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Abstract
The great development in the area of Artificial Intelligence (AI) has introduced tremen-
dous advancements in information technology. Moreover, the introduction of lightweight 
machine learning (ML) techniques allows the applications to work with limited storage and 
processing power. Deepfakes is among the most famous type of such applications of this 
era which generates a large amount of fake and modified audiovisual data. The creation of 
such fake data has introduced a serious risk to the security and confidentiality of humans 
all around the globe. Accurate detection and classification of actual and deepfakes content 
is a challenging task due to the progression of Generative adversarial networks (GANs) 
which produce such convincing manipulated content that it’s impossible for people to rec-
ognize it through their naked eyes. In this work, we have presented deep learning (DL)-
based approach namely the convolutional long short-term memory (C-LSTM) method 
for deepfakes detection from videos. More specifically, the spatial information from the 
input sample is calculated by employing various pre-trained models like VGG16, VGG19, 
ResNet50, XceptionNet, and GoogleNet, DenseNet. Further, we have proposed a novel fea-
ture descriptor called the Dense-Swish-Net121. Whereas the Bi-LSTM model is utilized to 
compute the temporal information. Lastly, the results are predicted based on both the frame 
level and temporal level information to make the final decision. A detailed comparison of 
all CNN models with the Bi-LSTM approach is performed and has confirmed through the 
reported results that the proposed Dense-Swish-Net121 with Bi-LSTM approach performs 
well for deepfakes detection.
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1 Introduction

The affordable prices of digital devices like cell phones, tabs, cameras, laptops iPods, etc. 
have enabled mankind to easily keep them. The easier availability of these gadgets has 
urged people to save their data in digital format which ultimately causes to increase the 
multimedia content like images and videos in cyberspace [29, 33]. Meanwhile, the acces-
sibility of internet services and usage of social sites like Facebook, Twitter, and Instagram 
has allowed people to connect around the globe and share their audio videos-based data. 
Such sites allow everyone to save this data and regenerate them even without the knowl-
edge of others. At the same time, with the availability of easy-to-use Apps and tools, peo-
ple can easily change or modify digital content without the need for any special expertise 
[26]. Moreover, the great development in the area of ML has introduced such convincing 
methods which can easily change the information conveyed through this digital content. 
Because of such reasons, researchers have given this era the name of “post-truth” where 
a piece of digital content (Image, Audio, and Video) is used by hateful actors to spread 
disinformation to alter the beliefs of the audience [48]. The main aim of people spreading 
such false narratives is to affect the reputation of famous people like politicians and celeb-
rities [19, 39]. The processing of changing the audio-visual content by using ML-based 
approaches is known as deepfakes. Now, the deepfakes have become so convincing and 
powerful that even these manipulations can affect election campaigns and cause to initi-
ate the war type situation in the countries [45]. The easy-to-use Apps like FaceApp [5], 
Zao [34], REFACE [3], etc. allow users to easily change their visual content. Because of 
such manipulations, now it has become very difficult for people to understand what to con-
sider real or fake. Because of such reasons, multimedia data cannot be trusted to investigate 
criminal cases as the audio or video-based data used as proof in these cases must be trust-
worthy [30]. However, the convincing generation of deepfakes has made it a complex job 
to verify the truthfulness of multimedia data.

Deepfakes have many positive applications and can provide cost-effective solutions to 
many domain problems. The positive applications of deepfakes include generating speech 
for deaf people, and artists can use deepfakes to show their skills. Furthermore, film pro-
ducers can use deepfakes to reshoot the scenes for which the actors or actresses are no 
more available. Even though there are multiple positive usages of deepfakes, however, its 
negative employment is more prominent [44]. Like in history, manipulated content was 
generated to make superstars notorious to their supporters, for example, in 2017 an actress 
was opposed in a deepfakes-based pornographic video [35]. Therefore, the negative crea-
tion of such content can easily cause the character assassination of celebrities. Moreover, 
intruders can use such fake content for money purposes by threatening people to spread 
false information about them on the internet. Likewise, deepfakes can have a considera-
ble effect on stocks and businesses as well all around the world. Initially, deepfakes crea-
tion require extensive data, therefore, only famous people were the main target of them, 
however, now with the generation of the few-shot-based deepfakes creation approaches, its 
influence is spread to the general audience as well. An example of a few-shot-based deep-
fakes generation tool includes the Zao app [31] where the users can swap their faces with 
actors to see themselves acting in those shots. The usage of such apps and tools can easily 
result in intense privacy problems for not only celebrities but the general audience as well.

