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Abstract
Insect pests are among the most critical factors affecting crops and result in a severe reduction in food yield. At the same
time, early and accurate identification of insect pests can assist farmers in taking timely preventative steps to reduce financial
losses and improve food quality. However, the manual inspection process is a daunting and time-consuming task due to
visual similarity between various insect species. Moreover, sometimes it is difficult to find an experienced professional for the
consultation. To deal with the problems ofmanual inspection, we have presented an automated framework for the identification
and categorization of insect pests using deep learning. We proposed a lightweight drone-based approach, namely a custom
CornerNet approach with DenseNet-100 as a base network. The introduced framework comprises three phases. The region of
interest is initially acquired by developing sample annotations later used formodel training. A customCornerNet is proposed in
the next phase by employing the DenseNet-100 for deep keypoints computation. The one-stage detector CornerNet identifies
and categorizes several insect pests in the final step. The DenseNet network improves the capacity of feature representation
by connecting the feature maps from all of its preceding layers and assists the CornerNet model in detecting insect pests as
paired vital points. We assessed the performance of the proposed model on the standard IP102 benchmark dataset for pest
recognition which is challenging in terms of pest size, color, orientation, category, chrominance, and lighting variations. Both
qualitative and quantitative experimental results showed the effectiveness of our approach for identifying target insects in the
field with improved accuracy and recall rates.
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Introduction

The agriculture sector is themost significant part of the econ-
omy, and the majority population of the entire world depends
on it. Meanwhile, the recent growth in the world’s popula-
tion rate necessitates an increase in crop quantity to meet
the food requirements of people all over the world [1]. How-
ever, several challenging factors like the climate conditions
and crop pests hinder the farmers in taking care of crops and
improving the yield. Conventional crop pest identification is
performed by manually arranging pest traps to analyze and
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assess the category of pests in crops. However, such methods
are unreliable and often suffer from high error rates.

Furthermore, we often experience delays in the pest detec-
tion process due to the limited availability of agronomists.
Moreover, because of the lack of technical information about
the various pest types and high visual similarity between dif-
ferent insect species, it is difficult to accurately specify the
related insecticide types, resulting in an extensive and blind
application of pesticides [2]. The delay in pest recognition
can prevent the farmers from taking timely measurements,
which causes massive damage to both the quality and quan-
tity of crops. However, identifying the type and amount of
crop pests is a tedious and time-consuming activity. At the
same time, early recognition and usage of timely spraying
pesticides on the plants can improve the yield and enhance
the economy. Recent progress in machine learning (ML)
and computer vision (CV) has urged the researcher present
computer-aided approaches to simplify this time-consuming
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task and build effective automated insect identification sys-
tems.

Initially, conventional ML-based approaches used local
descriptors like local binary pattern (LBP) [3], regional
ternary pattern (LTP) [4], SIFT [5], SURF [6], etc., with clas-
sifiers such as SVM [7], K-means [8], etc. Such approaches
are heavily explored for pest detection and classification
[9–14]. Although hand-crafted keypoint computation tech-
niques are easier to use and require less training data, they
are slow and require the skill of experienced human special-
ists. Moreover, the recent progression in image acquisition
has introduced such challenging datasets. These conven-
tional approaches employ ML as ready-to-use solutions are
not promising for real-world pest detection, and they face a
severe reduction in classification performance. This might be
because of several reasons, such as ineffective hand-crafted
keypoints computation.

Moreover, the exact pest can appearwith differentmotions
and positions in various images, which causes to generate the
varying keypoints vectors for the same insects. Primarily,
the research community is working to improve the detection
performance for specific categories of insects by proposing
new keypoints solutions. Such work lacks focus on intro-
ducing novel frameworks formulti-category pest recognition
missions that need to acquire insect localization and classi-
fication information to assist in pest monitoring [15, 16].

Recently, we observed the robustness of Deep learning
(DL)-based frameworks, i.e., convolution neural networks
(CNNs) [17], recurrent neural networks (RNNs) [18], deep
belief networks [19] in a variety of areas covering the agri-
culture sector as well. DL is a robust approach for image
analysis and object recognition with superior effectiveness in
classifying various categories of pests [20]. Transfer learning
is an essential task in DL, in which pre-trained frameworks
are modified to perform a new job. Deep transfer learning
(DTL) proposes a newnetwork for processing digital samples
and performing predictive analytics, with better generaliza-
tion power and the ability for pest recognition. DL-based
approaches employ CNNs that can automatically detect the
discriminative keypoints from input data without the assis-
tance of human specialists. Because of the considerable
evolution of hardware, DL frameworks are extensively being
used to handle complicated problems in a reasonable amount
of time. In agriculture, DL-based algorithms have shown to
be entirely accurate and have been effectively adapted to per-
form various tasks [21].

As progress in DLmethods [22, 23] has exhibited promis-
ing results in the area of object identification, so, the extensive
research work concerns proposing more complicated object
localization frameworks for better detection accuracy, i.e.,
Super-FAN [22] and unsupervised multi-stage keypoints
learning [23], etc. Moreover, several CNN-based approaches
namely GoogLeNet [24], AlexNet (AN) [25], VGG [26],

ResNet (RN) [27], R-CNN [28], Fast R-CNN [29], Faster
R-CNN [30], and YOLO [31] are also evaluated for pest
detection and classification. Even though the aforementioned
DL-based object identification frameworks have demon-
strated robust performance in general object identification
systems, their applications for pest detection are still lim-
ited. Pest recognition has its characteristics and differs from
existing object identification and classification tasks [21].
The insect pests are small target and they are usually sur-
rounded by complex environment in the real-field images;
thus, the identification network can be easily deceived by the
backgroundwhile computing keypoints. In addition, because
of the varying angles and distance at which they are captured
in the field, there is a considerable difference in pest size and
postures which makes accurate recognition more challeng-
ing. Moreover, distinct insect pest species often have a high
degree of resemblance in appearance, and the same species
may exist in many states such as egg, larva, pupa, and adult,
indicating a large intra and inter-class variances. Further-
more, the existence of poor lighting and harsh environments
complicates the automated identification process. There-
fore, a low-complexity automated framework for precise
pest recognition in the field and performance improvement
both in terms of classification robustness and computational
complexity is still required. In this work, we presented a
cost-effective DL-based model for pest recognition and cat-
egorization using drone. The presented framework is based
on custom CornerNet model with the DenseNet-100 serv-
ing as a backbone for deep feature extraction from the input
samples. Our results show that the proposed technique is
capable of effectively localizing and classifying the multiple
pest species in the presence of high variation in shape, size,
color, position, and variability across and within classes. The
main contributions of our work are as follows:

• We proposed a low-complexity AI-based framework for
drone systems using a custom CornerNet model by
employing DenseNet-100 for automated pest recognition
in the field, improving the accuracy of classifying the var-
ious pests.

