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ABSTRACT Voice-driven devices (VDDs) like Google Home and Amazon Alexa, which are well-known
connected devices in consumer IoT, have applications in various domains i.e., home appliances automation,
next-generation vehicles, voice banking, and so on. However, these VDDs that are based on automatic
speaker verification systems (ASVs) are vulnerable to voice based logical access (LA) attacks like Text-
to-Speech (TTS) synthesis and converted voice signals. Intruders can exploit these attacks to bypass the
security of such systems and gain access of victim’s bank account or home control. Thus, there exists a need
to develop an effective voice spoofing countermeasure that can reliably be used to protect these VDDs against
such malicious attacks. This work presents a novel audio features descriptor named as extended local ternary
pattern (ELTP) to capture the vocal tract dynamically induced attributes of bonafide speech and algorithmic
artifacts in synthetic and converted speeches. We fused our novel ELTP features with the linear frequency
cepstral coefficients (LFCC) to further strengthen the capability of our features for capturing the traits of
bonafide and spoofed signals. We employ the proposed ELTP-LFCC features to train the deep bidirectional
Long Short-TermMemory (DBiLSTM) network for classification of the bonafide and spoof signal (i.e., TTS
synthesis, converted speech). Performance of our spoofing countermeasure is measured on the large-scale
and diverse ASVspoof 2019 logical access dataset. Experimental results demonstrate that the proposed audio
spoofing countermeasure can reliably be used to detect the LA spoofing attacks.

INDEX TERMS Extended local ternary pattern, logical access attacks, text-to-speech synthesis, voice
spoofing countermeasure, voice conversion.

I. INTRODUCTION
We have witnessed a tremendous evolution in voice
biometrics-based user authentication systems in the last few
years. Automatic speaker verification (ASV) systems are
commonly embedded in various devices such as mobile
phones, smart speakers (Google Home, Amazon Alexa), etc.,
for user authentication in different application domains i.e.
banking, electronic-commerce systems, home automation,
apps login [1], etc. For example, Siri in iPhone, Baidu’s ASV
in lenovo or Google Home receives voice commands from the
users and execute different functions such as opening/closing
doors, setting reminders, call or text some person, unlock
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cellphone [2], song play, etc., based on the ASV [3].
In banking sector, we observed many voice-driven based
authentications solutions deployed for customers verification
like Barclays Wealth and BBVA’s bank in Turkey have been
using the ASV to verify telephone callers. Whereas, Garanti
bank has developed voice-driven interface that allows the
users to perform transactions on their app by sending voice
commands [4].

The COVID-19 pandemic has resulted in an exponential
growth of voice-based authentication systems as lockdown
and social distancing measures have restricted the ability
to investigate the claimants face-to-face using facial or
fingerprint recognition. This pandemic indulges the world
to drastically change the verification measures by discour-
aging human-to-human and human-to-machine interactions
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FIGURE 1. Vishing attack scenario in voice banking.

(i.e., fingerprint scanning, password-based verification, etc.).
Thus, voice biometrics technology has emerged as a feasible
solution among various biometric techniques (i.e., Facial,
Iris and, Fingerprint). Moreover, voice biometrics-based
authentication systems are considered economical and com-
putationally more efficient over other biometrics systems.
Although voice biometrics-based user authentication systems
are considered more feasible these days, however, these
systems are susceptible to different malicious presenta-
tion/spoofing attacks i.e., speech synthesis, voice conversion,
replays, etc. These presentation attacks are used to spoof a
voice biometric system by a claimant to imitate an authorized
person to access the control of someone’s home, bank
account, device (laptop or mobile), etc. In recent times, three
cases were filed in the United States where the imposters
used the synthetic voice of CEO’s of different organizations
to fool their employees and robbed millions of dollars
electronically [5]. To address the vulnerabilities of ASV
systems, researchers are developing robust voice spoofing
countermeasures/detection systems to add a protective layer
before ASV systems that can discard the spoof sample before
sending those audios to the ASV systems.

Voice spoofing attacks are categorized into logical-access
attacks i.e. voice conversion (VC) [6], Text-To-Speech (TTS)
synthesis [7] or physical-access attacks i.e. replays [8],
impersonation [9]. These spoofing attacks are generated
through modifying the bonafide audio signal into a variety
of ways. For example, in voice conversion, speech signal
spoken by the original speaker is manipulated to sound
as if it was spoken by some target speaker while keeping
the linguistic information unchanged. Speech synthesis
represents the artificial/machine generated voice of the target
speaker. As both the voice conversion and TTS synthesis can
impersonate a target speaker’s voice, thus pose a significant
threat to the ASV systems. Additionally, since the converted
voice originates from a live person and contains the dynamic

variations of human speech as compared to speech synthesis
that is void of these variations and contains cloning algorithm
artifacts, therefore, we believe that detection of converted
speech is more challenging. In replay spoofing, imposter
plays a pre-recorded speech in front of the ASV system to
get an access on behalf of the bonafide speaker.

