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The detection and segmentation of cerebral aneurysms is a crucial step in the development of a clinical
decision support system for estimating aneurysm rupture risk. However, accurately identifying and seg-
menting regions of interest in two-dimensional (2D) medical images is often challenging, particularly
when using deep learning (DL) methods on small datasets with limited annotated data. The accuracy
of DL approaches is often affected by the availability of large, annotated training datasets that are
required for effective deep learning. Additionally, when using DL to differentiate aneurysms from arterial
loops in 2D DSA images, DL can fail to detect aneurysms in areas where dye concentration is low. To
address these issues and enhance the reliability and accuracy of aneurysm detection and segmentation
methods, incorporating medical expert-advised, hand-crafted features can provide a clinical perspective
to DL methods. This approach can help to improve the performance of DL methods by providing addi-
tional information that is not captured in the data. To this end, a novel Neuro-symbolic AI-based
DeepInfusion model is proposed which allows for the infusion of human intellect through hand-
crafted features into deep neural networks (DNNs), thus combining the strengths of DL with the knowl-
edge and expertise of medical professionals. The proposed approach includes a novel technique for
dynamic layer selection and feature weight adjustment during the model infusion process. The perfor-
mance of the DeepInfusion model is evaluated on an in-house prepared dataset of 409 DSA images,
and experimental results demonstrate the effectiveness of the proposed method for the segmentation
of cerebral aneurysms. The model achieves an IOU score of 96.76% and an F1-score of 94.15% on unseen
DSA images. The model is also tested on two publicly available datasets of Kvasir-SEG polyp and DRIVE
for vessel segmentation of retinal images. The results show a significant improvement compared to exist-
ing methods, which indicates the generalizability of the approach in medical segmentation. The complete
code for DeepInfusion is available on our GitHub repository at https://github.com/smileslab/deep-infu-
sion/blob/main/deepinfusion.ipynb.

� 2023 Elsevier B.V. All rights reserved.
1. Introduction

A cerebral, or intracranial, aneurysm is the focal dilation of an
artery of the brain, resulting from a weakening of the interior mus-
cular layer in the arterial wall. Accurate detection and segmenta-
tion of aneurysms are crucial in making informed decisions
regarding clinical management [1]. Both invasive and non-
invasive imaging methods [2,3] are used for diagnosing and
managing cerebral aneurysms. Non-invasive methods, such as
magnetic resonance angiography (MRA) and computed tomogra-
phy angiography (CTA), are routinely used for diagnosing intracra-
nial aneurysms. However, several case studies have reported
discrepancies in aneurysm location and size using these methods
[4]. Digital subtraction angiography (DSA), despite being an inva-
sive technology, remains the gold standard for aneurysm detection
due to its high sensitivity and specificity.

To develop a reliable decision support system for predicting
subarachnoid hemorrhage, it is crucial to automatically detect
and precisely segment intracranial aneurysms. However, this task
is challenging due to various factors, including variations in aneur-
ysm size, complex vascular anatomy, variations in image resolu-
tion, non-uniform dye concentration injected into aneurysms and
different parts of arteries (see Fig. 1-a), as well as lighting and
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Fig. 1. a) Morphological and geometrical diversity of cerebral aneurysms in 2D DSA
images. b) Morphological and geometrical diversity of vascular loops in 2D DSA
images.

Fig. 2. Conceptual view of expert’s knowledge infusion in the Deep Neural
Networks.
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intensity variations in samples resulting from the diversity of
imaging equipment used. The presence of noise and other artifacts
further complicates the accurate segmentation of detected aneur-
ysms. Detection becomes even more challenging when vascular
loops are present in the DSA image (see Fig. 1-b) because their geo-
metrical structure and localized dye concentration may closely
resemble that of an aneurysm. Additionally, various morphological
and geometrical features must be considered for rupture predic-
tion, such as irregularities in the aneurysm wall, daughter domes,
vertebral dominance, perpendicular height and width, neck diam-
eter, aspect and size ratio, height-to-width ratio, the angle relative
to the vessel, and diameters of adjacent parent and daughter-
vessels [5,6]. Unfortunately, the current less accurate detection
and segmentation techniques act as bottlenecks in accurately
determining these features. There is a significant research gap pri-
marily because of the limited availability of DSA images.

Medical imaging studies have addressed the issue of detecting
and segmenting regions of interest (ROIs) using either conven-
tional machine learning (ML) or deep learning (DL) methods across
various medical image modalities. ML algorithms can learn diag-
nostic patterns highlighted by medical professionals, but their
accuracy in aneurysm segmentation using hand-crafted features
may be impacted by data bias and model design. In contrast, DL
techniques have proven successful in overcoming these challenges,
but their black-box nature, the requirement of large training data-
sets, and the inability to incorporate human feedback during train-
ing may make them less attractive for clinical use. It is crucial to
establish the relevance of DL models in clinical analysis by design-
ing reliable diagnostic systems that incorporate domain expert
knowledge. However, DL models for medical imaging face addi-
tional challenges due to limited imaging data acquired in nonstan-
dard settings with varied equipment and heterogeneous,
imbalanced sample data. Additionally, labeled data may be sparse,
noisy, or entirely missing. Incorporating domain expert knowledge
into DNNs can help overcome these challenges, but current meth-
ods that concatenate handcrafted and deep features or infuse them
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into the last layer lack flexibility in dealing with the diversity of
medical imaging data. In rare diseases like cerebral aneurysms,
building datasets on the scale required for DL approaches is chal-
lenging due to regulatory mechanisms that prevent privacy
infringements. Without sufficient data, DL models cannot learn
all the patterns needed to achieve the desired outcomes.

Deep learning methods may be inadequate in detecting aneur-
ysms in DSA images under certain circumstances, even in the pres-
ence of extensive data sets that are currently unavailable. For
example, if the region of interest has a low dye concentration,
the DL models may fail to detect the aneurysm due to the limited
availability of similar samples in the training dataset. In such situ-
ations, the expertise of medical professionals in identifying aneur-
ysms based on characteristics such as shape, edges, and borders
can be integrated with DL models to improve the accuracy of
detection and segmentation. However, the challenge lies in deter-
mining how to incorporate these clinical practices into DL models.
As such, there is a need to explore strategies for integrating medi-
cal expertise into DL models to achieve improved outcomes in
aneurysm detection and segmentation in DSA images. This study
aims to develop a neuro-symbolic AI approach that incorporates
domain professionals’ expertise into a DL model for detecting
and segmenting cerebral aneurysms from DSA images. To the best
of our knowledge, no existing methods have dynamically inte-
grated clinical knowledge into DL models for medical image anal-
ysis. Domain knowledge can be incorporated into DL models
through clinical knowledge in the form of a knowledge graph [7],
diagnostic patterns for rule-based learning [8], and feature knowl-
edge recommended by domain experts. This study aims to inte-
grate hand-crafted features based on domain knowledge into a
DL neural network. It addresses several research questions, such
as effectively incorporating domain knowledge into DL models,
the impact of incorporating domain knowledge on DL model per-
formance, and effective methods for combining domain knowledge
with DL models to improve medical image analysis. The study will
examine research questions related to selecting optimal layer
depth, the weighting of domain knowledge and deep features,
and criteria for selecting appropriate infusion level and weight fac-
tors to achieve optimal outcomes in medical image analysis. The
major contributions of the proposed research work are: (see Fig. 2).