• Introduced computationally efficient approach for precise
insect pest detection as CornerNet is a one-stage object
detection framework.

• Improved classification accuracy of insect pests due to the
ability of the DenseNet to compute deep keypoints and
CornerNet model to deal with the over-fitted training data.

• A rigorous quantitative and qualitative comparison of the
presented technique was performed using a publically
available challenging benchmark dataset, namely IP102,
to exhibit the efficacy of our method.

The rest of the paper is structured as follows: “Related
work” reviews related work for insect pest recognition, while
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“Proposed method” provides a detailed description of the
proposed framework. In “Experimental details and results”,
we provide the details of experiments performed and a dis-
cussion on the results. Lastly, “Conclusion” concludes our
research.

Related work

Recently, pest localization and classification have attained
the consideration of the research community due to immense
development in the area of computer vision. Numerous stan-
dard datasets are available for this purpose. However, these
datasets consist of the minimum number of samples com-
pared to the normal data compulsory for the latest DL-based
frameworks. This section conducted a thorough examination
of previous work for the automated identification and cate-
gorization of pests from crops.

Nanni et al. [32] presented a method to merge CNNs
with saliency approaches to recognize and classify the pest
from crops automatically. Initially, the saliency method
was applied for data augmentation, and then five different
CNN models, namely AN, DenseNet201, ShuffleNet (SN),
GoogLeNet (GL), and MobileNetv2 (MN), were trained to
classify the insects. This approach [32] improves the pest
classification accuracy. However, the performance degrades
for identifying pest species with significant intra-class differ-
ences. In [33], the authors presented a novel CNN framework
and compared it with existing DL models, i.e., AN, RN,
GL, and VGG. Transfer learning and data augmentation
were employed to prevent the network from overfitting and
improve classification accuracy.

Similarly, Li et al. [34] proposed an approach for auto-
mated recognition and categorization of crop insects. Ini-
tially, the adaptive threshold (AT) algorithm was applied
over the input sample to convert it to a binary image, on
which morphological operations together with the water-
shed algorithm were used to acquire the region of interest
(ROI). Then, the GrabCut technique was utilized to remove
the background, and several DL models, namely VGG, GL,
and RN, were applied to classify the pest from the input sam-
ples. However, these methods [33, 34] exhibit better insect
classification accuracy at the expense of a longer comput-
ing time. Wang et al. [35] introduced a DL framework for
mobile devices, namely DeepPest, to automatically detect
and categorize insects. Themethod [35] employed contextual
information as prior information for its training and worked
well for the localization of small size insects. However, the
approach [35] is inadequate for different mobile devices
due to processing limitations. Jiao et al. [36] introduced an
anchor-free region CNN (AF-RCNN) for automated local-
ization and categorization of various classes of crop insects.
Initially, a keypoints fusion unit was proposed to compute

the representative set of features, particularly for small-
sized pests. Next, an anchor-free region proposal network
(AFRPN) was introduced to calculate practical object pro-
posals based on pest positions by employing fusion feature
maps. Lastly, AF-RCNN was trained to identify 24 classes
of insects by integrating the AFRPNwith Fast R-CNN into a
single framework. This method [36] works well for the local-
ization of small insects. However, the performance relies on
extensive hyper-parameter choices selected during the train-
ing process.

Rodríguez et al. [37] proposed a framework for pest iden-
tification. Initially, the RGB sample was transformed into
a quaternion matrix, on which Quaternion Gaussian Low-
Pass Filter was applied to remove the noise. The processed
sample was then subjected to Sangwine’s method to obtain
the two colored keypoints maps and horizontal and vertical
directions. Both maps were converted to the HSV domain to
differentiate themonotone horizontal and vertical edgemaps.
In the following steps, the obtained maps were combined, on
which binarization togetherwith themorphological approach
was applied to achieve the ROIs. This method [37] is robust
to pest detection under chrominance and size variations.
However, the generalization performance of this work can
be further improved. Nam et al. [38] suggested a DL-based
approach to locate and categorize crop insects. The Single-
shot detector (SSD) framework was used to calculate the
in-depth features from input samples and classify the pests
into respective classes. The approach [38] resulted in higher
accuracy than previously developed methods. However, it
was unable to detect small insects. CNN-based techniques
need diverse training samples to show better accuracy. How-
ever, datasets lack this aspect. Li et al. [39] proposed a data
augmentation-based approach to deal with such challenges.
Data augmentation was applied during the training step by
rotating input samples to different angles together with a
cropping operation. This step assisted in obtaining diverse
multi-scale samples that could be utilized to train a multi-
scale insect identification framework. Various CNN models
were trained to demonstrate the effectiveness of the proposed
strategy. This technique [39] detects insects despite signif-
icant variations in position. However, it is computationally
costly. A two-stage CNN framework was proposed in [40] to
locate and categorize crop pests. Initially, the Global acti-
vated Feature Pyramid Network (GaFPN) was applied to
compute the representative set of features from the input
images. The calculated feature vectorwas passed to the Local
activated Region Proposal Network (LaRPN) to identify and
classify the pests in the next phase. The method [40] shows
better pest classification performance. However, it is prone
to overfitting issues, thus resulting in poor performance on
unseen data. Another framework for pest detection was pro-
posed in [41]. Initially, the input image was converted to
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greyscale. In the next step, the processed sample was com-
pared to a reference image to identify the changes saved as
the feature vector. In the next step, the Density-Based Spatial
Clustering (DBSCAN) was applied over the calculated key
points to cluster the pests from samples. This approach [41]
can effectively identify the insects from the noisy samples;
however, this approach is computationally complex.