With the advent and evolution of generative adversarial
networks (GANs) in the last few years, we have witnessed
amazing results in synthetic image and audio generation that
looks and sounds very realistic. Shown in FIGURE 1 is
one practical example of Deepfake voice phishing (Vishing),
in which synthetic speech is used to impersonate Google
Assistant to initiate the fraudulent transaction Mr. Visher:
the intruder, searches the targeted victim and collects
his/her voice samples (from online meetings, voice mails,
phone calls, etc.). These voice samples are then used to
train the voice conversion or speech synthesis algorithms
to imitate the victim’s voice. Victim’s bank account is
connected to voice enabled devices like Google Home
for Android or iPhone devices. Equipped with the voice
synthesis/conversion capability, the intruder can attempt to
manipulate the VDDs. It is relatively easy for someone,
potentially with malicious intentions, to get access to the
VDDs by being in proximity of the victim. In this scenario,
we clearly assume that the intruder has permanent or tem-
porary access to VDDs. When attacking VDDs, the intruder
can simply send synthetic/converted voice to impersonate
himself as a legitimate user and exploit the VDDs into
transferring funds to his account by sending the command
‘‘Hey Google, I want to transfer funds to Mr. Visher’s
account’’. Due to inability to detect the synthetic/converted
speech, attacker will be successful in transferring funds into
his account. This scenario shows that current VDDs are
unable to differentiate between the bonafide and spoofed
voice samples reliably. This demands to develop a reliable
spoofing detection system for VDDs that can provide a
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protective spoofing countermeasure layer in front of the ASV
systems.

In recent years, various research efforts have been made
to detect the spoofing (synthetic/converted) attacks [10] in
conventional ASV systems to authenticate the legitimate
user in financial sector [11]. The idea of voice texture is a
relatively new concept of voice characterization as spectral
analysis reveals that the texture of cloned voice signals varies
as compared to the bonafide ones.

The concept of texture is well explored in image pro-
cessing domain. Texture descriptors such as local binary
patterns (LBP) and local ternary patterns (LTP) are found
to be effective for texture-based classification of images.
Later, this texture descriptor was introduced to develop an
acoustic LBP-based voice spoofing countermeasure. LBP has
two main limitations, i) noise sensitive, and ii) possibility
of different LBP patterns assignment into the same class,
which reduces its discriminating property. We proposed the
acoustic-Local Ternary Patterns (LTP) [12] to overcome these
limitations. However, acoustic-LTP features are vulnerable
for certain scenarios that must be addressed. The potential
limitations of this fixed threshold-based approach of our
prior acoustic-LTP method are: (a) non-robust over dynamic
pattern detection—spectral analysis of the synthetic voice
reveals that the signal has dynamic repetition pattern that can
be effectively captured using a dynamic threshold approach.
However, the acoustic-LTP uses a static threshold for comput-
ing the LTP codes, therefore, there exists a need to improve
the existing acoustic-LTP features for ASV applications.
(b) brute-force optimization—as in acoustic-LTP we need
a brute-force approach for threshold optimization, which
makes it difficult to achieve better accuracy in real-time
applications under diverse conditions. (c) intolerance over
non-uniform noise— acoustic-LTP is robust against the
consistent uniform noise that is available in the indoor audios
experienced in fall detection applications, whereas we expe-
rience the non-uniform noise in the outdoor environments for
applications like voice spoofing detection. Therefore, static
threshold-based acoustic-LTP features are not robust under
non-uniform noise and hence, not reliable for voice spoofing
detection in diverse environments. The motivation behind the
proposed work is to develop an effective features represen-
tation scheme that is robust to above-mentioned limitations
and can reliably detect the logical-access (LA) attacks in
diverse scenarios. To address these issues, we develop a
novel audio features descriptor named extended local ternary
pattern (ELTP) where we propose an automated threshold
computation approach based on calculating the standard
deviation locally for each audio frame. Our ELTP features
analyze the patterns of the audios in time domain by using
the dynamically computed automatic threshold approach
capable of capturing the algorithmic artifacts in the synthetic
speech signals and vocal tract induced variations in the
genuine signals. Moreover, we exploited the ability of linear
frequency cepstral coefficients (LFCC) features to effectively
extract the significant information from the low- and

high-frequency bands of the audios. Thus, we integrated the
frequency-domain LFCC with our novel time-domain ELTP
features to better enhance the features representation in terms
of capturing the vocal tract induced variations of bonafide
voice and algorithmic artifacts of synthesized speech. The
proposed ELTP-LFCC features are later used to train a
BiLSTM model to reliably detect the LA attacks. The main
contributions of our research work are:

1. We propose a novel extended local ternary pattern
feature descriptor to effectively capture the traits of speaker
induced variations in bonafide audio and algorithmic artifacts
in converted and synthetic audio.