� This study examines the feasibility and methodology of inte-
grating domain knowledge in the form of hand-crafted features
into a DNN for medical image analysis.
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� This paper introduces a novel DeepInfusion model that lever-
ages domain expertise to enhance cerebral aneurysm detection
and segmentation by identifying the optimal layer within the
deep neural network. Additionally, a dynamic mechanism to
adjust the weight proportion of DNN model and knowledge
models is developed. The resultant output of the machine learn-
ing model developed on the knowledge of domain experts is
infused as attention in the Deep segmentation network layer.
Since DNN itself also processes the same image input, the
induced attention of the knowledge model assists the DNN in
significantly improving its performance.
� Theoretical explanation and rigorous experimentation on
knowledge infusion and its effect on accurate segmentation
from a highly diversified angiogram dataset are presented.

The paper is organized as follows: Section II presents a discus-
sion of existing literature, while Section III describes the proposed
method. Section IV briefly introduces the dataset used for experi-
mentation, highlights the challenges presented by diverse angio-
grams, and presents experimental results. Further discussions are
provided in Section V, and Section VI concludes the paper with
future directions.
2. Related work

Computer-aided diagnostics (CAD) approaches can assist neuro-
surgeons in aneurysm detection and segmentation. Existing CAD
techniques for aneurysm detection primarily rely on DSA imaging
modality, which is widely regarded as the gold standard in this
field. However, limited attention has been given to the segmenta-
tion of aneurysms in DSA images. Previous research has examined
both learning-based and non-learning-based automation tech-
niques to achieve the objective of aneurysm detection.

Existing non-learning studies have employed different
enhancement or shape-oriented filters to address the aneurysm
detection problem. For example, Arimura et al. [9,10] designed a
3D selective enhancement kernel for intracranial aneurysms detec-
tion with high sensitivity and low false positives (FPs). However,
these methods [9,10] have limited application utility for unknown
scenarios as they considered only a few aneurysms to derive the
rules used for eliminating FPs. Similarly, different shape-oriented
filters, based on the eigenvalues of the hessian matrix, were pro-
posed in [11,12] for aneurysm detection. Jerman et al. [12] pro-
posed a blob enhancement filtration method based on the
eigenvalues of the multiscale 3D Hessian. This method is indepen-
dent of the intensity and size of blobs, making it suitable for
detecting small blob-like structures such as aneurysms. Addition-
ally, a volume rendering method based on extending the maximum
intensity difference accumulation (MIDA) [13] was developed to
enhance the visualization of regions containing the aneurysm. Per-
formance of this method [12] was evaluated on just 30 DSA and 10
CTA images. Arimura et al. [9] proposed a method based on a
shape-based difference imaging approach for aneurysm detection.
Multiple thresholding was employed on grayscale images followed
by skeletonization to determine the initial candidates. The region-
growing technique was applied to identify the candidate regions. A
similar effort of detecting the aneurysm using morphological anal-
ysis was proposed in [14].

Learning-based methods are commonly employed to achieve
better classification performance, however, this comes at the
expense of increased computational cost as compared to non-
learning methods. The current learning-based methods have
employed both traditional machine learning and deep learning
methods for aneurysm detection. Existing methods have used dif-
ferent traditional machine learning classifiers such as KNN and
3

SVM. For example, Zafar et al. [15] proposed a feature vector of
the shape and texture of aneurysm areas and used them to train
a KNN classifier for aneurysm detection. Hanaoka et al. [16] pro-
posed a feature set based on histograms of triangular paths in
the graph (HoTPiG) to detect cerebral aneurysms. Region growing
technique was used to extract the arterial region. An undirected
graph was used to create a feature descriptor HoTPiG for each
voxel of the foreground region. Finally, HoTPiG features were used
to train the SVM to label each voxel as an aneurysm or healthy
region. In [17], an automated rule-based scheme was used in com-
bination with statistical features and quadratic discriminant anal-
ysis to detect the aneurysm. Yang et al. [18] proposed an
automated method for detecting intracranial aneurysms. This
method involved extracting geometrical features from points of
interest (POIs) and applying empirically determined rules to select
the most probable POIs for aneurysms. In [19], an automated tech-
nique was introduced for detecting cerebral aneurysms. Specifi-
cally, the blob-ness filter was applied to identify potential
candidates of the aneurysm. K-means clustering was used to com-
pute volumes of interest in the filtered image. A rule-based scheme
was then applied in combination with thresholding to detect the
aneurysms. Similarly, in [20], a semi-automated technique based
on Geodesic Active Contours was proposed for aneurysm segmen-
tation. However, this method has limitations when dealing with
overlapping features in vasculature loops and aneurysms. The
advancement of neural networks, particularly deep learning (DL),
in recent decades has motivated researchers to explore its utility
in various domains for improved performance compared to con-
ventional machine learning (ML) algorithms. Some research stud-
ies [21,22] have applied convolutional neural networks (CNNs) to
detect aneurysms in different image modalities. Jerman et al.
[21] proposed a learning-based framework that utilized intra-
vasculature distance mapping and CNNs for aneurysm detection
in 3D cerebral angiograms. The arterial structure in the angiogram
image was enhanced using a Hessian filter. Intra-vascular distance
maps were then computed to the edges of vascular structures, and
CNNs were trained and validated using these DSA images for
aneurysm detection. However, this approach only utilized a very
limited dataset of 15 DSA images, which may not be sufficient
for effective application of deep learning techniques. Similarly, in
[22], a deep neural network combined with a maximum intensity
projection algorithm was employed for aneurysm detection. The
deep network consisted of two convolutional layers, two max-
pooling layers, and two fully connected layers. In experiments con-
ducted by Liao et al. [23] and Zeng et al. [24], high-dimensional
sequences of DSA frames were used. Zeng et al. [24] trained a
slightly modified conventional VGG model for detecting aneur-
ysms, using 133 frames for each sample. However, processing such
a large amount of data incurs a computationally expensive over-
head. Tao [25] believed that 3D-DSA (three-dimensional digital
subtraction angiography) leads to more accurate detection and
reduces misclassification rates. The method employed Bayesian
optimization and thresholding to draw conclusions for automatic
detection.

Although segmentation of aneurysms is crucial for estimating
the risk of rupture, very few studies [26,27] have prioritized seg-
mentation as the primary task. Among these, Liu et al. [26] pro-
posed the 3D-Dense-UNet model for segmenting detected
aneurysms in 3D-DSA images. The segmentation performance of
the model was evaluated with a correlation coefficient of 0.77,
which demonstrated a discrepancy of 1 mm and 2.5 mm compared
to expert measurements of the segmented aneurysms. Jin et al.
[27] proposed a DL-based framework to assist neurologists in eval-
uating and contouring intracranial aneurysms from 2D DSA
sequences during diagnosis. The network incorporated both spatial
and temporal information and achieved an accuracy of 89.3% for
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aneurysm detection. In terms of segmentation, the dice coefficient
(DC) score was used and obtained a DC of 0.533. However, both of
these studies are computationally expensive due to the use of
either 3D images or selected sequences of 2D images. Moreover,
the segmentation of aneurysms is not as accurate as required for
precise estimation of the risk of rupture.