Nieuwenhuizen et al. [42] presented an approach to locate
and classify the insects from the input sample. In the first
step, annotations were developed from the input images,
which were employed for transfer learning. In the next
step, the annotated images were passed to a DL framework,
namely Faster R-CNN, to localize and classify the insects. In
the last step, insects were counted manually. The approach
[42] improves the insect classification accuracy. However,
few results were reported. In [43], the authors conducted
a comparative analysis of various CNN-based frameworks,
namely VGG, ResNet-50, ResNet-101, AN, and Inception-
Net, together with SVM, KNN, and ELM classifiers. The
mentioned CNN models were employed to compute the in-
depth features, which were later used to train the classifiers
to classify the pest from crops. It is concluded in [43] that
in-depth features with SVM and ELM classifiers exhibit
better classification accuracy. Liu et al. [44] proposed a DL-
based model, namely PestNet, for classifying crop pests. In
the first step, a module, namely Channel-Spatial Attention
(CSA), was introduced to be replaced with CNN for key-
points computation. Then, Region Proposal Network (RPN)
was employed for calculating region proposals to locate the
positions of insects based on extracted keypoints maps from
the samples. Finally, a Position-Sensitive ScoreMap (PSSM)
was applied to show the located pest together with their
computed class. This approach [44] works well for multi-
class classification of crop pests, however, at the expense
of increased computational complexity. Another automated
pest detection framework was introduced in [45]. After per-
forming image preprocessing, EM and KMM were applied
to obtain the ROIs. In the following steps, the GLCMmatrix
was employed to compute the image features from com-
puted ROIs. The obtained feature vector was used to train
the SVM to classify the insects. The method [45] is robust to
pest detection. However, it requires a substantial amount of
time for data preparation and training. Rustia et al. [46] pro-
posed an approach to localize and classify crop insects. After
performing preprocessing, YOLO-V3 has been employed
to calculate the deep features and classify the pests from
the input samples. This technique [46] shows better insect
detection accuracy. However, it is unable to locate pests
under intense chrominance and light variations. Another
CNN model, namely AN, was utilized in [47] to identify
and categorize the insect from images. The technique [47]
exhibits better recognition accuracy. However, performance
decreases when multiple pest species are present. Xia et al.

[48] presented a technique to identify and classify insects.
Initially, a data augmentation step was applied to improve
the diversity of data. Then the samples were used to train the
VGG-19 framework to localize and categorize the pests. This
approach [48] works well for insect classification, however,
performance is evaluated on limited insect species data. In
a very recent work [73], the Custom CenterNet framework
with DenseNet-77 method was presented to automate the
plant diseases detection and categorization efficiently. The
model outperformed the latest plant disease approaches and
were able to efficiently locate and classify 38 types of crop
diseases from the PlantVillage dataset.

Table 1 presents the analysis of existing techniques
employed for pest detection and classification along with
their limitations. From Table 1, it can be seen that although
the research community has presented extensive work in the
field of automated pest categorization, however, there is still
a need for performance improvement.

Proposedmethod

In this section, we have discussed the framework presented
for the automated identification and categorization of sev-
eral crop pests in the field. The aim of this work is to propose
a technique that is computationally efficient and capable of
automatically extracting reliable image features without the
need for any manual inspection. The proposed approach fol-
lows two phases: in the first step, a set of samples comprising
images from a standard dataset, namely IPI02, is used to
prepare the annotations, which are later used for the model
training. In the test phase, suspected samples are passed
to the trained framework to evaluate the model’s perfor-
mance. More specifically, we have proposed an improved
CornerNet model [49] by employing the DenseNet-100 as
its base network. Initially, the deep features from the input
images are calculated byusing theDesneNet-100 framework,
which is later used by CornerNet to locate the presence of
pests on plant leaves and determine the corresponding cate-
gory. In the last step, performance is evaluated by employing
several standard metrics used in the field of object detection.
Figure 1 shows the structural description of the introduced
pest detection and classification methodology.

Annotations

For practical DL-based model training, it is required to spec-
ify the RoI precisely. To accomplish this, we have utilized the
LabelImg tool [50] to develop the annotations. A few anno-
tated images are shown in Fig. 2. The annotations specify
the information regarding the position and class of each pest,
which is saved in an XML file. After this, the final training
file is generated from this XML file to train the model.
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Table 1 Comparative analysis of
existing pest detection techniques Reference Technique Limitation

[32] A combination of CNN framework with
CNNs with saliency approaches was
introduced to classify the crop pests

Its accuracy degraded for cases with huge
intra-class variations

[33] A DL-based framework was employed for
pest classification

This approach is computationally inefficient

[34] GrabCut technique along with several DL
frameworks named VGG, GL, and RN,
was used to categorize the pest from the
input samples

This approach has considerable
computational complexity

[35] A DL-based model DeepPest for mobile
devices, was introduced to locate and
classify the pests

It is inadequate for different mobile devices
due to processing limitations

[36] A CNN-based method, namely
AF-RCNN, was presented for the
automated classification of crop pests

The classification accuracy degrades for the
samples with intense light changes

[37] After preprocessing step, the binarization
approach, together with the
morphological operation, was applied to
achieve the ROIs

The generalization performance requires
further improvement

[38] A DL-based approach named SSD was
utilized to calculate the deep key points
and categorize the pest from the input

It shows low performance for the
localization of small-sized pests

[39] After performing the data augmentation
step, several CNN frameworks were
evaluated to show the robustness of this
method

This approach is computationally expensive

[40] The CNN framework, namely GaFPN,
together with LaRPN, was employed to
identify and classify the pests

It exhibits poor detection accuracy for
real-world scenarios

[41] The computed image features along with
the DBSCAN clustering technique were
used to locate the pests

This method is unable to deal with the
insect’s rotational variations

[42] A DL-based approach Faster-RCNN was
employed to locate and categorize the
pests

This approach only reported the initial results

[44] PestNet, a DL-based methodology for
categorizing crop pests, was introduced

This approach has considerable
computational requirements

[45] The GLCM matrix and the SVM classifier
were utilized for pest categorization

This framework does not generalize well to
multiple insect presence on images

[46] A DL-based approach, namely YOLO-V3,
was applied to detect and classify crop
pests

