EER% min-tDCF EER%

VSDC Decision Trees 0.3713 16.33 – – – –
Naïve Bayes 0.528 27 – – – –
KNN 0.045 0.75 – – – –
Ensemble bagged trees 0.115 1.83 – – – –
BiLSTM 0.3132 13.1 – – – –
SVM 0.04 0.6 – – – –

ASVspoof 2019 Decision Trees 0.361 15 0.112 5 0.05 0.75
Naïve Bayes 0.426 19.75 0.098 2.8 0.072 1.41
KNN 0.139 6.75 0.088 2 0.032 0.5
Ensemble Models 0.149 7 0.03 0.4 0.048 0.75
BiLSTM 0.323 12.7 0.091 2.2 0.007 0.1
SVM 0.064 1 0.01 0.15 0.006 0.09

Table 6
Performance comparison with existing countermeasures for voice spoofing detection.

Spoofing
Type

Features min-
tDCF

EER%

PA Yang et al. [5] (CMOC/A-DNN) 0.208 11.447
Yang et al. [5] CVOC/A-DNN 0.178 9.269
Monteiro et al. [15] (LFCC + ProdSpec +
MGDCC–CNN)

0.07 2.015

Lavrentyeva et al. [16] (CQT + LFCC + DCT-
LCNN)

0.0122 0.54

Yamagishi et al. [22] (CQCC-GMM baseline) 0.2454 11.04
Yamagishi et al. [22] (LFCC-GMM baseline) 0.3017 13.54
Todisco et al. [23] (Deep Features) 0.0096 0.39
Proposed Method (ATP + GTCC-SVM) 0.069 1.1

LA Yang et al. [13] (ICQC + ICQCC + ICBC +
ICLBC-DNN)

0.237 10.44

Monteiro et al. [15] (LFCC + ProdSpec +
MGDCC–CNN)

0.198 9.09

Lavrentyeva et al. [16] (CQT + LFCC + DCT-
LCNN)

0.051 1.84

Yamagishi et al. [22] (CQCC-GMM baseline) 0.236 9.87
Yamagishi et al. [22] (LFCC-GMM baseline) 0.212 11.96
Todisco et al. [23] (Deep Features) 0.0069 0.22
Proposed Method (ATP + GTCC-SVM) 0.015 0.1

Table 7
Performance comparison with existing features on SVM for voice spoofing detection.

Spoofing Type Features min-tDCF EER%

PA CQT-LFCC-DCT [16] 0.748 28.19
CQCC baseline [22] 0.982 36.82
LFCC baseline [22] 0.762 29.44
Proposed ATP-GTCC 0.069 1.1

LA CQT-LFCC-DCT [16] 0.751 28.85
CQCC baseline [22] 0.985 36.98
LFCC baseline [22] 0.769 29.75
Proposed ATP-GTCC 0.015 0.1
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detect speech synthesis, single- and multiorder-playback, and
cloned-replay attacks for VCS by exploiting novel features descrip-
tor i.e. Acoustic Ternary Pattern and fused with GTCC features. The
human speech contains dynamic speaker induced variations in
comparison to synthetic voice. For example, the natural pauses of
human model of speech production are missing from the synthetic
voice generated by deep learning based speech cloning algorithms
[24]. The human model of speech production has 8,000 to 40,000
data points per second. On the contrary, synthetic voice sounds
similar and does have very low standard deviation in terms of data
points compared to human models. From the results (Table 2) of
our first experiment (Section 3.2.1), we can clearly observe that
ATP features achieve remarkable results in terms of detecting the
replay, cloning, and cloned-replay attack. Specifically, ATP per-
forms best for voice cloning detection which proves our hypothesis
that ATP has the capability to accurately capture the dynamic attri-
butes of human’s speech variations that are absent in the synthetic
speech. Further, generative approaches, such as Wavenet and Taco-
tron, find it hard to differentiate between general noise and speech
in a training dataset resulting in noise packaged in as part of the
cloned voice. From the results it is clear when ATP is combined
with GTCC, the overall detection performance is further increased
as this robotic ‘whine’ is nicely captured by GTCC. From the results
(Table 2), we can observe that the ATP-GTCC features provide
superior detection performance for replay detection on both the
VSDC and ASVspoof datasets. Our results also prove our second
hypothesis that the microphone induced distortions in the replay/-
playback samples can be effectively captured through ATP-GTCC
features. These distortions become further amplified when same
voice is played back in the chain, thus our model more accurately
captures nth-order replay samples. It is important to mention that
we have also introduced a novel voice spoofing attack (cloned-
replay) which is unknown to research community. Since the resul-
tant signal of cloned replay contains properties of both replay and
cloned voice, thus ATP-GTCC accurately identifies patterns of
cloned replay attack. Performance evaluation on a variety of voice
spoofing attacks using two publicly available and diverse datasets
(i.e. ASVspoof 2019 and our own VSDC) signify the effectiveness of
our unified method for voice spoofing detection in VCS.

4. Conclusion

The proposed voice spoofing countermeasure is the first
attempt to address the issue of multi-order voice spoofing attacks,
synthetic voice attack, and cloned replay attacks. We proposed
ATP-GTCC features to effectively capture the distortions of 1st-
and 2nd-order spoofing samples, absence of the dynamic attributes
of human’s speech variations in synthetic voice and presence of
robotic noise in it, and cloned replay attacks. The proposed model
was evaluated on samples of VSDC and ASV2019 datasets which
were recorded under variety of environmental conditions, diverse
recording and play back equipment, and various state-of-the-art
deep learning based generative models. Additionally, we intro-
duced a novel voice spoofing threat i.e. cloned-replay that can also
be used to spoof the VCSs. We demonstrated through experiments
that our proposed features can reliably be used to detect multiple
voice spoofing attacks. In the future, we plan to improve our coun-
termeasure more robust on cross dataset scenario.
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