Segmentation is a significantly challenging task in medical
imaging due to the complex and demanding nature of medical
datasets. In a comprehensive study conducted by Bizopoulos
et al. [28], the researchers investigated the impact of various
cutting-edge deep learning models on different performance met-
rics using medical imaging. Specifically, they extensively investi-
gated the results of lung segmentation using popular DL models
such as Pyramid Scene Parsing Network (PSPnet), Linknet, and
Unet providing a detailed comparison. The study [28] explored
the performance of these models for lung segmentation. By
inspecting the obtained results, it was found that the Unet model
demonstrated remarkable performance, confirming its practical-
ity and effectiveness in the field of medical image segmentation
[29]. PSPnet [30] focuses on capturing global context through
its pooling module, which is valuable for addressing scaling vari-
ations and identifying abnormalities in structural components, it
tends to overlook local features that hold importance in medical
detection. On the other hand, Linknet [31] introduces skip con-
nections that facilitate the flow of feature information between
the encoder and decoder, resulting in improved segmentation.
However, Linknet is unable to accurately identify boundaries,
leading to missed details in the segmented areas. In contrast,
Unet [29] combines the advantages of both local and global fea-
ture extraction. It achieves this by incorporating an encoder-
decoder structure with skip connections that maintain a strong
link between the encoder and decoder. This architecture allows
Unet to leverage the benefits of capturing global context while
preserving crucial local features. By preserving information from
the encoder layers and enabling the flow of details through skip
connections, Unet excels in capturing fine details and accurate
boundaries in segmented areas.

Recognizing the significance of making sensitive decisions, the
inclusion of domain knowledge becomes a crucial element in
attaining the desired level of accuracy. Integrating domain
knowledge with the DL model can be a valuable approach to
enhance the effectiveness of segmentation. In their work, Yu
et al. [32] presented a multimodal transformer (MT) model for
generating image captions. The core idea of their proposed
method is to utilize multiple detectors and feed their output to
the network. MT performs sophisticated reasoning across multi-
ple models and produces descriptive captions. The paper dis-
cussed the process of merging multiple detector features at the
beginning of the network, but it did not explore the interaction
at the depth of the network. In [33], Zhang et al. demonstrated
the efficacy of computing residual vectors using diverse cen-
troids and subsequently combining them by assigning distinct
weights to each residue vector before their aggregation. Accord-
ing to their findings, these weights contribute to enhancing the
diversity of the residue sum, thereby boosting the discriminative
capabilities of image features. These studies [32,33] emphasize
the importance of network-level interactions, similar to our net-
work. However, the limitations of their works arise from the fail-
ure to incorporate variations in the input at the network level.
These variations can be introduced based on the feedback pro-
vided by domain experts. Our study is motivated by the need
to address this limitation by incorporating diverse knowledge-
based inputs at the network level. The objective is to enhance
the performance of segmentation process.
4

3. Proposed method

This section explains the proposed methodology for infusing
domain expert knowledge into deep learning models. It also elab-
orates on the importance of pre-processing in complex medical
angiograms. In addition, knowledge exploitation on different lay-
ers of a deep neural network is discussed in detail.

3.1. Pre-processing

The pre-processing step is designed based on prior knowledge
about aneurysm detection by medical experts. Physicians consider
three essential DSA features for aneurysm detection: 1) circular or
elliptical shapes in the DSA, 2) consistency of blood, represented as
dark areas in the region of interest, and 3) the artery with which
the aneurysm is associated. These three distinct pieces of informa-
tion can be passed on to three other channels of the image. As DSA
images are monochromatic, the red, green, and blue channels in
the image do not significantly vary or contribute to detection.

1) Shape-based feature extraction

The nature of an aneurysm emphasizes the significance of circu-
lar regions in DSA, which can improve detection accuracy. Shape-
based points of interest (POIs) are computed from DSA images by
combining connected pixels in each binary DSA to form groups
and computing the center of each group or shape. These shapes
are classified based on properties such as circularity, convexity,
and inertia ratio to extract the POIs. While the shape of a saccular
aneurysm is circular, it is not a complete circle, and the minimum
circularity value of 0.1 is used to extract shapes with circular ten-
dencies, accounting for the imperfect circles of aneurysms. Con-
vexity helps to identify closed shapes with some hollow areas,
referred to as the convex hull. The minimum convexity value of
0.1 is used to locate hollow circular shapes, accounting for the
inconsistent blood flow in aneurysms.

2) Color quantization for blood consistency

Assessing the consistency of blood in DSA images can be chal-
lenging due to the different shades of color used to depict its
appearance. To make consistency checking more effective, color
quantization can be used to reduce the number of color shades
in the image. The K-Mean clustering method was employed for
achieving quantization, and Fig. 3 shows the outcome of this
process.

3) Vasculature extraction

The extraction of the vascular structure from DSA images is cru-
cial for precise aneurysm detection and segmentation. To achieve
this, the dimensions of the original image are reduced by trans-
forming the color image into grayscale. Due to the invasive nature
of DSA images, the intensity values are limited to a small range. To
enhance the distribution of intensities, contrast enhancement
techniques such as histogram equalization are applied. However,
the contrast-enhanced image often contains a significant amount
of noise that needs to be reduced for the precise extraction of the
arterial structure. To address this, a median smoothing filter of size
5 � 5 is applied to reduce the noise. Additionally, in order to
extract the vessel area with high precision, the image is converted
into a two-level binary image. The information preserved in the
original pixels of the angiogram has its own importance. With con-
sideration for the effect of the original intensity, the two-level



Fig. 3. Color Quantization for Blood Consistency Checking.
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binary image is further processed to exclusively retain the original
pixels representing the vascular architecture. The details of the
vascular extraction process are presented in Fig. 4.
4) Expert guided input preparation

Instead of using the original DSA image as input for the DL
model, we adopted a three-stage approach that incorporated
expert-guided pre-processing. This information was encoded into
three channels of an RGB image. The first channel contained
shape-based points of interest, while the second and third chan-
nels contained information on blood consistency and vasculature
architecture, respectively. The expert-guided input was subse-
quently processed using the ResNet101 backbone.
3.2. Knowledge extraction using hand-crafted features

In the field of medical image analysis, incorporating domain
knowledge is critical for developing robust automated diagnostic
tools. To gain a comprehensive understanding of aneurysm detec-
tion, we consulted an experienced domain expert. By leveraging
their expertise, we accurately labeled aneurysms. Specifically, we
extracted patches of images that contained aneurysms and stored
them as representative samples of the aneurysm class.
1) Points of interest extraction

In the context of aneurysm detection, medical practitioners ini-
tially focus on identifying circular or elliptical shapes within blood
vessels. Our investigation shows the significance of shape-based
features, as advised by experts, in DSA images. Nevertheless, in-
depth experimentation revealed that neither shape-based features
nor deep features in isolation (as outlined in Section 3) are ade-
quate for precise aneurysm detection, since vascular loops share
analogous anatomical characteristics. Consequently, the shape-
based image resulting from the pre-processing stage serves as
input for the knowledge extractor, wherein each shape is cropped
Fig. 4. Depiction of step-by-step process of vas
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and stored as a point of interest (POI). Thus, POI could be both the
vascular loops and aneurysms.