2. Our novel ELTP features are robust to non-uniform
noise and dynamic patterns detection that makes them to
perform well for voice spoofing detection in diverse indoor
and outdoor environmental conditions.

3. We integrated our ELTP features with the LFCC to
develop a more effective descriptor that further strengthens
the performance of our spoofing countermeasure.

4. Rigorous experimentation was performed to illustrate
the significance of the proposed countermeasure for detection
of LA based voice spoofing attacks.

The rest of the paper is organized as follows.
Section II investigates the existing state-of-the-art voice
spoofing countermeasures. Section III explains the proposed
voice spoofing detection framework. Section IV comprises
the details of dataset and experiments conducted to measure
the performance of our countermeasure. Lastly, Section V
presents the conclusion.

II. RELATED WORK
This section presents a critical investigation of current state-
of-the-art voice spoofing countermeasures for logical-access
attacks detection. Existing spoofing countermeasures have
used various conventional machine learning-based [13]–[17]
or deep learning-based spoofing detection systems [18]–[23]
for LA attacks. The researchers in ASV and spoofing
detection community have focused more on developing
robust acoustic features to detect the voice spoofing
attacks [13], [15], [16]. Existing works have explored a
variety of audio features based on phase spectrum, magnitude
spectrum, pitch, group delay, etc., to distinguish between the
spoofed and human speech. Furthermore, Gaussian mixture
model (GMM), its variants and support vector machine
(SVM) classifiers [15]–[17], [24], [25] have been explored
in various studies for voice spoofing detection.

A. SHALLOW MACHINE LEARNING-BASED APPROACHES
Existingmethods have heavily explored the GMMalong with
different variants to develop various algorithms for synthetic
speech and converted voice detection. In [13], Constant
Q-transform cepstral coefficients (CQCC) were used to clas-
sify the speech samples as synthetic or bonafide. Few works
have highlighted the significance of modified group delay
function (MGDF) in synthetic/converted speech signals.
In [14], MGDF-based and relative phase shift features were
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employed for synthetic speech detection. Similarly, in [16],
a features-set comprised of mel-frequency cepstral coef-
ficients (MFCC)-cosine-normalized phase-based cepstral
coefficients (CNPCC), and linear prediction residual cepstral
coefficients (LPRCC) along with some existing features i.e.
Modified group delay cepstral coefficients (MGDCC) and
CNPCC was used to train a bi-class GMM to distinguish
spoofed (synthetic/converted) speech from the bonafide.
In [15], mean pitch stability (MPS), mean pitch stability
range (MPSR), and jitter were computed by analyzing
the pitch pattern to distinguish between the genuine and
synthetic speech. The integration of multiple features makes
these solutions [15], [16] computationally complex for real
time applications. Few works [17], [26] have used LBP,
MGDF, and CNPF to detect the LA attacks. Since the LBP
is sensitive to noise that results in generation of similar
patterns for both classes, thus, makes them less effective to
better differentiate between the bonafide and spoof samples.
Similarly, [27] highlighted the significance of relative phase
information derived from Fourier spectrum and fusion of
relative phase information with existing phase-based features
for voice spoofing (synthetic/converted) detection. In [28],
authors used the fusion of long-term modulation and short-
term spectral features to discriminate between the bonafide
and synthetic speech. This method uses filter-bank energies
to reduce dimensionality that might result in the loss of
some detailed information in modulation features. In [29],
a combination of cochlear filter cepstral coefficients (CFCC)
and change in instantaneous frequency (IF) was used to
capture the traits of natural and spoofed (synthetic/converted)
speech. The classification performance of CFCCIF fea-
tures was increased when used in combination with the
MFCC. An anti-spoofing system based on calculating
linear predictive coding (LPC) pair-wise distances between
genuine and converted speech was proposed in [30]. This
countermeasure takes advantage of the prior knowledge
of the attack. A spoofing countermeasure based on high-
order spectral analysis specifically quadrature phase coupling
(QPC), Gaussianity and linearity test statistics was used in [7]
for cloned audio detection. In [31], authors investigated an
utterance level feature termed as longer contexts or high
level feature (HLF) and voice assessment tool (p563) which
calculates Mean Opinion Score to detect artificial signals.
The latter approach was unable to discriminate between the
genuine and artificially produced signals effectively.

B. DEEP LEARNING-BASED APPROACHES
In recent years, ASV research community have widely
explored the deep learning-based methods for logical access
attacks detection. In [18], MFCC, CQCC, and STFT were
employed to train the ResNet model for audio spoofing
attacks detection. It was demonstrated that the fusion of
three variants of residual convolutional neural networks:
MFCC-ResNet, CQCC-ResNet and Spec-ResNet achieve
better classification performance than the ASVspoof baseline
spoofing detection methods (LFCC-GMM, CQCC-GMM).