This method is unable to locate pests under
intense chrominance and light variations

[47] Another CNN model, namely AN, utilized
pest classification

This method is incapable of dealing with the
complexities of real-world scenarios

[48] A CNN framework named VGG-19 was
employed to classify the pests into
various categories

It suffers from overfitting due to limited
training data

CornerNet model

The CornerNet [49] is a one-step detector that locates the
RoIs using keypoint estimation. It predicts corners, i.e., the
Top-Left (TL) and Bottom-Right (BR), to compute bounding

boxes (bbox) that are more accurate and efficient as com-
pared to other anchor-based techniques [29, 51]. The overall
architecture of the CornerNet model comprises two major
components; the backbone network and the prediction head
(Fig. 1). Initially, the model uses a backbone feature extrac-
tion network to compute a set of related keypoint maps that
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Fig. 1 Visual representation of
the introduced approach for pest
recognition

Fig. 2 Sample annotated images of the IP102 dataset

are used to predict heatmaps (HMs), embeddings, offset, and
class (C). The HMs provide the probability to determine if a
particular position is a TL/BR corner belonging to a specific
class. At the same time, themain objective of the embeddings
is to distinguish the corner pairs and offsets for adjusting the
position. The highest scored TL, and BR points are used
to determine the exact location of the bbox, and class is
determined by utilizing the embedding distances on more
relevant feature pairs. The CornerNet model tends to out-
perform the existing object detection frameworks [28–31].

However, the recognition of insect pests has its unique prop-
erties, i.e., small size and a similar visual appearance to their
surroundings that differentiates it from the existing object
recognition and classificationmethods. In this work, we have
customized the CornerNetmodel for the detection and classi-
fication of multiple pest species. We improved the backbone
network of the CornerNet model to increase model effective-
ness and achievemore accurate results for pest identification.
The improved backbone computes high-level discriminative
information that improves the pest localization accuracy and
overall classification performance. Moreover, the improved
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architecture is lightweight and computationally efficient as
compared to the original CornerNet model.

The motivation for employing the CornerNet model for
the identification of pests is its ability to effectively identify
objects by using keypoint estimation as compared to pre-
vious models [29, 51–54]. The model uses precise features
and locates the object employing features; thus, it removes
the requirement of utilizing extensive anchor boxes for dif-
ferent target dimensions as compared to other one-stage
object detection approaches like SSD [52] and YOLO (v2,
v3) [53]. While in comparison to two-stage approaches like
R-CNN [54], Fast R-CNN [29], and Faster R-CNN [51]),
the proposed approach is computationally efficient as these
methods use two steps to perform the object detection and
classification task. Thus, the proposed DenseNet-100-based
CornerNet approach better tackles the problems of exist-
ing techniques by proposing a more robust framework that
computes more reliable image features and minimizes the
estimation cost as well due to its one-stage detection.

Custom CornerNet model

A backbone network extracts visual features which provide
a semantic and robust representation of an image. The pest is
a smaller target. Therefore more precise and discriminative
features are required to distinguish them from the com-
plicated surroundings, such as varying acquisition angles,
brightness, luminosity conditions, and blurring. The tradi-
tionalCornerNetmodelwaspresentedwith theHourglass104
feature extractor [49]. The limitation of the Hourglass net-
work is that it is computationally expensive, i.e., involves
extensive network parameters and space requirements which
unavoidably slows the detection process and reduces the
overall efficiency of the model. Moreover, the accuracy of
the feature extractor impacts the detection accuracy [55]. We
have customized the backbone network for localization and
classification of pests to improve framework robustness and
achieve better performance. We adopt DenseNet-100 [56] as
the backbone network for improved feature extraction and to
reduce computational complexity.

DenseNet-100 feature extractor

The DenseNet-100 contains four densely connected blocks
with 100 layers and is shallower than Hourglass104. The
basic architecture of employed DenseNet-100 is presented in
Fig. 1. The DenseNet-100 framework contains fewer param-
eters (7.08 M) than the Hourglass104 network (187 M),
giving it a computational benefit. In DenseNets, all layers
are directly connected to one another, and the keypoint maps
from earlier layers are passed to the subsequent layers. The
DenseNet architecture promotes feature reuse and enhances
the information flow throughout the network, which makes it

Table 2 Structure of DenseNet-100

Layer_name Filter_size Stride

CnL 3 × 3 con 2

Pooling 2 × 2 avg pool 2

DnB (1)
(
1 × 1 con

3 × 3 con

)
× 12

1

TrL (1)

ConL 1 × 1 con 1

Pooling layer 2 × 2 avg pool 2

DnB (2)
(
1 × 1 con

3 × 3 con

)
× 12

1

TrL (2)

ConL 1 × 1 conv 1

Pooling layer 2 × 2 avg pool 2

DnB (3)
(
1 × 1 con

3 × 3 con

)
× 12

1

TrL (4)

ConL 1 × 1 conv 1

Pooling layer 2 × 2 avg pool 2

DnB (4)
(
1 × 1 con

3 × 3 con

)
× 12

1

Prediction layer 7 × 7 avg pool FC layer

appropriate to tackle complex transformations efficiently for
pest localization [56]. The structural details of DenseNet-100
are elaborated in Table 2.

The DenseNet comprises several Convolutional Layer
(ConL), Dense Block (DnB), and Transition Layer (TrL).
Figure 3 presents the DnB structure, which is a main compo-
nent of the DenseNet framework. In Fig. 3, z0 represents the
input layer with f 0 feature maps. Moreover, Hn(.) is a com-
pound method comprising three successive operations: a 3×
3 ConL filter, Batch Normalization (BtN), and ReLU. Every
Hn(.) operation generates f keypoint maps that are passed to
zn subsequent layers. As every layer takes all previous layer
keypoints maps data as input, this produces f × (n−1) + f 0
featuremaps at the nth layer ofDnB,which causes the dimen-
sion of the keypoint map to increase dramatically. Therefore,
the TnL layers are introduced among the DnB to minimize
the keypoints map dimension. The TnL contains a BtN and
1 × 1 ConL along with the average pooling layer, as demon-
strated in Fig. 3.