Although, extensive work has been presented by the research community for deepfakes 
detection, however, still there is a room for performance improvement. In this work, we 
have used the idea of using both the spatial and temporal information of the videos to detect 
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and classify the original and deepfakes content. More specifically, a two-stage network 
namely the C-LSTM approach is proposed where the spatial information from the videos is 
computed by using several pre-trained models like VGG16, VGG19, ResNet50, Xception-
Net, and GoogleNet, DenseNet. Further, we have proposed a novel feature descriptor called 
the Dense-Swish-Net121. While the Bi-LSTM approach is used to measure the temporal 
information due to its effectiveness to learn the reliable keypoints and monitor the differ-
ence in the behavior of visual characteristics of a sample with the passage of time [10, 11]. 
Finally, the results are computed based on both the frame level and temporal level informa-
tion to make the final decision. The following are the main contributions of our work:

• A spatial–temporal aware deepfakes detection framework by using the sequence of con-
secutive frames from videos is presented to classify the real and fake visual content.

• A novel feature descriptor called Dense-Swish-Net121 is proposed to acquire the more 
dense visual information of suspected samples.

• A general workflow for deepfakes identification and classification by employing several 
pre-trained models along with the temporally-aware Bi-LSTM network is presented to 
tackle the model over-fitting issue.

• Transfer learning-based technique for deepfakes detection in which heatmaps are gen-
erated to indicate the explainability of the proposed framework.

• Extensive experimentations including the performance analysis of several state-of-the-
art DL-based approaches have been presented over challenging datasets to show the 
robustness of the proposed solution.

The rest of the paper is structured as follows: the latest research work related to deep-
fakes detection is explained in Section 2, while the demonstration of the proposed frame-
work is elaborated in Section 3. The evaluation metrics along with the obtained results are 
discussed in Section 4, while the conclusion is discussed in Section 5.

2  Related work

Due to the devastating effects of deepfakes generation, the research community has focused 
its attention on the generation of such techniques which can locate the original and fake 
content. The generic methods used for deepfakes detection are broadly categorized into 
two types namely the hand-coded-based approaches or DL-based methods. In the case of 
hand-coded methods, Yang et al. [47] introduced an approach for identifying the manipu-
lated visual content by estimating the 2D facial features for the 3D head pose estimation. 
The computed features were later used to train the SVM classifier to categorize the origi-
nal and fake data. This work [47] shows better visual manipulation detection performance, 
however, the approach lacks to generalize well for the blur samples. Another approach was 
presented in [21] that employed the Image Quality Metric (IQM) for feature extraction. In 
the next step, the principal component analysis (PCA) approach was used to minimize the 
size of feature dimensions. Lastly, the extracted features were used to train the SVM classi-
fier to discriminate between the original and deepfakes videos. The work in [21] works well 
for visual manipulation detection, however, the performance needs further enhancements. 
Another approach was introduced in [2] that was trained on the data of several celebrities. 
In the first step, the visual deepfakes of several celebrities were created by using the GAN 
approach. Then to locate the real and altered content, the OpenFace2 [7] toolkit was used 
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to capture the facial landmarks which were later applied for the SVM classifier training. 
The work shows better deepfakes detection results, however, the approach requires evalu-
ation over a standard and challenging dataset. The hand-coded approaches have demon-
strated better deepfakes detection results, however, these methods are not robust to post-
processing attacks like under the occurrence of compression, noise, and blurring in the 
altered content. Moreover, these approaches lack to capture the in-depth information of 
content due to their limited feature extraction power. Another approach was discussed in 
[32] where the medical feature descriptor of human faces was computed via using the Dlib 
tool. The extracted fetaures were passed as keypoints vector to train the SVM, and ANN 
classifiers. The approach [32] performs well for deepfakes detection, however, the model 
was unable to locate the Face-Reenactment-based deepfakes.