In [20], spoofing-discriminant network was employed to
obtain the spoofing vector (s-vector) for each utterance.
Later, mahalanobis distance with normalization was applied
to s-vectors for spoofing (synthetic/converted) detection.
Fusion of two magnitude-based features was used with
the multilayer perceptron classifier in [19] to detect the
LA attacks. This method attained improved classification
performance but at higher features computation cost. In [21],
a deep dense convolutional network with 135 layers was used
to detect the converted voice spoofing. Similarly in [23],
two low-level acoustic features i.e. log power magnitude
spectra (logspec) and CQCC were employed to train the
deep neural network (DNN) models based on several variants
of Squeeze-Excitation network and residual networks to
classify between the spoofed and bonafide speech. This
method [23] achieves better classification results than other
contemporary methods however, fusion of several DNN
models significantly increase the training time of these
methods.

Besides extracting the spectral features like MGDF,
MFCC and others, which are then fed to different machine
learning or deep learning model for classification, few
works [22], [32], [33] have also employed machine learned
features. In [32], a DNN was used to generate a bottleneck
feature and frame level posteriors to discriminate between the
bonafide and spoofed (synthetic/converted) samples. In this
method, GMM classifier was trained using both the extracted
and machine learned features. In [22], authors used the
fusion of Light convolutional neural network (LCNN) and
a deep feature extractor termed as Gated Recurrent neural
network (GRNN). Extracted deep features were then used
to train three different classifiers i.e., linear discriminant
analysis (LDA), and its probabilistic version (PDLA), and
SVM for voice spoofing detection. Similarly in [33], DNN-
based frame-level features and RNN-based sequence-level
features were extracted to train different classifiers i.e. LDA,
gaussian density function (GDF), and SVM for LA attacks
detection. More specifically, for DNN, authors employed
three model structures that are stacked autoencoder, spoofing
discriminant deep neural network (DNN), and multi-task
joint-learned DNN. Whereas, in RNN-based system, LSTM-
RNN and bidirectional LSTM-RNN were implemented.
Autoencoder compresses the information that can result
in loss of relevant content. These methods achieve better
classification performance however, with increased features
computation cost. TABLE 1 presents the details of existing
spoofing countermeasures for LA attacks detection.

III. PROPOSED FRAMEWORK
A detailed description of our voice spoofing countermeasure
is presented in this section. We proposed a novel audio
feature descriptor ELTP to represent the input audio signals.
The details of ELTP feature descriptor are also provided in
this section. We fused our ELTP features with the LFCC
for audio signal representation. We designed a bidirectional
LSTM (DBiLSTM) recurrent neural network and train it
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TABLE 1. Literature review summary.

by using our ELTP-LFCC features for classification of the
bonafide and synthetic/converted signals. The architecture of
the proposed framework is presented in FIGURE 2.

A. FEATURE EXTRACTION
For accurate detection of logical access attacks, we need to
develop a robust audio feature descriptor that can effectively
capture the algorithmic artifacts in synthesized signals and
dynamic speech attributes of human speaker in the bonafide
speech. Moreover, audio features must also be robust over

non-uniform noise which is quite apparent in the outdoor
environments where voice samples can be recorded and later
used for voice spoofing detection. To better address these
concerns, we proposed a novel audio features representation
method ELTP that is robust to non-uniform noise and
dynamic patterns detection, and capable of capturing the
dynamic varying attributes in genuine speech and algorithmic
artifacts in the cloned voice. Moreover, we integrated the
LFCC features with our ELTP features to further enhance the
performance of spoofing detection.
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FIGURE 2. Architecture of proposed framework.

FIGURE 3. Illustration of ELTP descriptor.

1) EXTEND LOCAL TERNARY PATTERNS (ELTP)
We partition the input audio signal Y [n] having N samples
into non-overlapping frames of length l. The concept to
generate the ELTP features are taken from the image
processing research that consider the closest neighborhood
of a pixel comprising of the 8 surrounding pixels in a 3 × 3
window for 2D LTP features [34]. However, for 1D audio
signals, we employed different number of neighbors and
found better features representation with 10 neighbors. Thus,
we selected 10 neighbors around a central sample c to create
each frame of length 11 (FIGURE 3) in the input audio. LTP
extends LBP to 3 valued codes, which quantize the width±θ
around c, ones above and below this are quantized to 1 and
−1 respectively. The process for converting a region into its
ELTP representation is as follows:

P
(
si, c, θ

)
=


1, si ≥ c+ θ
0, |(si − θ )| < θ

−1, si ≤ (c− θ )