Algorithm1: Knowledge Extraction

Require: ax .For ax Fig. 5.
Require: T .Minimum threshold for infusion level.
Ensure: POI½� ¼ findcountourðaxÞ
i lengthðPOIÞ
while i– 0 do

C  predictðPOI½i�Þ
if C 6 T then

remove� POI½i� � from� ax

end if
i��

end while
2) Region of interest (ROI) extraction

The region of interest in the DSA image is the aneurysm. Vascu-
lar structures with circular or elliptical shapes can resemble aneur-
ysms, highlighting the need for POIs to distinguish them from
actual aneurysms. A balanced dataset of aneurysms and vascular
loops, each containing 174 samples, was prepared from the train-
ing images. A binary CNN classifier was developed using these
samples to distinguish between aneurysms and loops. Based on
the classifier’s output, patches containing loops were removed
(Algorithm 1), and the remaining patches were treated as ROIs.
Each ROI contained visual information and a confidence level (C),
indicating the classifier’s probability of categorizing the shape as
an aneurysm. The study created images of high- and low-
probability aneurysms based on the confidence level (Fig. 5). The
difference (d) between the two categories could be calculated
using Eq. 1.

d ¼ SðNÞ � ð1� TÞ
N

ð1Þ

N is the total number of layers in the deep learning model. T is
the minimum acceptable confidence level, which is acceptable to
categorize the POI as an aneurysm.

SðNÞ ¼ N
t

ð2Þ

Because of the complexity, not every layer can be selected as an
infusion level. Therefore, S(N) is introduced to add a shift (Eq. 2)
between the infusion levels. The shift can be calculated by dividing
N by the total number of allowed infusion levels (t).

3.3. Knowledge infusion in DNN

U-Net [34] is a widely used convolutional neural network archi-
tecture that has shown remarkable performance in medical image
culature extraction from 2-D DSA images.



Fig. 5. Framework for Intracranial Aneurysm Detection and Segmentation.
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classification tasks, particularly in segmenting and identifying
organs and abnormalities. However, despite its widespread adop-
tion, several challenges remain, including the scarcity of annotated
data, which reduces the performance and robustness of the model,
particularly for rare diseases such as cerebral aneurysms. To
address this issue, incorporating expert-designed hand-crafted fea-
tures, such as geometric and anatomical features, into deep learn-
ing layers can improve the model’s performance [35]. While these
features are typically added at the input layer or fused at the clas-
sification level using ensemble learning, there is no previous work
that dynamically exploits the ”attention” introduced by domain
experts. To address this gap, we propose a method that directly
applies hand-crafted features to the layers of U-Net, rather than
relying on black-box feature extraction or skip connections that
depend solely on the loss functions. This section describes the pro-
posed approach for leveraging deep neural network knowledge
and discusses the details of early or late infusion, along with
weight adjustments.

1) Infusion Level/Layer Selection

In the proposed method, the first and the most important
parameter is the selection of infusion level/layer (l) in the U-Net
Network. The infusion level decides the interaction of the deep
neural network with the expert-guided knowledge. The knowledge
extracted in the previous step corresponds to the confidence level
of the classifier used in knowledge extraction. Our hypothesis is
that if the confidence of the knowledge/handcrafted-based classi-
fier is low, the U-Net should exploit the feature maps of the ROI
extracted by the classifier early on. Conversely, if the classification
confidence is very high, the U-Net should exploit this information
at the deeper layers.

l ¼ ðC � TÞ
d

ð3Þ

The confidence level (C) of ROI with the minimum acceptable con-
fidence level (T) is an important factor in infusion level decisions. In
the proposed method, the infusion level is calculated by dividing
the difference between C and Twith the difference (d) between each
category (Eq. 3).

n ¼ l� SðNÞ ð4Þ
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In Eq. 4, n represents the layer number at which the infusion takes
place.

2) Deep feature extraction

The encoder-decoder-based deep neural network [34] plays an
important role in medical image analysis. The proposed deep
learning model is built using the ResNet101 block to maintain
the identity function and improve the accuracy of the detection.
The encoder is a traditional convolutional network that comprises
the recurring application of two 3 � 3 convolutions followed by a
rectified linear unit (ReLU). For the down-sampling, a 2 � 2 max
pooling operation with stride 2 is used. The number of features
doubles at each down-sampling step. Decoding is followed by
up-sampling where 2 � 2 convolution is applied on the feature
map. The up-sampling cuts down the features channels by half.
Also, each layer in the decoder is concatenated with the respective
cropped feature map from the encoder layer. At the last layer, the
feature vector of 64 components is converted to the number of
classes by performing the 1 � 1 convolution. Each layer of encoder
and decoder is also stacked with Resnet101 layers to learn the
complex features in the angiograms. Keeping in view the availabil-
ity of limited data, the encoder is designed to use the ImageNet
weights. The rest of the layers are designed to use skip connections
with the encoder to utilize the pre-weights and learn about the
specific domain dataset. The network is further enhanced by infus-
ing the knowledge at different levels. For this purpose, the infusion
level-based deep features (Eq. 5) are extracted from the deep learn-
ing model.

Dn ¼ hi � gi � ki ð5Þ
The number of filters is represented by ki while the hi and gi are
dimensions of the image.

3) Equivalent feature maps calculation

The knowledge cannot be exploited directly to the deep learn-
ing layers because of the abstract nature of deep features and dif-
ferent dimensions of tensors (Eq. 5). Based on the level of infusion,
the equivalent feature map needs to be calculated. For this pur-
pose, we introduced a dynamic sub-network generation mecha-
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nism to calculate the maps according to the level of infusion. Each
knowledge category input is processed from the infusion level-
based sub-network and calculates the equivalent feature map
(Eq. 6).

En ¼ hj � gj � kj ð6Þ
Here the number of filters are represented by kj while the hj and gj

are dimensions of the image. En is equivalent to Dn.

Algorithm2: Adaptive Multi-Level Infusion

Require: ax;a .For axanda Fig. 5.
Ensure: POI½�  Sax .S Extract POIs from Image.
ROIa½� ¼ empty
ROIb½� ¼ empty
z lengthðPOIÞ; i 0
while i < z do

C  predictðPOI½i�Þ
if C P 0:75 then

ROIa¼: POI½i�
end if
if C P 0:50&C < 0:75 then

ROIb¼: POI½i�
end if
iþþ

end while
M1  ROIa .M Merge ROIs to Image Fig. 5.
M2  ROIb
N  lengthðDLmodelÞ
t  N .Total number of allowed infusion levels.
T  minðCÞ .Minimum acceptable confidence level.
d ð1� TÞ=N
m 0
w 1
w0 ¼ w=t þ 2
k 1
while m 6 t do
j 0
Cm ¼ ðm� dÞ þ T
n ðCm � TÞ=d
wi ¼ ðnþ 1Þ � w0

wj ¼ w�wi

while j 6 n do
Dj  featuremapðaÞ
if n ¼¼ j then

Ej  featuremapðMkÞ
kþþ
Dn ¼ wi � Dj �wj � Ej

else if n 6 j then
Ej  featuremapðMkÞ

end if
jþþ

end while
mþþ

end while
4) Adaptive weight exploitation

The weights of external and deep feature maps are an important
aspect of infused U-Net. The proposed adaptive knowledge
exploitation method considers the position of the layer and calcu-
lates the dynamic weights. The depth of the network is calculated
using the infusion level. Based on the calculated depth, the weight
7

distribution is selected. The weight distributions show the weights
assigned to knowledge features and deep features. We analyzed
different weights of knowledgewi to deep features wj in our exper-
iments. The results show that for early infusion the wi must be rel-
atively greater than wj and vice versa for late infusion. The equal
distribution of weights is effective in the middle of the network.
The maximum weight w assigned to deep or knowledge features
can be 1. The initial weight w0 value needs to be calculated as a
starting point.