To overcome the challenges of the hand-coded methods, now the researchers are test-
ing the ability of DL-based approaches for deepfakes detection. Xu et al. [46] proposed a 
supervised learning approach for identifying the changes made within visual content. The 
Xception framework along with a supervised constructive loss was used for deep features 
computation and classification. The work exhibits better deepfakes expandability power, 
however, the generalization ability of the model needs further evaluations on cross data-
sets. Another DL-based approach was presented in [20], where the fusion of landmark fea-
tures with the deep feature was used to classify the original and fake content. The method 
presented in [20] shows better results for deepfakes detection, however, lacks to perform 
well for samples with dark light. Roy et al. [37] introduced a DL-based approach for locat-
ing the forensic changes made within multimedia content. Three types of networks namely 
the 3D ResNet, 3D ResNeXt, and I3D were used to compute the deep features and classify 
the visual content as being original or fake. The work in [37] attains the best performance 
for the 3D ResNeXt framework, however, exhibits lower performance for the unseen cases. 
In [41] a DL-based approach was introduced for deepfakes detection. The work used both 
the spatial and temporal information of videos to discriminate between the actual and 
manipulated content. The approach [41] shows better deepfakes classification performance, 
however, the classification accuracy degrades over the compressed video samples. Chen 
et al. [12] proposed a solution for identifying the deepfakes content from the original video 
samples. A two-stage model namely mask-guided detection and reconstruction was intro-
duced to locate the manipulated content. Initially, the deep features were computed that 
were later used in an iterative manner to locate the altered content. The work [12] exhibits 
better deepfakes detection performance, however, not generalized to all sorts of adversarial 
attacks. Another approach was presented in [27] where the 3D CNN model was used to 
detect the deepfakes from the suspected videos. The method [27] works well for visual 
manipulation detection, however, suffering from a high computational cost. Masood et al. 
[25] proposed an approach where several pre-trained models were used to compute the 
deep features of the input videos. In the next step, the computed features were used for the 
SVM classifier training. The work [25] shows the best results for the DenseNet-169 model, 
however, at the charge of the increased computational burden.

Zhang et  al. [49] discussed an approach for visual manipulation detection from vid-
eos by presenting a CNN model by incorporating the error level analysis. This work [49] 
improves the classification results, however, the approach lacks to show better performance 
results for highly compressed samples. A DL framework was introduced in [31] where an 
improved residual framework was proposed to locate the forensic manipulations introduced 
in the visual samples to spread disinformation. The approach performs well for deepfakes 
detection and better tackles the sample distortions, however, the generalization ability 
needs further enhancements. Ilyas et al. [17] introduced an approach called the AVFakeNet 
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model to locate the audiovisual manipulations from the investigated samples. Another DL 
approach was discussed in [18] that proposed a graph neural network-based model employ-
ing the multi-sized samples attributes to locate the real and fake visual samples. These 
approaches [17, 18] improved the classification results in the cross-corpus evaluation, how-
ever, with enhanced computing burden. Various works employing the ML and DL frame-
works have been investigated by researchers for the effective recognition of original and 
manipulated input samples. However, the increased realism of deepfakes generated data 
is introducing new challenges which are imposing the need for more accurate frameworks 
capable of recognizing the altered samples and trace the manipulation signs to reliably ver-
ify the authenticity of samples.