Prediction module

The feature extraction network is followed by two distinct
output branches, which represent the TL corner and the BR
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Fig. 3 The architecture of
a dense block and b transition
block

corner prediction branch. Each branch module consists of a
corner pooling layer placed on the top of the backbone to
pool features and generate three outputs: HMs, embeddings,
and offsets. The prediction module is a modified residual
block comprised of two 3 × 3 ConL and one 1 × 1 residual
network that is followed by a corner pooling layer. The corner
pooling layer helps the network to localize the corners better.
The pooled features are passed to a 3 × 3 ConL-BN layer,
and reverse projection is added. This modified residual block
is then followed by a 3 × 3 ConL, which generates HMs,
embeddings, and offsets. The HMs are used to estimate the
location of corner points. The offsets are employed to correct
the corner location because a quantization error occurs when
mapping fromkeypoints in the input image to the featuremap
is performed. Theremay existmultiple pests in an image. The
embeddings are used to determine whether the corner point
is a group, i.e., the TL and BR corner belong to the same or
different pest.

Detection

To obtain the final bbox from the corner predictions, non-
maximal suppression (NMS) on the corner HM via 3 × 3
max-pooling layer is applied. The top 100 TL corners and
BR corners over all classes are extracted from the HMs. The
predicted offsets are used to adjust the corner locations. The
TL corner and BR corners per class are paired with the most
similar embedding, and the pairs with an L1 distance greater
than 0.5 are eliminated. For the obtained candidate bbox, we
applied soft-NMS to remove strongly overlapping bbox. The
average scores of the TL and BR corners are used as the
detection scores.

Loss function

CornerNet is an end-to-end learning methodology that uses
multi-task loss to improve its performance and precisely
locate pests. The training loss function L is the summation
of four different losses, defined as:

L � Ldet + αLpull + βLpush + γ Loff, (1)

where Ldet is the detection loss responsible for corner detec-
tion and is a variant of a focal loss, Lpull is the grouping loss
which is responsible for grouping corners of the same bbox,
Lpush is corner separation loss responsible for separating cor-
ners of the different bbox, Loff is the smooth, and L1 loss is
responsible for the offset correction. The parameters α, β,
and γ represent the weights for the pull, push and offset loss
and are set as α � β � 0.1 and γ � 1. The Ldet is defined as:

Ldet � −1

M

C∑
i�1

H∑
x�1

W∑
y�1

{
(1 − T )ϕ log(T ) if(G) � 1

(1 − G)ω(T )ϕ log(1 − T ) otherwise
.

(2)

Here, M is the number of pests in an image. C, H, and
W denote the number of channels, width, and height, respec-
tively, from the input. T andG represent Tixy andGixy, where
Tixy is the predicted score at the position (x, y) for pest of class
i in the input image, and Gixy is the respective ground-truth
value. The ϕ and ω are the hyperparameters that control the
contribution of each point and are set as 2 and 4, respectively.

During downsampling, the output size is decreased com-
pared to the original input image. Therefore, the location (a,
b) of a pest in the input image ismapped to the location

( a
n ,

b
n

)
in the HMs, where n is the factor to which downsampling is
performed. During remapping of locations from the HM to
the original size input image, it results in a precision loss
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that affects the quality of IoU for smaller bbox. To resolve
this problem, the position offsets are calculated to adjust the
corner locations and are given by:

Ok �
(
ak

n
−

⌊
ak

n

⌋
,
bk

n
−

⌊
bk

n

⌋)
, (3)

where Ok denotes computed offset, ak and bk are the coor-
dinators of a and b for corner k. For training purposes, to
compute Loff, the smooth L1 function is used to adjust the
corner locations slightly and is defined as:

Loff � 1

M

M∑
k�1

Smooth L1 Loss(Ok , O
′
k). (4)

An input image may contain multiple pests; thus, multiple
BR and TL corners are computed in a single image. For each
detected corner, the network predicts an embedding vector
used to decide whether a pair of TL and BR corner belongs to
the same pest. We apply the “pull and “push” losses to train
the network and are defined as:

Lpull � 1

M

M∑
i�1

[(eli − ei )
2 + (er − ei )

2], (5)

Lpush � 1

M(M − 1)

M∑
i�1

M∑
j�1
j ��i

max[0, �−|ei − e j |], (6)

where eli represents the TL corner, eri is the BR corner for
pest i, and ei is the average value of eli and eri .Themaximum
distance for two corners belonging to different pests is set as
1; that is, � � 1 used in all our experiments.

Experimental details and results

This section describes the implementation details and the
experiments carried out to evaluate the performance of the
suggested model. To comprehensively demonstrate the effi-
cacy of the custom CornerNet model, we have evaluated pest
recognition and classification and compared it with other
models.

Dataset

In this work, we have utilized the IP102 insect pest recogni-
tion dataset [57] to evaluate the performance of the proposed
model. This dataset contains 75,222 images covering 102
common insect pest classes. The IP102 dataset is orga-
nized hierarchically, with two super-classes: field crops (FC)
and economic crops (EC), further divided into sub-classes
depending on particular crop types damaged by pest insects.

The FC contains five sub-classes, i.e., Rice, Corn, Wheat,
Beet, and Alfalfa, whereas the EC contains three sub-classes,
i.e., Citrus, Vitis, and Mango. All these sub-classes are fur-
ther categorized and contain 102 pest classes that define
pest insects associated with the specific crop. The further
details of the classes and the number of samples in each
class are given in [57]. It is worth noting that the images in
the IP102 dataset are diverse, i.e., insects of very different
ages, colors, sizes, and shapes. In addition, the variations in
luminosity, zoom level, and angle further make the dataset
very challenging to deal with the complexities of real-life
scenes. Figure 4 presents some sample images of pests from
various species from the IP102 dataset. It can be observed
from the Fig. 4 that the samples in the dataset are chal-
lenging, having intricacies of various environmental factors
such as varying lighting conditions or insects hidden in the
background.

Implementation details

The overall implementation of the proposed framework is
achieved in TensorFlow using the Keras library. Table 3
presents the detail of the final training parameters for the
Custom CornerNet model. In our study, we have tuned the
model’s hyperparameters by varying epochs, batch size, and
learning rate to obtain the final optimized model. The model
learning rates of 0.01, 0.001, and 0.0001with StochasticGra-
dient Descent (SGD) training optimizer were utilized during
the experiment. The mini-batch size and epoch were set at
15, 25, 35, 45, and 16, 32, 64, respectively. To prevent the
model overfitting, we set the dropout value to 0.3. The size of
the input images was fixed at 224 × 224, and the data were
randomly divided into training, validation, and test sets. We
used 60% of the data for training, 10% for validation, and
the remaining 30% for testing.