(1)

where P(si, c, θ) represents the acoustic signal, c is the central
sample of the frame F with si neighbors where i represents
neighbor index and θ represents the threshold. To compute the
ELTP, we compute the magnitude difference between central
sample c and the 10 surrounding audio samples si by applying
θ around the c. In our prior work of 1D LTP features [12],
we used the fixed threshold that is not much robust to noise.
To overcome this limitation, we develop an automatic scheme
to calculate the threshold dynamically using an auto-adaptive
method instead of using a fixed threshold θ . We computed
this auto-adapted threshold as follows:

θ = α × σ (0 < α ≤ 1) (2)

where σ is the standard deviation computed for each frame
of the audio, and α is a scaling factor. We employed a linear
searching mechanism to optimize the value of the scaling
factor α by finding the convergence point between 0 and 1.
We found this optimized value of α =0.6 as we achieved
the best results on this value. Thus, we used α =0.6 for
computing the threshold θ .
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Next, we split each ternary pattern of ELTP into its positive
(PPOS ) and negative (PNEG) halves. All values quantized to
+1 or -1 are maintained in PPOS and PNEG respectively. And
replacing all other values with zeros using the (3) and (4):

PPOS
(
si, c, θ

)
=

{
1, if P

(
si, c, θ

)
= +1

0, Otherwise
(3)

PNEG
(
si, c, θ

)
=

{
1, if P

(
si, c, θ

)
= −1

0, Otherwise
(4)

Inspired from the concept of uniform patterns in image
processing research [35], we used this idea for voice
signals since they provide valuable information about the
signal. In contrast to non-uniform patterns, which provide
less significant signal information, uniform patterns include
substantial signal information. It is also worth noting that
uniform patterns are more prevalent than non-uniform pat-
terns. We computed positive uniform ELTPPOSu and negative
uniform ELTPNEGu patterns from the earlier mentioned PPOS

and PNEG and represented these patterns in decimal forms
using the (5) and (6) as follows:

ELTPPOSu (si, c, θ) =
9∑
i=0

2i × P
POS
u

(
si, c, θ

)
(5)

ELTPNEGu (si, c, θ) =
9∑
i=0

2i × P
NEG
u

(
si, c, θ

)
(6)

Next, we compute the histogram of ELTPPOSu and ELTPNEGu
separately to obtain the details of both the patterns. The
number of bins is significantly reduced by assigning all non-
uniform patterns to one bin, without losing too much data.
Histograms are calculated as follows:

hPOS (ELTPPOS , n) =
k∑

k=1

(
ELTPPOSk , n

)
(7)

hNEG(ELTPNEG, n) =
k∑

k=1

(
ELTPNEGk , n

)
(8)

Here n is the histogram bins. Through extensive experimen-
tation, we concluded that first 10 uniform patterns from
both categories were sufficient to capture the distinctive
traits in bonafide and spoof samples. Therefore, we used the
10-dimensional ELTP code each for positive and negative
uniform patterns. Finally, (7) and (8) are concatenated to
create a 20-dimensional ELTP features as follows:

ELTP = [hPOS + hNEG] (9)

2) LINEAR FREQUENCY CEPSTRAL COEFFICIENTS (LFCC)
Recently, we have seen many methods that employed
different spectral features alone or in combination for
voice spoofing detection. Spectral features such as MFCC,
GTCC, CQCC, etc., have been employed to develop features
representation schemes for anti-spoofing methods [36], [37].

ASVspoof community have provided two baseline models,
one using the CQCC and other the LFCC for physical-
and logical-access attacks detection. MFCC features were
proposed based on the resemblance to human auditory
system. LFCC is identical to MFCC in terms of feature
extraction computation but with the difference of linear filter
bank. Furthermore, according to speech production theories,
some characteristics of speaker associated with the anatomy
of vocal tract are greatly reflected in high frequency areas
of the speech [38]. This argues the use of linear scale
frequency for speaker identification and spoofing detection.
Additionally, a comparative analysis in [39] performed for
synthetic speech detection demonstrates the effectiveness of
LFCC in terms of capturing the distinctive traits available
in the high-frequency bands over other cepstral coefficients.
This fact motivated us to integrate the LFCC with our
novel ELTP features to better capture the vocal tract
induced variations of bonafide voice and algorithmic artifacts
of synthesized speech. For this work, we extracted the
20-dimensional LFCC featureswith software implementation
in MATLAB provided by the ASVspoof 2019 challenge [10]
and fused them with our ELTP features for acoustic
signal representation. The process of LFCC extraction that
returns 20 dimensional LFCC coefficients is represented
in FIGURE 4. Pre-processing block includes the tasks of
framing and windowing. We obtained the spectrum of each
audio frame using the Fast Fourier Transform. A set of linear
filters is applied to Fast fourier transform of the audio signals
and gain (gk ) is calculated. Next, log of each gk is calculated
and discrete cosine transform is applied to obtain the LFCC
features. LFCC features are calculated as follows:

K∑
k=1

log(gk )cos(
(2k − 1)iπ

2K
), 1 ≤ i ≤ I (10)

where, K and I represent the number of filters and number of
LFCC respectively. We integrated this 20-dimensional LFCC
features with our 20-dimensional ELTP features to create the
final 40-dimensional ELTP-LFCC feature vector.