3  Proposed method

In this part, we have described the details of the introduced approach. Figure 1 shows the 
workflow of our technique. The presented technique is comprised of a convolutional RNN 
model for handling frame sequences. The presented approach namely C-LSTM contains 
two main components which are as follows: i) the CNN unit that is responsible for com-
puting the deep features at the frame level of videos, ii) a Bi-LSTM model to capture the 
temporal behavior to perform video sequence analysis over time. In the first component 
which is the convolutional part of the proposed approach, we have used several pre-trained 

Fig. 1  Workflow of the proposed method
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deep learning models namely the VGG16, VGG19, ResNet50, XceptionNet, GoogleNet, 
and DenseNet. The existing pre-trained models lack to capture the in-depth details of a 
visual sample due to the usage of the ReLU as the activation approach during the feature 
engineering phase. To overcome this issue, a novel feature descriptor called Dense-Swish-
Net121 is proposed to acquire a more reliable set of visual features. For a given suspected 
visual sample, a set of discriminative set of features is computed by using various CNN 
models. Later, we combine the keypoints of several successive frames to use them as input 
to the Bi-LSTM unit for sequence analysis. Finally, the probability of whether a video is a 
deepfakes or original is computed to determine the final output.

3.1  C‑LSTM

For a given test video (Fig.  1), a C-LSTM model is utilized to generate the temporal 
sequence feature vector for the visual alteration of the input frames. Employing the con-
cept of end-to-end training, the combination of fully-connected layers is utilized to draw 
the high-dimensional Bi-LSTM framework to an output classification score. More descrip-
tively, the proposed approach comprises two fully connected layers along with one dropout 
layer to reduce the model over-fitting problem. The proposed C-LSTM network comprised 
the CNN phase and a BI-LSTM network. The detailed description is discussed in the sub-
sequent sections.

3.2  CNNs for deep feature computation

In this module of the proposed approach, the deep keypoints from the input video are com-
puted which are later passed to the LSTM module to perform the final classification task 
(real, deepfake). In this work, we have taken five state-of-the-art DL-based models namely 
the VGG16, VGG19, ResNet50, XceptionNet, and GoogleNet. The main aim to use the 
pre-trained networks at the CNN module of the proposed C-LSTM approach is that these 
networks are trained on huge, openly available datasets like on the ImageNet database, and 
are robust to compute a more reliable set of features. In the training phase, the starting lay-
ers are responsible to learn low-level sample keypoints, whereas, the later layers detect and 
compute the task-specific features. As the pre-trained models have already gained signifi-
cant knowledge and learned extensive image texture information, therefore, their training 
for a new job like employing them for deepfakes detection decreases the model training 
time and enhances the execution time and speed of these models. Tuning the pre-trained 
model for a new task is known as ‘transfer learning’. A demonstration of transfer learning 
is shown in Fig. 2. The used frameworks compute reliable features from the video frames 
like face structure, nose position, eyes, and lips dimension, etc.

3.2.1  VGG

The VGG models like the VGG16 and VGG19 [8] are well-known CNN frameworks 
presented by the Visual Geometry Group and are known for their simple architecture 
and competence. The VGG models consist of numerous 3 × 3 convolutional layers along 
with the 2 × 2 max-pooling layers arranged in a sequence to make the models with either 
depth of 16 or 19. Both networks take the image with the input size of 224 × 224 and 
use the 3 × 3 filters in all convolution layers with a stride rate of 1. While max-pooling 
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functions use the filter size of 2 × 2 with a stride rate of Moreover all layers use the 
ReLU method as an activation function which is explained in Eq. 1.

Here, F(y) is the output which is mapped to zero when the value of y is less than zero, 
otherwise it is mapped to y . The visual demonstration of both VGG16 and VGG19 is 
given in Figs. 3 and 4 respectively.

3.2.2  ResNet50

ResNet50 [42] is a renowned DL approach using skip connections with identity shortcut 
links that miss several layers for acquiring better classification results. Commonly, the con-
ventional CNN approaches utilize the information from all proceeding layers to enhance 
the object classification performance. However, such network architectures are suffering 
from the issue of gradient vanishing during the training procedure [40]. To tackle the prob-
lems of such deep networks, the ResNet model presents the idea of employing skip links 
for deep model structures that skip the few layers and form the base of residual blocks 
(RBs). The main building block of the ResNet50 model is the RB and a visual demonstra-
tion is given in Fig. 5.The RB comprises frequent convolution layers that use the ReLU 

(1)F(y) = max(0, y)

Fig. 2  Visual depiction of transfer learning

Fig. 3  Visual demonstration of VGG-16 architecture
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activation method. Additionally, the ResNet50 model consists of the batch normalization 
layer together with the shortcut links. For all RBs, the stacked layers perform residual map-
ping by employing shortcut connections that implement identity mapping (i). The acquired 
values are combined with the resultant method of the stacked layers. The final result from 
the RB is expressed as:

Here, i shows the input, F demonstrates the residual method whereas Y  is explaining the 
output attained from the residual method.