w0 ¼ w
t þ 2

ð7Þ

w0 is calculated by dividing the w by t with the shift of 2. The factor
2 is introduced to avoid the assignment of maximum (1) or mini-
mum (0) value to each feature.

wi ¼ ðlþ 1Þ �w0 ð8Þ
The weight of the knowledge-based feature (wi) is calculated from
infusion level selected for the said features and initial weight. The
remaining weightage is assigned to deep features (wj).

wj ¼ w�wi ð9Þ
5) Adaptive layer infusion

The deep features specific to each level (denoted as Dn) are
merged with the corresponding knowledge-based feature map
(En). The weighting of the deep features and knowledge-based fea-
tures is determined based on the infusion level (l), following the
dynamic weight calculation process as discussed in the criteria.

Lnþ1 ¼ ðwi � ðhi � gi � kiÞÞ � ðwj� ðhj � gj � kjÞÞ ð10Þ
The prepared knowledge-infused layer is added at the selected infu-
sion level and the rest of the network remains the same. The output
of the infused layer goes to the next layer of the network. The infu-
sion not only increases the number of layers by one but also another
input carrying knowledge is added that represents the guideline for
the deep network layer. The adaptive layer infusion operates in two
ways. Firstly, the choice of layer depends on the task objective. For
example, for the detection of all aneurysms, infusion mostly works
better in either the initial or final layers, whereas for segmentation,
the middle layers are more appropriate. Secondly, instead of catego-
rizing tasks into two distinct groups, we categorize the confidence
into confidence intervals, and the infusion is determined dynami-
cally based on the criteria outlined in Algorithm2. To validate the
hypothesis of dynamic infusion, initially only two intervals and
threshold were chosen. However, in dynamic infusion, the weights
and layers are dynamically calculated. Algorithm2 explains the
overall mechanism of adaptive infusion based on two intervals.
Within Algorithm2, the predictðÞ function represents the mecha-
nism of prediction of the CNN classifier that takes POI and returns
the C where the C above 50% is considered as potential ROI. Each
ROI is associated with a confidence level that greatly influences
the decision-making process for adaptive infusion level selection.
The algorithm utilizes two fixed parameters for early and late infu-
sion, which are determined based on the C of the ROI. For late infu-
sion, the ROI with a C of 75% is utilized, while the early infusion of
the ROI occurs within the C of 50%� 75%.

4. Experimental results

In this section, we provide a comprehensive account of various
experiments conducted to assess the detection and segmentation
performance of DeepInfusion. Additionally, we also include the
specifics of the dataset used in these experiments. Our investiga-



Fig. 6. Performance comparison of ML classifiers for knowledge extraction.

Fig. 7. Confusion Matrix for Knowledge Extractor.
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tion focused on two key factors: firstly, the efficacy of the model in
incorporating knowledge into different layers of deep learning;
secondly, the influence of layer selection and weight assignment
on the deep and knowledge-based features.

4.1. Dataset selection

Choosing an appropriate dataset for detecting and segmenting
aneurysms presents several challenges, such as varying equipment,
angiogram techniques, high-intensity imaging, limited image
availability, and the location and appearance of cerebral aneur-
ysms. Furthermore, due to medical ethics, patient datasets cannot
be publicly accessed for research, so angiograms must first be
anonymized before analysis. Additionally, expert knowledge is
necessary to identify intracranial aneurysms from the arterial
structures. To assess our proposed method, we employed 409 2D
digital subtraction angiography images. In clinical settings, 2D
images are typically used for diagnosis, whereas we generated
3D images specifically for experimentation purposes. To target
the 2D images, we collected single-frame angiograms from a time
series imaging study based on six views: medial and lateral, prox-
imal and distal, and superior and inferior. The dataset consists of
images that depict the occurrence of aneurysms in nine different
arteries, namely ACOM, Basilar, ICA, MCA, PCA, PCOM, PICA, supr-
aclinoid, and SICA. Out of the dataset’s images, 15 do not have
aneurysms, while the rest contain one or more aneurysms, with
a total of 436 aneurysmsmarked by an expert. Among these aneur-
ysms, 339 are saccular, and the remaining 31 are fusiform,
included to test segmentation’s robustness. Previously, existing
approaches only focused on saccular aneurysms. The average
aneurysm area is 2550 pixels, ranging from a minimum of 145 pix-
els to a maximum of 22880 pixels. Loop presence in the angiogram
is another important factor that complicates the aneurysm detec-
tion process. The average loop area in angiograms is 2024 pixels,
ranging from a minimum of 99 pixels to a maximum of 15916 pix-
els. The collected 2D DSA angiograms are partitioned into training
and testing datasets in a 4:1 ratio. These angiograms are labeled by
a neurosurgeon for segmentation.

4.2. Evaluation parameters

The proposed system is evaluated in two phases. The first phase
involves evaluating the accuracy, precision, and recall of the
knowledge extractor. In the second phase, the aneurysm detection
results are evaluated using the F1-Score, while the aneurysm seg-
mentation is evaluated using intersection over union (IOU), in
knowledge infused DNNs.

4.3. Experimentation

This section provides different experiments to investigate the
importance of adaptive knowledge infusion on different layers of
the model. Moreover, we also examined the importance of defining
the preferences of knowledge in deep learning features and the
effect on aneurysm detection.

a) Knowledge extraction
The objective of this experiment was to evaluate the reliability

of knowledge extraction by developing a model that could distin-
guish between aneurysms and loops. To accomplish this, we
extracted 349 aneurysms and an equal number of diverse loops
from a training set of 319 angiograms, ensuring class balance.
We then trained various traditional machine learning algorithms,
such as Logistic Regression, Linear Discriminant Analysis, K-
Nearest Neighbors, Classification and Regression Trees, Random
Forest, Naive Bayes, and Support Vector Machine, but the accuracy
8

of the results was low, as shown in Fig. 6. Consequently, we
decided to use a convolutional neural network as a backend classi-
fier, with handcrafted features that integrated domain knowledge.
The knowledge extractor is tested on 127 equal number of aneur-
ysms and loop slices for classification. Overall, the accuracy of the
classifier is 90%, and the precision, and recall is 86% and 95%
respectively. The confusion matrix in Fig. 7 shows the performance
of the classification on test data.

b) Effect of knowledge infusion at different layers in deep neural
network

The knowledge extracted in the previous experiment can be a
guiding factor for the deep layers in the model. For this purpose,
an additional experiment is conducted to observe the effect of
knowledge infusion on different layers of deep learning model.
Selection of the layer in DNN is a critical factor considering the
confidence of knowledge classifier. Our first goal is to find out
the effect of infusion at different layers. The idea behind the selec-
tion is to observe the behavior of the deep learning model by infus-
ing the knowledge at three different positions i.e. start, end, and
middle. The other challenge of this investigation is to infuse
high-level knowledge with deep features. The deep features
abstraction depends on the position of the layer. To deal with this
challenge, the knowledge embeddings are generated to make the
high-level knowledge equivalent to deep features by introducing
the abstraction. The five different models are designed and evalu-



Table 1
Results on different knowledge infused layers.