B. CLASSIFICATION
Since audio is a time series signal and BiLSTM is suitable for
extracting the time series data. Therefore, we employed the
BiLSTMmodel in this work for classification of the bonafide
and spoofed samples. We used our ELTP-LFCC features-
set to train the BiLSTM classifier for logical-access attacks
detection. For a given input sequence x = [x1, x2,. . . , xT],
RNN computes the hidden vector h = [h1, h2,. . . , hT] and the
output vector y = [y1, y2,. . . , yT] by iterating the (11) and (12)
from t = 1 to T :

ht = H (Wxhxt +Whhht−1 + Bh) (11)

yt = Whyht + by (12)

where W represents the weight matrices (e.g., Wxh is the
input-hidden weight matrix), B is the bias vectors (e.g., Bh
is hidden bias vector) and H is the hidden function. For the
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FIGURE 4. Illustration of LFCC descriptor.

LSTM network, we computed the hidden function at time t
using (13) to (17) as follows:

ft = σg
(
Wxf × xt +Whf × ht−1+Wcf ×ct−1+Bf

)
(13)

it = σg (Wxi × xt +Whi × ht−1 +Wci × ct−1 + Bi) (14)

ot = σg (Wxo × xt +Who × ht−1 +Wco × ct + Bo) (15)

ct = ftct−1 + it tanh (Wxc × xt +Whc × ht−1 + Bc) (16)

ht = ot tanh(ct ) (17)

where σg is the hard-sigmoid function, f, i, o, c and h are forget
gate, input gate, output gate, cell memory, and hidden vector
respectively.

LSTM is also commonly employed for classification of
time series data, however, LSTM network is limited as it uses
the previous context only. Bidirectional RNN (BRNN) [40]
successfully overcomes this issue by accessing the data in
both directions. Thus, we employed the BiLSTM network in
the proposed method. As illustrated in FIGURE 2, a forward
hidden sequence Eh, backward hidden sequence

←

h and output
sequence is computed by iterating the forward layer from
t = 1 to T , backward layer from t = T to 1. The output
layer is updated by concatenating the outputs of forward and
backward hidden sequences as follows:

yt = WEhyEht +W←h y
←

h t + By (18)

Our model used 10 bidirectional LSTM layers, each
with 64 hidden units. Extracted ELTP-LFCC features are
fed to the first BiLSTM layer. The outputs of one BiLSTM
layer are concatenated and passed to the next BiLSTM layer.
Feature vector from the 10th BiLSTM layer is passed into
a fully connected (FC) layer. The output of FC layer is
propagated to a softmax layer and finally to a classification
layer that assigns each input to one of the mutually exclusive
classes as shown in FIGURE 2.We usedAdam optimizer [41]
to tune our network with initial learning rate set to 0.001
and squared gradient decay factor set to 0.999. We tuned
various parameters during the network training. Specifically,
we tunned state and gate activation functions, mini-batch size,
maximum epochs and number of hidden units. We performed
experiments by setting number of hidden units equal to
64,100 and 150 and found best results with 64 hidden units.
For network training, mini-batch size was tuned at values of
128, 64 and 30 and received best results on 30 mini-batch

FIGURE 5. Distributional variance of bonafide and spoof feature values.

size. Maximum number of epochs was set to different values
and finally selected as 100 epochs as optimal results were
achieved on this setting.We also tuned the system on tanh and
soft sign for state activation function where tanh outperforms
the soft sign in almost all experiments, as tanh delivers better
training performance for multilayer neural networks [42].
Similarly, we tuned the system on sigmoid and hard-sigmoid
for gate activation function and found best results on the
hard-sigmoid.