Evaluation parameters

For evaluating the performance of the proposed technique,
we have used different quantitative metrics such as preci-
sion (P), recall (R), accuracy (Acc), Intersection over Union
(IoU), and mean average precision (mAP). These metrics are
computed as follows:

P � TP

(TP + FP)
, (7)

R � TP

(TP + FN)
, (8)

Acc � (TP + TN)

(TP + TN + FP + FN)
, (9)

IoU � TP

(FN + FP + TP)
× 2, (10)
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Fig. 4 Sample images from IP102 Dataset

Table 3 Training parameters for the proposed model

Framework parameters Value

Epochs 35

Learning rate 0.001

Batch size 64

Confidence score threshold 0.5

Unmatched threshold 0.5

mAP �
T∑
i�1

AP(ti )

T
, (11)

F1_score � 2 × P × R

(P + R)
. (12)

TP, TN, FP, and FNdenote the true-positive, true-negative,
false-positive, and false-negative cases. If the insect in the
picture is correctly classified, it is considered TP; otherwise,
it is considered FN. The insect not present in the image is
classified as TN if the classification is wrong; otherwise, it is
classified as FP. The mAP computation is shown in Eq. (11),

where AP is the average precision of each class, t and T
represent the test image and the total number of test images,
respectively.

Insect pest localization results

The precise localization of pests is important for designing an
effective automated pest recognition method. Therefore, we
designed an experiment to assess the localization effective-
ness of the proposed framework. For analysis, we utilized
all the test images from the IP102 database and presented
a few visual results, as shown in Fig. 5. From the reported
results, we can see that the proposed approach is capable
of locating pests of varying sizes, shapes, and colors. Addi-
tionally, our technique can effectively detect pests even in
complex background, illumination, orientation changes, and
varying acquisition angle. The localization ability of the pro-
posed framework by employing keypoint estimation allows
it to identify and discriminate pests of various categories
effectively and precisely. We have computed the mAP and
IOU to quantitatively measure the localization performance.
These metrics show how well the proposed model performs
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Fig. 5 Sample detection results of insect pests using the proposed model
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Table 4 Class-wise crop-based insect classification performance of the
proposed method

Crop Precision (%) Recall (%) F1 score (%)

Rice 31.5 34.47 32.9

Corn 55.1 54.4 54.7

Beet 54.87 42.23 47.7

Wheat 57.86 51.55 54.5

Alfalfa 59.37 53.61 56.3

Mango 79.94 75.82 77.8

Citrus 74.87 70.28 72.5

Vitis 80.25 77.31 78.7

in localization and recognition for several pest categories. For
localization, the IOU threshold is set to 0.5, whichmeans that
the overlap score between the predicted region and ground
truth is less than this value is considered background, other-
wise considered apest. Theproposed framework achieved the
mAP and mean IOU values of 0.578 and 0.621, respectively.
We can infer from these results that the presented technique
can effectively detect and precisely localize the pests even in
a diverse background.

Insect pest classification results

The accurate categorization of various pests is important to
demonstrate the robustness of a model. A crop cultivation
area is suspected of having multiple types of insects depend-
ing on the crop category in the real world. Therefore, we have
performed an experiment to measure the efficacy of the pro-
posed technique for classifying insect pests based on eight
hierarchical crop categories. The trained CornerNet model
is applied to all the test images from the IP102 dataset to
accomplish this task. Table 4 shows the crop-based pest cat-
egorization performance of the proposed method in terms
of recall, precision, and F1 score. It can be observed from
the stated results that the presented framework has acquired
the precision, recall, and F1 score of 61.72%, 57.46%, and
59.39%, respectively, for all the crops-specific insect classes.
The reason for robust pest classification performance is the
correctness of the employed keypoints computation tech-
nique that represents each pest class in a discriminative and
reliable manner. As a result, our custom CornerNet performs
well in crop-wise pest identification, demonstrating the effec-
tiveness of the introduced method.

We have also reported the accuracies of eight crop-wise
pest classes in a boxplot in Fig. 6. The boxplot indicates the
distribution of classification accuracy over different classes.
According to Fig. 6, our method attained the average accu-
racy values of 0.484, 0.707, 0.593, 0.695, 0.497, 0.899, 0.773,
and 0.851 for eight crop classes, i.e., rice, corn, beet, wheat,

Fig. 6 Accuracy of the proposed method over crop-wise pest classes

alfalfa, mango, citrus, and vitis, respectively. More specif-
ically, we achieved an average classification accuracy of
0.6874 with a low error rate on all classes that exhibit the
efficacy of the proposed method. It can be observed from
Fig. 6 that our method has achieved somewhat promising
results for crops like mango, vitis, and citrus. However, the
proposed framework achieves low classification accuracy on
some classes such as rice and alfalfa due to visual similar-
ities with the background and high intra-class variances. In
Fig. 7, we have provided some example images from the
IP102 dataset having a similar appearance. The sample in
the same column represents pests from different species, but
their visual characteristics are similar.

In addition, Fig. 8 shows the normalized confusion matrix
plot of the presented technique that describes the summarized
crop level pest classification results in terms of predicted
and actual class. To further demonstrate the recognition per-
formance of the proposed model for each of the 102 pest
species, we have presented the obtained accuracy values in
Fig. 9. These results validate the robust performance of the
proposed approach over crop-wise pest categorizes and 102
pest species.