3.2.3  XceptionNet

Most of the CNN-based models use the concept of increasing the number of convolutional 
layers to enhance the classification performance. However, such deep network architectures 
cause to increase in the economic burden and result in model over-fitting problems. To 

(2)Y = F(i) + i

Fig. 4  Visual demonstration of VGG-19 architecture

Fig. 5  The structural representa-
tion of RB
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overcome the challenges of such models lightweight techniques are presented. One such 
model is the XceptionNet [14] which is presented to enhance the evaluation results both in 
terms of sample classification and computational time complexity. In this model, the depth-
wise independent convolution layers are presented in place of the inception units which 
employ the point-wise convolutional layers. A set of convolution layers that are depth-wise 
independent from each other are used on all input samples. The point-wise convolutional 
layer (filter size of 1 × 1) maps the result of channels via a depth-wise convolution into the 
different channel spaces. A visual description of XceptionNet is given in Fig. 6.

3.2.4  GoogleNet

The GoogleNet model [6] is presented by Google organization in 2014 and is an extended 
form of the Inception model. The GoogleNet framework comprises a total of 22 convolu-
tion layers. This model contains fewer model parameters and can learn a more nomina-
tive set of frame features as this approach is solid and holds the entire frame at once. The 
main strength of this model is that it uses several Inception units, which permit it to select 
among convolutional filters of several sizes within each block. The Inception module holds 
these units on top of each other and introduced the max-pooling layers with the size of 2 to 
minimize the feature dimension sizes. A visual description of GoogleNet is given in Fig. 7.

Fig. 6  Visual depiction of XceptionNet
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3.2.5  Dense‑Swish‑Net121

The above-mentioned CNN frameworks are not proficient to fully capture the detailed 
characteristics of a visual sample as these approaches use the ReLU activation approach 
which maps all the negative input values to zero during the phase of keypoints compu-
tation. Such architectures result in the loss of important details from an examined sam-
ple. To overcome such issues, and to incorporate an effective and reliable feature compu-
tation strategy for deepfakes detection, we have introduced a novel framework called the 
Dense-Swish-Net121 approach. We have modified the existing DenseNet-121 framework 
by introducing a more competent activation approach called the Swish activation method 
as an alternative to the ReLU method after all convolutional 2-D layers in the network 
description of the model. The swish activation approach represents the non-monotonic and 
more smooth behavior with unrestricted above and bounded beneath in the learning curve. 
Such aspects of the swish approach allow the Dense-Swish-Net121 to upgrade its learning 
capability and enhance the recognition power of the model by prohibiting the model over-
learning issues. This activation technique is less complex by nature, and studies reveal that 
it exhibits promising results as compared to the ReLU function in accomplishing numerous 
object categorization tasks [25]. The fundamental cause for this upgraded performance of 
the swish method over the ReLU approach is that the ReLU activation approach does not 
allow the propagation of negative scores through the framework during keypoints compu-
tation step which results in the elimination of important visual characteristics of the exam-
ined samples. To overwhelm the problem of the conventional DenseNet-121 approach, we 
have employed the swish technique which permits the flow of a few negative computed 
scores inside the model and results in extracting a more dense and reliable set of sample 
features at the CNN level.

The Dense-Swish-Net121 approach comprises a total of four dense blocks with 121 lay-
ers. In each dense block, all block layers are strongly connected to each other, and sam-
ple characteristics are calculated from the previous layers as propagated to coming lay-
ers [4]. This method promotes reemployments  of visual  characteristics and strengthens 
the data flow throughout the model’s structure, making it feasible to incorporate complex 

Fig. 7  Description of GoogleNet network
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video transformations for the effective recognition of visual modifications. The structural 
details of the proposed model are provided in Table 1.