C. ADDRESSING THE LIMITATIONS OF ACOUSTICS-LBP
AND ACOUSTICS-LTP APPROACHES
As we discussed in the Introduction section, existing
approaches like acoustics-LBP are sensitive to noise and
hard-coded threshold-based acoustics-LTP features are non-
robust over dynamic pattern detection that makes it difficult
to achieve better accuracy in real-time applications under
diverse conditions. As the proposed ELTP features analyze
the patterns of audios in time domain, therefore, reliably
captures the algorithmic artifacts of synthetic samples and
dynamic vocal tract traits of the genuine audios for effective
classification of the genuine/bonafide and cloned samples.
To demonstrate the effectiveness of our ELTP features for
distinctive representation of bonafide and synthetic/cloned
sample, we generated the box plots of ELTP for the bonafide
and synthetic samples of the same speaker as shown in
FIGURE 5. From the FIGURE 5, we can see that the
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TABLE 2. Statistics of training, development, and evaluation subsets of ASVSPOOF 2019 LA dataset.

spoof sample has a larger distributional variance over the
bonafide sample of the same speaker. Moreover, most of
the feature values of spoof samples are high as compared to
the bonafide samples. These facts signify the effectiveness
of our ELTP features for more distinctive representation of
the bonafide and spoof samples.Moreover, our ELTP features
also address the limitation (non-robustness against noise) of
acoustics-LBP approach. We can prove from FIGURE 3 that
our proposed ELTP features are robust against the noise.
As the noise can enhance or reduce the value of central
sample within a frame resulting in generation of wrong
code, however, we can see from the audio frame shown in
FIGURE 3 that the value of c now remains within the c+θ and
c-θ range, thus, achieves more robustness against the noise.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
This section presents the details of experiments conducted to
measure the performance of our technique. We also provided
a discussion on the results of these experiments. Moreover,
details of the dataset used for performance evaluation is
also presented. The evaluation plan of ASVspoof 2019
dataset considers tandem detection cost function (t-DCF)
and equal error rate (EER) as primary and secondary
evaluation metrics, respectively. Thus, we also used the
t-DCF and EER to measure the performance of the proposed
countermeasure. For experimentation, we used the training
subset of ASVspoof 2019 LA dataset for training and
evaluation subset for testing.

A. DATASET
Performance of our proposed countermeasure is investigated
on the logical access subset of ASVspoof 2019 dataset.
It comprises training, development, and evaluation subsets.
Each subset contains bonafide and spoofed samples where
spoofed samples are generated from genuine speech samples
using several spoofing algorithms (A01–A19) [43]. Genuine
speech samples are collected from 107 speakers. The training
subset contains 25,380 samples, the development subset
contains 24,986 samples, and the evaluation (eval) subset
contains 71,933 audio samples. The statistics of ASVspoof
2019 LA dataset in terms of number of spoofed and bonafide
samples in each subset, number of male and female speakers,
spoofing algorithms, and sampling rate are listed in TABLE 2.
The duration of each utterance is in the range of one to two
seconds and all audio files in these three subsets are stored in
flac format. The details can be found at [43].

TABLE 3. Detection performance on synthetic speech, voice conversion,
and combined LA-EVAL subset.

B. PERFORMANCE EVALUATION OF ELTP
AND LFCC FEATURES
We performed an experiment to investigate the performance
of our proposed ELTP features, LFCC features and ELTP-
LFCC features fusion for LA spoofing detection. For this,
we employed the proposed ELTP features, LFCC features
and ELTP-LFCC features separately to train the DBiLSTM
model for LA attacks detection. We achieved an EER
and t-DCF of 2.45% and 0.067, 19.85% and 0.409, and
0.74% and 0.008 on ELTP, LFCC, and ELTP-LFCC features
respectively. These results show that our proposed ELTP
features achieved remarkable performance for LA spoofing
detection. LFCC performed the worst, whereas, ELTP-LFCC
features fusion performed the best by achieving the lowest
t-DCF of 0.008 for LA evaluation corpus. Thus, we used the
ELTP-LFCC features to train the DBiLSTM model for LA
attacks detection.

C. PERFORMANCE EVALUATION OF PROPOSED
COUNTERMEASURE
We designed an experiment to measure the performance of
our countermeasure for voice conversion, TTS synthesis, and
overall LA spoofing detection. For this, we employed the
proposed ELTP-LFCC features set to train the DBiLSTM
model for voice conversion, TTS synthesis, and overall LA
spoofing detection separately. The results of this experiment
are presented in TABLE 3. We achieved an EER and t-DCF
of 33.28% and 0.39, 0.002% and 0.00002, and 0.74% and
0.008 for voice conversion, synthetic speech, and overall LA
evaluation subset respectively. From the results presented
in TABLE 3, we can see that the proposed system attains
better performance on synthetic speech over the converted
voice samples. This might be due to the reason that input
resource in speech synthesis is text in digitized form which
is converted into speech. Whereas VC systems (A05, A06,
A17, A18, A19) use human speech as source and preserve
the prosodic qualities of the speaker which might be missing
in the synthetic speech. Since A04 and A16 are unit-selection
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TABLE 4. Performance comparison of proposed feature-set on different
classifiers.

based TTS systems, they may preserve the acoustic features
of bonafide audios. However, these systems might fail if
the required segment (phrase/word) is missing from the
database. Such strong dependence on the bonafide signal
makes this approach less effective. Overall, our spoofing
detection framework achieves remarkable performance for
LA attacks detection that illustrates the effectiveness of our
method for reliable LA spoofing detection.