Knowledge Infused Layers

Parameter UNET 380 278 209 106 57

Training
Loss 0.0005 0.0013 0.0003 0.0018 0.0021 0.0016
IOU 0.8498 0.9170 0.9418 0.9411 0.9450 0.9107
Accuracy 0.9997 0.9993 0.9998 0.9990 0.9989 0.9991
F1-Score 0.8309 0.8684 0.7800 0.8201 0.8105 0.8614

Validation
Loss 0.0004 0.0010 0.0003 0.0012 0.0015 0.0013
IOU 0.8778 0.9124 0.9661 0.9576 0.9413 0.9052
Accuracy 0.9998 0.9994 0.9998 0.9994 0.9993 0.9993
F1-Score 0.8323 0.8634 0.7900 0.8014 0.7447 0.8555

Testing
Loss 0.0004 0.0012 0.0003 0.0022 0.0016 0.0015
IOU 0.7930 0.7646 0.8518 0.8586 0.9030 0.7638
Accuracy 0.9998 0.9993 0.9998 0.9988 0.9991 0.9992
F1-Score 0.6357 0.8553 0.6052 0.6724 0.6980 0.8554

Fig. 8. Comparison of Performance Measure with respect to Infusion Level.
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ated quantitatively for different evaluation parameters on test
data. The results of knowledge infusion at layer 380, 278, 209,
106 and 57 are presented in Table 1. The results of model infusion
are compared with the deep learning model. The positive impact of
Knowledge (KW) infusion on various layers of deep learning mod-
els is apparent. Fig. 8 compares the performance of each layer using
selected measures, and the variations in these measures demon-
strate the impact of KW infusion. Most layers experience an
increase in IOU score following infusion, indicating improved accu-
racy in mask extraction. However, the layer that contributes to bet-
ter segmentation may differ from the one that contributes to better
detection. For instance, while layer 106 is the best for segmenta-
tion, layer 57 is the most suitable for detection among the various
infusion levels.

In Fig. 8, the performance of models infused at various layers is
compared. Infusions at layers 106 and 209 appear to accurately
segment the aneurysm, closely matching the ground truth. Con-
versely, infusions at later layers such as 278 and 380 detect small
Table 2
Effect of IOU-Score Threshold on Segmentation.

Threshold UNET

380 27

0.5 0.7930 0.7646 0.85
0.3 0.8664 0.8485 0.89
0.2 0.9158 0.9065 0.92
0.1 0.8708 0.8945 0.89

9

shape-based features as potential aneurysms. Additionally, the
early infusion is more effective at detecting aneurysms with low
brightness. The results suggest that both early and late infusions
improve detection, while middle layers are more suitable for seg-
mentation. If the knowledge extractor is unable to differentiate
between the aneurysm and vasculature loop then the model
accepts it as a potential aneurysm. But the middle layers like 106
and 209 re-consider the features along with deep features and fil-
ter those areas, which are misclassified by the knowledge extrac-
tor. The low intensity or small sized aneurysms, which are
usually missed by the DL model can be detected via early infusion.
By decreasing the threshold of the IOU-Score to 0.2 an improve-
ment in segmentation can be observed (Table 2).
c) Optimizing the weights of DNN and KW features in infusion
In the previous experiment, the infusion assigned equal weights

to both knowledge-based features and deep features. The present
experiment seeks to investigate the impact of weight distribution
on infusion. Layers 106 and 209 demonstrated positive outcomes
in the segmentation task during the prior experiment. To examine
the significance of weight distribution, layer 106 was selected for
infusion, and the experiment was conducted using different weight
ratios of DNN and knowledge features, specifically 60:40, 50:50,
40:60, and 30:70. The weight ratios in this experiment are repre-
sented by the first and second terms of the ratio, indicating the
weights assigned to the deep features and knowledge features,
respectively. Table 3 demonstrates the impact of weight distribu-
tion, revealing that while weights have no effect on accuracy, they
do influence IOU and F1-Score. Table 3 also emphasizes the impor-
tance of selecting an appropriate layer and weight distribution for
optimal outcomes. Increasing the weights assigned to knowledge
features from 50 to 60 leads to an increase in the IOU score for
the training data, although no variation is observed in the test data
Knowledge Infused Layers

8 209 106 57

18 0.8586 0.9030 0.7638
90 0.9109 0.9342 0.8475
73 0.9468 0.9597 0.9043
37 0.9018 0.9201 0.8624
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according to the qualitative analysis in Fig. 9. In contrast, decreas-
ing the weight to 40 for knowledge-based features causes a change
in the IOU score in both the training and test data. Further decreas-
ing the weight to 30 results in significant improvement in both the
train and test data, suggesting that a 30:70 ratio is close to optimal
for layer 106. Overall, this experiment highlights the importance of
weight distribution in infusion and demonstrates that the appro-
priate selection of layer and weight distribution can lead to
improved results.

d) Adaptive infusion in DNN
The previous two experiments have demonstrated that the

effectiveness of infusion is dependent on the infusion level/layer
and the distribution of weights. However, an important question
arises as to how to dynamically select the layer of the DNN model
and weights for both knowledge and deep features. As discussed in
the methodology, the proposed dynamic adaptive infusion levels
depend upon the total number of allowed infusions. If the t is 2
then the thresholds will be 0.5 and 0.75. This means that low-
Table 3
Comparison of weighted infusion wj : wi i.e. deep features: Knowledge features.

Parameter

60:40

Training Loss 0.0021
IOU 0.9560
Accuracy 0.9989
F1-Score 0.8070

Validation Loss 0.0015
IOU 0.9718
Accuracy 0.9993
F1-Score 0.7385

Testing Loss 0.0017
IOU 0.9597
Accuracy 0.9991
F1-Score 0.6986

Fig. 9. Impact of knowledge exploitatio

10
confidence knowledge is infused at the beginning layers (e.g. level
57) and high-confidence knowledge is infused at the later layers
(e.g. level 246) of the DNN. The results indicate that loss reduces
when categorized external knowledge criteria are enforced. Addi-
tionally, there is significant improvement in F1-Score, although
the segmentation performance is not optimal. Despite this, the per-
formance of all parameters is improved. To further observe the
effect, t is selected 3 leading to the calculation of new thresholds
i.e. 0.5, 0.67, and 0.83. The introduction of these new threshold val-
ues enables three levels of infusion. The results (Table 4) reveal
improvements in both the IOU-Score and F1-Score, underscoring
the significance of adaptive infusion in enhancing both classifica-
tion and segmentation. This approach overcomes the limitations
of single-layer infusion, which typically improves either segmenta-
tion or classification alone. Therefore, dynamic infusion emerges as
a preferable choice for enhancing overall detection and segmenta-
tion accuracy, fulfilling the needs of the medical field. Therefore, it
is intuitive to use adaptive knowledge infusion, which involves
dynamically selecting the infusion layer and weights based on
Weighted KW-Infusion on Layer 106