The Dense-Swish-Net121 incorporates numerous Convolutional Layer (CnL), Dense 
Block (DnB), and Transition Layer (TsL). The DnB acts as the major element of Dense-
Swish-Net121 as mentioned in Fig.  8. The z0 indicates the input layer incorporating f0 
keypoints maps. The Hn(.) represents a mutual method performing 3 jobs which are Batch 
Normalization (BN), a Swish activation method, and a 3 × 3 Conv kernel. Each Hn(.) 
function generates f keypoints maps, forwarded to zn coming layers. As in Dense-Swish-
Net121, all coming layers are receiving the visual characteristics calculated from the pre-
vious layers which resulted in high feature dimensional space. To tackle this, the TsL are 
introduced among all DnBs to minimize the keypoints space. For this reason, the Dense-
Swish-Net121 comprehends a BN and 1 × 1 CvL accompanied by an average pooling layer, 
as elaborated in Fig. 8.

3.3  Temporal analysis using Bi‑LSTM

After taking a sequence of deep features from the suspected frames of an input video, the 
main aim of the Bi-LSTM model is to classify the sequence as being original or manipu-
lated by deploying a 2-node probability-based network. The major intuition to select the 
Bi-LSTM approach for temporal sequence analysis as compared to the other approach like 
optical flow field and 3D-CNN is due to its ability to better investigate the behavior of 
videos with time. As the optical flow contains only short-term motion information, adding 
it does not enable CNNs to learn long-term motion transitions, while 3D-CNNs compute 
richer information from a suspected sample, however, these are well suited to 3D image 
analysis. Comparatively, the Bi-LSTM approach better represents the characteristics of 
the quality features in time series, and for video forensic analysis, it is mandatory to learn 
the difference in the visual appearance of the subjects that appeared in the video sample, 

Table 1  The architecture of 
Dense-Swish-Net121

Layer Operator Stride

Convolutional Layer 7 × 7 conv   2
Pooling 3 × 3 avg_pool   2
DnB1

(

1×1 conv

3×3 conv

)

× 6   1

TL1 Convolutional Layer 1 × 1 conv  
Pooling Layer 2 × 2 avg_pool

DnB2
(

1×1 conv

3×3 conv

)

× 12   1

TL2 Convolutional Layer 1 × 1 conv  
Pooling Layer 2 × 2 avg_pool  
DnB3

(

1×1 conv

3×3 conv

)

× 24   1

TL3 Convolutional Layer 1 × 1 conv  
Pooling Layer 2 × 2 avg_pool  
DnB4

(

1×1conv

3×3conv

)

× 16
1

Classification Layer 7 × 7 avg_pool

 FC layer
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therefore, we nominated the Bi-LSTM approach for video temporal sequence analysis [9, 
23, 24]. The main challenge for the Bi-LSTM model is to work in such an iterative man-
ner that it can reliably process a sequence. To accurately handle this situation, we have 
employed the 1024-wide Bi-LSTM model with a drop-out layer of 0.5 to correctly attain 
what we require. Then, 512 fully-connected layers are introduced followed by the soft-
max layer of size two to calculate the likelihood of a frame sequence being original or 
deepfakes.

4  Results

In this section, we have discussed the evaluation metrics used to assess the classification 
performance of the proposed method. Moreover, a detailed description of the used dataset 
is also discussed. We have presented a detailed experimentation explanation to show the 
robustness of the proposed approach.

4.1  Evaluation metrics

To assess the deepfakes detection performance of the proposed approach, we have 
employed several standard metrics namely precision  (Pr), recall  (Re), accuracy  (Ac), and F1 
score. The mathematical explanation of employed metrics is explained in Eqs. 1 to Eq. 4 
respectively.

Fig. 8  The visual demonstration of Dense-Swish-Net121 with a Dense Block and b Transition Block
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Here, t′ denotes the true positives (deepfakes videos) � and shows the true negatives 
(real videos). While, r′ demonstrates the false positives (negative real), and η shows false 
negatives (negative deepfakes) respectively.