D. PERFORMANCE COMPARISON ON
DIFFERENT CLASSIFIERS
We performed an experiment to investigate the classification
performance of the proposed ELTP-LFCC features against
different classifiers. For this purpose, we used our ELTP-
LFCC features to train the conventional machine learning and
deep learning classifiers. More specifically, we employed our
features to train the SVM, LSTM and DBiLSTM separately
and reported the results in the TABLE 4. Again, we used
the training set of ASVspoof LA dataset for training and
evaluation subset for testing. We tuned these classifiers on
different settings and selected the parameters where we
obtained the best results.

For the synthetic speech detection, theDBiLSTMclassifier
achieved the best results, whereas, SVM obtained the highest
EER and t-DCF. For voice conversion, all the classifiers
achieved almost similar performance where the LSTM
performed marginally better than the rest. For the overall
LA-eval collection, the DBiLSTM achieved the best results
with a significant margin as compared to the LSTM and
SVM classifiers. From the results of this experiment, we can
conclude that the proposed ELTP-LFCC features offer the
best performance with the DBiLSTM model. Thus, we used
the DBiLSTM model for classification of the bonafide and
spoof audios.

E. PERFORMANCE COMPARISON AGAINST EXISTING LA
SPOOFING DETECTION METHODS
To measure the robustness of the proposed method for LA
spoofing detection, we performed a comparative analysis of
our method against existing LA spoofing detection methods
including the baseline methods provided by ASVspoof
challenge. For this purpose, we compared our method with

TABLE 5. Comparative analysis of proposed and existing LA detection
methods.

TABLE 6. Performance comparison of baseline and proposed features on
DBILSTM.

these existing methods [18], [22], [37] on the ASVspoof 2019
LA dataset for LA spoofing detection. The results of the
proposed and comparative methods in terms of t-DCF and
EER are provided in TABLE 5.

From the classification results, we can see that the
proposed countermeasure outperforms the existing methods
including the ASVspoof baseline methods for LA attacks
detection. Thus, we argue that our method can effectively be
used to detect the LA voice spoofing attacks.

F. PERFORMANCE COMPARISON OF PROPOSED
ELTP-LFCC AND BASELINE FEATURES FOR
LA SPOOFING DETECTION
Since we proposed a novel features descriptor for voice
spoofing detection, therefore, features wise comparison
against the existing baseline features (CQCC and LFCC) on
the same classifier is important to evaluate the significance
of our ELTP-LFCC features set. For this, we compared the
performance of our features against the ASVspoof baseline
features CQCC and LFCC onDBiLSTMclassifier and results

162866 VOLUME 9, 2021



T. Arif et al.: Voice Spoofing Countermeasure for Logical Access Attacks Detection

are shown in TABLE 6. From the results, we can observe that
the proposed ELTP-LFCC features provide better detection
performance over the CQCC and LFCC alone when trained
with the DBiLSTM on the ASVspoof LA dataset as a whole.
More specifically, we achieved lesser t-DCF of 0.2 and EER
of 6.8% as compared to CQCC, and 0.401 and 19.11%
as compared to LFCC for LA attack’s detection. However,
CQCC performs better on the converted voice samples.
These results demonstrate the effectiveness of the proposed
ELTP-LFCC features for LA attacks detection.

V. CONCLUSION
This paper has presented an effective voice spoofing
countermeasure using the novel ELTP-LFCC features and
Deep Bidirectional LSTM to combat the TTS synthesis
and converted voice samples of logical-access attacks.
We presented a novel audio features descriptor ELTP and
fused it with LFCC to better capture the characteristics of the
vocal tract speech dynamics of bonafide voice and cloning
algorithm artifacts. Performance evaluation on the diverse
ASVspoof 2019-LA dataset demonstrates the significance of
our system for reliable detection of logical access spoofing
attacks. Performance comparison against the baseline and
existing contemporary methods shows that our spoofing
countermeasure provides better detection performance over
the existing voice spoofing countermeasures. The fact that the
ASVspoof evaluation set contains the unknown bonafide and
spoof samples and voice samples of unseen human speakers
indicates that our system can provide better performance
on cross-dataset scenario. Experimental analysis showed
encouraging results on TTS synthesis attacks however,
we found that converted voice samples are more difficult to
detect due to the fact that voice conversion algorithms take
voice samples as input over the TTS which takes the digitized
text as input. This makes the voice conversion algorithms
to better preserve the prosodic qualities of the speaker in
synthesized samples which might be missing in the synthetic
speech generated using the TTS algorithms. In the future,
we plan to improve the performance of our countermeasure
against the voice conversion attacks.
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