50:50 40:60 30:70

0.0021 0.0021 0.0021
0.9450 0.9540 0.9546
0.9989 0.9989 0.9989
0.8105 0.8059 0.8055

0.0015 0.0015 0.0015
0.9413 0.9729 0.9734
0.9993 0.9993 0.9993
0.7447 0.7374 0.7366

0.0016 0.0016 0.0016
0.9597 0.9591 0.9602
0.9991 0.9991 0.9991
0.6980 0.6966 0.6946

n on different deep learning layers.
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the confidence level of the knowledge extractor/classifier. This
approach allows for the infusion of external knowledge at appro-
priate layers of the DNN, which leads to improved results for all
parameters. Ultimately, the use of adaptive knowledge provides a
promising solution for achieving better performance in DNN-
based tasks. Table 4 compares the performance of four different
methods for image segmentation and detection. The first method
is the UNET segmentation algorithm, static infusion at layer 106
for segmentation and layer 57 for detection. The third and fourth
methods are two-level and three-level adaptive infusion. The
results show that the three-level-adaptive infusion approach per-
forms better than the other three methods regarding all parame-
ters. It achieves the highest IOU score and F1-score. The F1-score
for the adaptive infusion approach is particularly high, indicating
a good balance between precision and recall. The results suggest
that the adaptive infusion approach is a promising method for
image segmentation and detection.
Table 6
Comparison with Existing Approaches.

Method No. of Images Accuracy

ISADAQ [5] 59 86.00%
KNN [15] 209 95.00%
CNN + SIF [24] 300 98.98%
Proposed 409 99.97%
e) Ablation study
To assess the impact of the proposed system on reliable aneur-

ysm segmentation, an ablation study was conducted. The study
focused on evaluating the influence of key steps within the pro-
posed method, namely hand-crafted feature extraction, knowledge
infusion, weight exploitation, and adaptive infusion. The experi-
mental results of segmentation in terms of IOU were analyzed to
examine the individual contributions of each step in the knowl-
edge infusion process to the network’s overall performance. The
results of this analysis can be observed in Table 5. By systemati-
cally studying and comparing the performance of the system with
and without each step, valuable insights were gained regarding the
effectiveness and significance of incorporating knowledge infusion
techniques. It has been observed that the optimal layer for seg-
menting intracranial aneurysms is different from the optimal layer
for the detection of these aneurysms. This explains why the exper-
iment (Section 4-c. Optimizing the Weights of DNN and KW Fea-
tures in Infusion) yielded superior results compared to the
experiment (Section 4-d. Adaptive Infusion in DNN). The adaptive
infusion was specifically devised to address both the detection
and segmentation objectives for intracranial aneurysms. However,
the possible reason for the relatively lower performance of adap-
tive infusion can be the selection of specific layers for infusion
and the categorization of ROIs into only two categories of high
Table 5
Ablation Study.

Experiment Hand-
Crafted
Features

Kn
In

DNN No
Effect of Knowledge Infusion at Different

Layers in Deep Neural Network
Yes

Optimizing the Weights of DNN and KW
Features in Infusion

Yes

Adaptive Infusion in DNN Yes

Table 4
Comparison of deep learning with different knowledge-infused networks.

Parameters UNET Segmentation
(Layer = 106)

D
(L

Loss 0.0004 0.0016
IOU 0.9158 0.9602
Accuracy 0.9998 0.9992
F1-Score 0.6356 0.6946
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and low confidence. To enhance adaptive infusion’s effectiveness,
it would be beneficial to expand the number of categories based
on confidence levels and increase the infusion levels. By imple-
menting these modifications, the adaptive infusion has the poten-
tial to exhibit significantly improved performance.

f) Comparative analysis of the proposed and contemporary models
We conducted an experiment to evaluate the performance of

our model in comparison to our previous studies [5,15]. For the
experiment, we utilized the same data collection procedure and a
subset of our current dataset. The results are presented in Table 6,
which shows a significant improvement in accuracy. These results
demonstrate that a knowledge infusion is a promising approach for
developing medical diagnostic systems, as it addresses the limita-
tions of small datasets in deep learning models. To present the
strength of the base network, we conducted a comprehensive eval-
uation by comparing it with state-of-the-art segmentation meth-
ods such as Linknet, PSPNet, and FCN. These well-established
methods were specifically chosen to benchmark the performance
of the base network on our dataset. Meanwhile the effect of intro-
ducing a knowledge module in segmentation models is observed
across different networks. The IOU score of these methods was
carefully analyzed and compared in Table 7. By conducting a com-
prehensive comparison, we were able to thoroughly analyze and
evaluate the base network in comparison to other segmentation
networks. This analysis enabled us to identify and emphasize the
strengths and advantages of the base network over the alternative
segmentation networks. Additionally, our comparison highlights
the significance of knowledge infusion. The incorporation of addi-
tional information or features, through techniques like knowledge
infusion, can enhance the performance and capabilities of segmen-
tation networks.
owledge
fusion

Weight
Exploitation

Adaptive
Infusion

IOU
Score

No No No 0.9158
Yes No No 0.9597

Yes Yes No 0.9602

Yes Yes Yes 0.9676

etection
ayer = 57)

2-Level
Adaptive
Infusion

3-Level
Adaptive
Infusion

0.0015 0.0092 0.0102
0.9043 0.9354 0.9676
0.9991 0.9995 0.9997
0.8554 0.9323 0.9415



Table 8
Performance Comparison on Public Kvasir-SEG and DRIVE Test datasets.

Kvasir-SEG DRIVE

DL KW-DL DL KW-DL

Loss 0.1344 0.1358 0.1224 0.1315
IOU 0.6015 0.6335 0.5784 0.5930
Accuracy 0.9462 0.9493 0.9125 0.9132
F1-Score 0.5587 0.6532 0.6144 0.6448

Table 7
Comparison of Segmentation with state-of-the-art Techniques.

Segmentation
Models

IOU-Score

DL KW-DL

UNET 0.9158 0.9354
FCN 0.8748 0.8645

PSPNet 0.8696 0.8906
LinkNet 0.8778 0.9129
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g) Generalizability evaluation
In this section, we evaluate the generalizability of our approach