4.2  Dataset

In the introduced approach, we have employed two challenging databases to check the clas-
sification results of all employed models. First, we have utilized a challenging deepfakes 
database demonstrated in [1] and called the world leaders (WLDR) dataset. The employed 
database consists of both pristine and deepfakes visual samples of five subjects i.e., Barack 
Obama, Hillary Clinton, Bernie Sanders, Donald Trump, and Elizabeth Warren. The video 
samples of all subjects are of varying lengths from 10 s and 2.5 min. Furthermore, the vid-
eos are saved at 30 fps using an mp4-format at a relatively high quality of 20. The WLDR 
dataset was developed by taking video samples from YouTube in which all samples must 
meet the following requirements: the person of interest must face cameras, and talk dur-
ing the entire video session. Moreover, it is ensured that the video capturing device is kept 
stationery and all samples must have a minimum length of 10 s. Further, we have employed 
another challenging dataset to check the performance of all employed models called the 
deepfakes detection challenge (DFDC) dataset consists of 1131 real and 4119 manipulated 
videos of different subjects. The deepfakes samples of the DFDC dataset are generated 
with 2 unknown methods. This data sample is online available and can be acquired from 
the Kaggle site [22].

4.3  Implementation details

The network is executed in Matlab 2021 version and runs on Nvidia GTX1070 GPU-based 
system. The dataset is divided randomly into 70/10/20 parts to produce three separate sets 
namely the training, validation, and test sets respectively. We have used an equal number 
of real and fake samples from all subjects to maintain the class balance. We have further 
performed the following settings to execute the deepfakes detection task:

i) Subtracting channel means from each channel.
ii) For the VGG16, VGG19, ResNet50, GooglNet, DenseNet121, and Dense-Swish-Net121 

we have resized the frames to 224-by-224 dimensions, while for the XceptionNet, the 
video frames are set to the dimension of 299-by-299 as per model requirements.

(3)Pr =
t�

t� + r�

(4)Re =
t�

t� + η

(5)Ac =
t� + �

t� + � + r� + η

(6)F1 =
2 × Pr × Re

Pr + Re
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iii) We have trained the model for 50 epochs and the learning rate is set to 0.0001.

For the presented approach, we have shown the visual representation of the optimal 
loss graph in Fig. 9. It is quite evident from Fig. 9 that the proposed solution attained 
an optimal value of 0.00021 at the epoch number of 50, which is showing the effective 
learning of our approach. Furthermore, we have attained the highest validation accu-
racy of 98.02% as shown in Fig. 10.

4.4  Results and discussion

In this section, we have performed the evaluation of the proposed model by using sev-
eral experiments to show its robustness to deepfakes detection on both datasets. Ini-
tially, we performed the comparisons of all employed models via two types of experi-
ments. First, we have compared the C-LSRM performance on the entire dataset. After 
this, we have further demonstrated the results of the proposed approach in terms of 
both class-wise and subject-wise results to show the in-depth evaluation of the pre-
sented technique. Then we have taken some latest approaches to evaluate the highest-
performed C-LSTM algorithm against them. The details can be found in subsequent 
sections.

Fig. 9  Visual depiction of loss graph

Fig. 10  Training graph representation
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4.4.1  Evaluation of pre‑trained and Dense‑Swish‑Net121‑based Bi‑LSTM models

In this section, we have discussed the obtained deepfakes classification results on both 
datasets to show the robustness of the proposed approach. We have evaluated the pro-
posed C-LSTM model with several CNN-based approaches namely the VGG16, VGG19, 
ResNet50, XceptionNet, GoogleNet, DenseNet-121, and Dense-Swish-Net121. Several 
videos from the employed datasets are used to check the deepfakes detection performance 
of C-LSTM with mentioned CNN frameworks. We have used the standard evaluation met-
rics used in the field of video forensic analysis.

First, we have discussed the results attained for the WLDR database, and obtained 
results are shown in Fig. 11. The deepfakes detection performance in terms of accuracy 
evaluation metric for all CNN-based approaches for the C-LSTM framework are exhibited 
in Fig. 11a. It is quite evident from Fig. 11a that we have attained the best accuracy for 
the Dense-Swish-Net121-based Bi-LSTM approach with a value of 98.72%, while the sec-
ond-highest classification accuracy value is shown by the DenseNet121-based Bi-LSTM 
approach. Moreover, the VGG16-based LSTM approach shows the lowest accuracy value 
of 90.02%.