Evaluation of DenseNet-100model

For the image recognition task, deep features are effec-
tive. We analyzed to evaluate the feature learning ability of
the employed DenseNet-100 model compared to other deep
feature extraction models for pest identification and classifi-
cation task. For this reason, the detection performance of the
proposed CustomCornerNet is compared with different base
models, i.e., Alexnet [58], GoogleNet [59], VGGNet [60],
ResNet-50 [61], ResNet-101 [61], Inception V4 [62], Hour-
Glass104 [63], EfficientNet [64], and DenseNet-121 [56].
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Fig. 7 Sample images of pests species having similar visual features (the label shows the pest-wise class and corresponding crop subclass)

Fig. 8 Confusion matrix of the proposed method over crop-wise pest
classes

We adopted transfer learning to achieve more accurate gen-
eralizing power on the unseen data. All these base networks
were pre-trained on ImageNet [65] and then fine-tuned the
last layer of the network on the IP102 database. For this
experiment, the networks were trained for 30 epochs, and
the mini-batch sizes were set to 16 and 64, respectively. In

Table 5 Performance comparison of the proposed approach with other
feature extraction models

Method Parameters (million) Accuracy ± STD (%)

AlexNet 62.3 41.8 ± 1.51

GoogleNet 7.8 43.5 ± 1.01

VGGNet 138 48.2 ± 2.09

ResNet-50 23.72 57.39 ± 1.35

ResNet-101 42.63 53.18 ± 1.05

Inception V4 41.2 47.8 ± 1.64

HourGlass104 187 54.63 ± 1.44

EfficientNet 19.4 60.2 ± 1.02

DenseNet-121 8.06 54.71 ± 1.45

DenseNet-100 7.08 68.74 ± 0.82

addition, the learning rate was set at 0.001 with the SGD
algorithm and a momentum value of 0.9. We have analyzed
the acquired classification results of these models over the
IP102 database and their computational complexity in terms
of network parameters.

The comparative analysis of our approach with other fea-
ture extraction models is given in Table 5. The classification
accuracies and standard deviation (STD) are presented. The
STD shows the consistency of the model’s classification
output. The higher value of STD shows the inconsistent

Fig. 9 Accuracy of the proposed method over 102 pest classes
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model’s behavior for pest recognition and classification
results. According to the results, it can be seen that the cus-
tom CornerNet with DenseNet-100 as the backbone network
performs better as compared to other models. This is due
to effective deep feature computation using the DenseNet
model, which provides a more accurate and diverse fea-
ture representation of different insect pest species. Table 5
shows the base frameworks, i.e., AlexNet, VGGNet, ResNet,
Inception v4, and HourGlass, yield low performance for pest
recognition. This could be due to their inability to learn fine-
level characteristics to distinguish multiple pest species in a
complex background, thus resulting in a high misclassifica-
tion rate. AlexNet attains the lowest accuracy of 41.8% for
predicting pests for all 102 categories. The primary reason
for the poor performance of the model is that the network
is too simple to learn the complexities, i.e., the shape and
texture of input pest data.

In comparison, the deeper networks, i.e., ResNet-101,
HourGlass, and DenseNet-121, are capable of learning more
descriptive and fine-grained differences between many simi-
lar insect species. However, their performance is still low for
identifying multiple pest classes. This might indicate that
due to many network parameters, these models are more
prone to overfit on pest classes in the IP102 dataset with
fewer training samples. In comparison, the custom Cor-
nerNet with DenseNet-100 reached the best performance
(68.74% of accuracy) in classifying the various pest species.
The EfficientNet model attains the second highest accu-
racy (60.2%). However, it is computationally more complex.
The DenseNet-100, on the other hand, has just 7.08 million
parameters, which is fewer than any of the other employed
DL models.

The better pest classification performance of our approach
is its improved network architecture, which allows the opti-
mal reuse of model parameters. We have used their original
implementations for the base models, which are quite com-
plex in structure and unable to extract reliable features. Our
approach overcomes the shortcomings of comparative mod-
els by incorporating an efficient framework for discriminative
keypoints calculation by reusing features from the original
layers in each subsequent layer. As a result, it accurately
handles complex transformations, resulting in improved per-
formance. From this analysis, we can say that the proposed
custom CornerNet with DenseNet-100 backbone performs
better than other feature extraction models in terms of accu-
racy and efficiency.

Performance comparison with ML-based classifiers

To evaluate the performance of the proposed method against
theML-based classifierswith deep features, we performed an
experiment to exhibit the classification performance analysis
with other ML-based classifiers to demonstrate the efficacy

Table 6 Performance comparison of the proposed approach with ML-
based classifiers

Methods Accuracy ± STD (%)

SVM KNN

ResNet-50 49.5 ± 1.69 49.4 ± 2.28

EfficientNet 51.9 ± 1.07 51.7 ± 1.86

DenseNet-100 52.5 ± 0.97 50.4 ± 1.19

Proposed (Custom
CornerNet)

68.74± 0.82

of the proposed technique further. We used the IP102 dataset
for this experiment and divided it into 60%, 10%, and 30%
for training, validation, and testing sets, respectively. The
detailed experimental settings are described in Sect. 4.2.
We utilized the deep features extracted from the three high-
est performing feature extraction models in Table 5. The
deep features from ResNet-50 [61], EfficientNet [64], and
DenseNet-100 [56] are used to train the ML classifiers, i.e.,
SVM and KNN, and the classification results with standard
deviation are shown in Table 6. From Table 6, it can be
observed that using the DenseNet-100-based deep features
with SVMandKNNclassifiers achieved better results among
other combinations. However, our CustomCorner Net model
still obtained the best results. More specifically, DenseNet-
100 with SVM and KNN as back-end classifiers achieved
52.5% and 50.4%, respectively. Whereas, the proposed Cus-
tom CornerNet model achieved an accuracy of 68.74%. This
illustrates that the proposed model provides more accurate
feature representation of the pests and better deals with over-
fitted training data than ML-based classifiers.