to publicly available datasets. It is important to discuss the steps
involved for KW-DNN for the effective utilization of this approach
on other datasets. The utilization of expert domain knowledge is
crucial for the successful segmentation of any ROI from any imag-
ing modality. This is achieved by processing the image for shapes,
edges, or other patterns suggested by the expert, which leads to the
acquisition of engineered features. To evaluate the generalizability
of both datasets, hand-crafted features specific to phenotype and
image modality are employed. For the dynamic infusion of knowl-
edge, the engineered features are compared against the actual
ground truth to determine the confidence level of each ROI. In
the absence of ground truth for test images, the average confidence
level is used to make decisions in a real scenario. The infusion of
knowledge is performed on the optimal layer, and the weights
are assigned dynamically based on the confidence level. The afore-
mentioned procedure is employed to design a two-stage experi-
ment. The objective of this experiment is to compare the
performance of a knowledge-infused DNN with that of a conven-
tional DNN on a publicly available medical segmentation dataset.
Examples of images from each dataset can be observed in Fig. 10.
In the first stage of the experiment, the kvasir polyp dataset [36]
was chosen due to its value to researchers working on segmenta-
tion tasks. This dataset offers a diverse collection of images that
can be used for training and evaluating segmentation models.
Moreover, pixel-level segmentation masks can be employed to
assess the accuracy of the models. The polyp RGB images without
any pre-processing are used as input to the network. The external
knowledge is infused at the optimal layer, which is extracted
through blob detection. The detected blobs are then incorporated
into the network. The performance of the conventional DNN is
Fig. 10. A) Sample of Kvasir-SEG dataset [36]. B) Sample of DRIVE dataset [37].
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compared to the knowledge-infused DNN in Table 8. The infusion
of external knowledge has shown to enhance pixel-level detection,
which is evident by the increased value of IOU. The notable
improvement in the F1-score provides evidence of the importance
of external knowledge infusion in a deep learning network. The
infusion of knowledge enforces domain knowledge in the internal
layers of the network to prioritize important features. This leads to
an improvement in the network’s performance. In the second
phase of our experiment, we utilized the publicly available DRIVE
dataset [37] for vessel segmentation. This dataset comprises 40
images, with 20 images each for the test and train sets. A mask
image is provided for every retinal image, indicating the region
of interest. The original image is given as input to the network
without any pre-processing. The knowledge is engineered by
extracting the structuring elements from the image, which are
then infused on the optimal layer based on the confidence level.
The performance of the knowledge-infused network is compared
with a deep learning network in Table 8. Our results indicate an
improvement in both IOU and F1-score, demonstrating that the
infusion of domain knowledge is equally applicable to small data-
sets. This improvement is due to the mechanism of the infused net-
work to prioritize domain knowledge within the internal structure
of the DNN. Our findings suggest that domain knowledge can effec-
tively address the limitations of deep learning networks when
working with small datasets.
5. Discussion

The primary goal of this paper is to enhance the effectiveness of
deep learning methods in medical image analysis by integrating
expert knowledge. Based on the neuro-symbolic AI approach, the
Deepinfusion method proposed in this study incorporates the out-
put of the knowledge model into the deep learning network layer
as attention. By optimizing the weights of both models and dynam-
ically selecting the infusion layer in the DNN, the adaptive infusion
process significantly improves the detection and segmentation of
ROI through the infusion of attention. To substantiate the effective-
ness of the proposed method, we developed a neuro-symbolic AI
method for DSA analysis, which combines the domain expert
knowledge of identifying aneurysms from DSA images with data-
driven deep learning techniques. The results indicate that the pro-
posed approach enhances the detection and segmentation perfor-
mance by incorporating expert knowledge, thereby overcoming
the limitations of deep learning on small datasets, which is often
the case in rare diseases, and the inability to share data in the cloud
due to HIPPA compliance. The proposed Deepinfusion approach
relies on the notion of measuring the confidence level of the
hand-crafted machine learning/knowledge model on its prediction
output and infusing the potential ROI as attention in the deep
learning network layer, proportional to the certainty of those pre-
dictions. Since the DNN itself also processes the same DSA input,
the induced attention of the knowledge model also assists the
DNN in significantly improving ROI detection. The domain knowl-
edge infusion-based deep learning model is expected to improve



Fig. 11. Impact of knowledge infusion in segmentation of DRIVE images.
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the accuracy of various medical image analysis models when large-
scale datasets are not available.

The expert-advised knowledge can be extracted using ML
technique from the hand-crafted features. But these features
may miss some important information. So, rather than using it
as the input, the knowledge is introduced in the internal struc-
ture of the DNN. Due to the DNN’s black-box nature, adaptive
exploitation of the domain knowledge directly within the neural
network is not possible. Therefore, we have created the equiva-
lent feature map through the knowledge embeddings. The nov-
elty of the proposed system is to dynamically infuse the
domain knowledge directly into the DNN by selecting the appro-
priate layer of DNN and adjusting its weights proportion to the
knowledge model. The infusion of external knowledge into deep
neural networks is shown to enhance performance in the detec-
tion and segmentation of aneurysms, particularly when the data-
set is challenging, such as those containing various atrial views,
fluctuations in dye intensity, different sizes of regions of interest,
and background noise. However, selecting the optimal infusion
layer is complicated due to the complex architecture of deep
learning models, which include ResNet blocks and skip connec-
tions. In this study, the impact of infused knowledge at the
beginning, middle, and end of the deep neural network layer
was investigated, with layers 57, 106, 209, 278, and 391 being
selected for analysis. The introduction of knowledge at the end
layer of the network improved the detection rate, but also pro-
duced significant noise due to lack of filtering through the deep
layers. Infusion at layer 278 or 318 resulted in improved detec-
tion but low segmentation accuracy. Infusion of knowledge in
the initial layer, specifically in layer 57, produced infused knowl-
edge that behaves as an additional input and undergoes signifi-
cant convolutions downstream. Segmentation was slightly
improved over the model infused at the ending layers of the net-
work but not as accurate in its contribution towards further
analysis for rupture prediction. When infusion was performed
near the middle of the encoder, as in layers 106 and 209, the
model outperformed for aneurysm segmentation but may miss
small aneurysms. The visualization of the last row shows that
infusion improved segmentation accuracy and assisted the abil-
ity to detect an aneurysm when the arteries in DSA images were
darker due to concentration of dye compared to the portion
where aneurysm exists. Thus, adaptive infusion of knowledge
is recommended to optimize performance in terms of segmenta-
tion and detection, with individual tailoring of infusion at differ-
ent layers to improve system performance. The classified
aneurysms can be categorized based on confidence levels, which
can inform the decision of which infusion layer to use for each
instance.

The concept of adaptive infusion involves infusing knowledge
into dynamic layers of DNN with varying amounts of weight given
to external knowledge and deep neural networks. The improve-
ment in results on public datasets shows the importance of knowl-
edge infusion (Fig. 11). The effectiveness of knowledge-infused
networks on public datasets can be improved by adding domain
experts, which helps to improve the knowledge engineering pro-
cess. Domain experts provide insights for the extraction of knowl-
edge. They can also help to identify potential problems and suggest
solutions. Despite the high performance of the adaptive knowledge
infusion, as the complexity and size of networks increase, more
memory resources are required along with the learning time. Cur-
rently, the background information is also passed to the network
along with the knowledge. In the future, the complexity may be
reduced by infusing only the spatial aneurysm of the region of
interest. Our long time goals include the implementation of a rein-
forcement learning-based knowledge-infused network to make
adaptive real-time systems.
13
6. Conclusion

In medical image analysis, the focus of deep learning research to
date has been on improving performance by optimizing model
architectures and their parameters, and systematically altering/im-
proving datasets. However, the power of infusing human intellect
into the neural network remained largely unexplored. This paper
has introduced a novel approach, adaptive knowledge exploitation
on the traditional deep learning architecture, by implementing a
DeepInfusion model for aneurysm detection and segmentation,
which infuses medical expert knowledge into the deep learning
layers. Empirical results highlight the importance of selecting the
appropriate deep learning layer, along with the distribution of
weights between the knowledge and deep features, to achieve
optimal performance. In the future, we plan to extend the current
system by optimizing the selection of the layer for knowledge infu-
sion and more precise adjustments of the weight for infused
knowledge in DNN to further improve the detection and
segmentation.
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