Performance comparison with other object
detection techniques

We have compared the performance of the proposed model
with other state-of-the-art object detection methods. An
accurate pest localization is important because a noisy back-
ground can mislead the classifier when the target pest is not
apparent. The existence of several pests can further com-
plicate the detection process. The correct localization can
further improve the classification accuracy by ignoring irrel-
evant background information. To evaluate this, we have
considered different two-stage detectors, i.e., Fast R-CNN
[29], Faster R-CNN [51] and one-stage object detection
models, i.e., SSD [52], YOLOv3 [53], RefineDet [66] and
CornerNet [49] which have demonstrated robust perfor-
mance on the COCO dataset [67]. We have assessed the
performance of these models over the IP102 dataset to ana-
lyze their pest localization ability under different challenging
conditions such as the presence of complex background,

123



Complex & Intelligent Systems

Table 7 Performance comparison of the proposed approach with other
object detection methods

Method Backbone mAP Test time
(s/img)

Two-stage detectors

Fast R-CNN VGG-16 46.12 2

Fast R-CNN DenseNet-100 47.34 1.73

Faster R-CNN VGG-16 47.87 0.45

Faster R-CNN DenseNet-100 48.12 0.41

One-stage detectors

Refinedet VGG-16 49.01 0.30

Refinedet DenseNet-100 50.25 0.28

SSD VGG-16 47.21 0.36

SSD DenseNet-100 49.17 0.33

YOLOv3 DarkNet-53 50.64 0.29

YOLOv3 DenseNet-100 50.95 0.27

Proposed (Custom
CornerNet)

DenseNet-100 57.23 0.23

noise, luminosity, and variation in color, size, and shape. We
have computed themAPmeasure to conduct the performance
analysis, a standard metric used in object recognition tasks.
Furthermore, we have computed test times of all models to
assess their computational complexity. Table 7 shows the per-
formance comparison ofmAP and inference time of different
object detection approaches with varying backbones for pest
detection.

Results reported in Table 7 show the superiority in per-
formance of the proposed model for pest identification
compared to the other. It can be seen from Table 7 that dif-
ferent object detection models show better performance with
the powerful backbone, i.e., DenseNet, for the recognition
of pests. The two-stage object detectors, Fast R-CNN and
Faster R-CNN, show degraded performance. They are com-
putationally expensive, as these approaches use anchor boxes
to identify the potential region of interest and then perform
classification and regression to find the corresponding bbox.
In comparison, the one-stage networks RefineDet, SSD, and

YOLOv3 directly determine the position and category of the
object and show better performance. However, as the origi-
nal implementations of these approaches are evaluated in this
work, they cannot perform well in recognizing and locating
the pests under intense light variations. Figure 10 presents
the visual results of one-stage detection models on the test
sample.

Moreover, regarding the computation speed, the one-stage
detectors are shown to be fast as compared to two-stage
detection models. Our model efficiently overcomes the lim-
itation of these methods using a custom CornerNet model
with DenseNet-100 as the backbone network. The reason
for improved performance is that the DenseNet backbone
enables the CornerNet to learn more representative features,
which assist in better pest localization and classification into
different categories. Furthermore, the CornerNet model pro-
vides a computational benefit over other models due to its
one-stage detection nature and takes only 0.23 s to process a
sample.

Performance comparison with existing approaches

In this section, we present the comparison of the classifica-
tion performance of our approach with results obtained by
previous works [32, 68–72] over the same dataset, i.e., IP102
[57]. Table 8 compares pest insect classification results with
existing approaches in terms of average accuracy.

In [68], the authors employed transfer learning to train the
deep-learning models (i.e., VGG-19, inceptionNetV3, and
ResNet-50) for the classification of pest species and achieved
the highest overall average accuracy 57.08%using inception-
NetV3. However, manually cropping and data augmentation
techniques were applied before training the model. Ayan
et al. [69] employed CCNs (Inception-V3, Xception, and
MobileNet)with ensemblemethodology, namelyGAEnsem-
ble, to improve the classification performance. Similarly, in
[32], the authors combined CNN and the saliency method to
create an ensemble of classifiers and used the fusion-sum
method at the output layer. However, these methods [32,
69] achieved an accuracy of 61.93% and 67.13%, respec-
tively, at the expense of slow computing speed because of

Fig. 10 Sample visual result of SSD, RefineDet, YOLOv3, and the proposed CornerNet model
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Table 8 Performance comparison of the proposedmethod with existing
techniques

Reference Method Accuracy (%)

Reza et al. [68] InceptionNetV3 57.08

Ayan et al. [69] GAEnsemble 67.13

Zhou et al. [70] EquisiteNet 52.32

Ren et al. [71] FR-ResNet-50 55.24

Liu et al. [72] DFF-ResNet-82 55.43

Nanni et al. [32] FusionSum-Densenet201 61.93

Proposed CornerNet-DenseNet-100 68.74

ensemble weights calculation. Zhou et al. [70] used the
EquisiteNet model comprising double fusion with squeeze-
and-excitation andmax-feature expansion blocks. Themodel
achieved an accuracy of 52.32%. However, the obtained
accuracy is much lower for practical use in the real world.
These methods [71, 72] used the modified Resnet block by
incorporating feature reuse and feature fusion mechanism
for efficient feature computation and obtained an accuracy
of 55.24% and 55.43%. However, the ResNet-based archi-
tecture is computationally more expensive as compared to
DenseNet. These results clearly show that the proposed Cor-
nerNet model with DenseNet-100 outperforms the other
studies by achieving an average accuracy of 68.74%. In
particular, the reason for improved performance is that the
DenseNet effectively computes the feature maps by con-
necting the output from preceding layers as input to all the
subsequent layers. The computed features are used by the
CornerNet architecture for localization and classification of
the pests. Thus, strongly enhances the performance of the
proposed model for the task of pest recognition and classi-
fication over the challenging dataset IP102. Moreover, our
approach is computationally efficient and robust enough to
identify insects more precisely in comparison to existing
approaches. As a result, we can conclude that our technique
has a lot of potential for classifying target pests in the field
using drones.

Conclusion

In our work, we have presented a low-cost DL-based frame-
work for the automated recognition and categorization of
crop pests in the field using drones. The presented method is
based on a custom CornerNet model that employs DenseNet
architecture as a backbone network for feature extraction.
More precisely, we employed the DenseNet-100 network
to extract a discriminative set of keypoints from the input
samples. The custom CornerNet model is then trained to rec-
ognize various types of pests. We evaluated our approach on

the IP102 dataset, a large-scale challenging pest recognition
benchmark database comprising in-field captured images.
Through extensive experimentation, we have shown the
efficacy of our approach for real-world pestmonitoring appli-
cations. The reported results showed that our method could
accurately localize and classify pests of various categories in
the presence of complex background and variations in pest
shape, color, size, orientation, and luminosity. In the future,
we intend to develop amore effective feature fusion approach
to improve the performance of our method for fine-grained
pest categorization.
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