In the field of multimedia forensics, the cost of misclassifying the forged content as 
real is much larger than the misclassification of the original sample as deepfakes. As 
mostly such content is used for legal claims investigation where a little mistake in clas-
sification can cause adverse damage to the victim. Hence, the main aim of the deepfakes 
recognition model is to reduce the rates of false negatives. To evaluate the model for 
this, we have calculated the recall rate of the C-LSTM approach for all CNN models, 

Fig. 11  Evaluation of the pre-trained and Dens-Swish-Net121-based Bi-LSTM models on the WLDR data-
set
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and obtained results are shown in Fig. 11b. The Dense-Swish-Net121-based Bi-LSTM 
approach shows the less false negative rates and attains the highest value of recall evalu-
ation metric stated as 98.63%. While the lowest recall value is exhibited by the VGG16-
based Bi-LSTM approach with a value of 89.37%.

Another main objective of deepfakes detection approaches is to minimize the false 
positive rate as well which ultimately causes to reduce the chances of misclassification 
of original content as deepfakes. For this reason, we have evaluated the C-LSTM model 
for all used CNN frameworks by computing their precision, and the acquired results are 
shown in Fig. 11c. In the case of precision evaluation metric, again the Dense-Swish-
Net121-based Bi-LSTM approach shows the highest value of 98.68%, while the sec-
ond better result is demonstrated by the DenseNet121-based Bi-LSTM approach with 
the value of 97.75%. The VgGG16 and VGG19-based LSTM models exhibit the occur-
rence of more false positives values and attain precision values of 90.07%, and 90.98% 
respectively.

To further assess the deepfakes detection performance of the proposed approach, we 
have computed the F1-score as it better elaborates the recognition power of the model. 
The higher a model shows the F1 score, the higher its recognition ability. The obtained F1 
score for all employed CNN models with the Bi-LSTM approach is shown in Fig. 11d. The 
largest and lowest F1 scores are attained by the Dense-Swish-Net121-based Bi-LSTM and 
VGG16-based BiLSTM approaches with the values of 98.72%, and 89.72% respectively.

Next, we measured the performance of all models with the Bi-LSM approach for the 
DFDC dataset, and obtained values for all performance metrics are given in Table 2. For 
all measures, all employed DL frameworks perform effectively in recognizing the visual 
manipulations which are indicating the robustness of such spatiotemporal frameworks for 
locating the signs of alterations introduced in videos to spread false information. More in-
depth analysis, we can see from the values given in Table 2 that the new proposed approach 
named the Dense-Swish-Net121 along with the Bi-LSTM framework shows the highest 
results for all performance metrics. The Dense-Swish-Net121 approach with the Bi-LSTM 
framework has attained an accuracy of 98.11%, with precision, recall, and F1 values of 
97.98%, 97.97%, and 97.97% respectively that is clearly signifying its effectiveness for 
deepfakes detection. The DenseNet121 and GoogleNet models also perform better with 
the Bi-LSTM technique and attained accuracy values of 98.11%, and 97.91%. Further, the 
VGG16-based Bi-LSTM approach shows the least performance results with accuracy, pre-
cision, recall, and F1 of 89.64%, 88.12%, 87.74%, and 87.93%.

Table 2  Performance comparison of all DL models with the Bi-LSTM approach over the DFDC dataset

Models DFDC

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

VGG16 + Bi-LSTM 89.64 88.12 87.74 87.93
VGG-19 + Bi-LSTM 90.03 87.99 86.82 87.40
ResNet50 + Bi-LSTM 97.88 96.08 96.66 96.37
XceptionNet + Bi-LSTM 97.91 96.61 96.59 96.60
GoogleNet + Bi-LSTM 97.99 96.97 95.85 96.41
DenseNet121 + Bi-LSTM 98.11 97.98 97.97 97.97
Dense-Swish-Net121 + Bi-LSTM 99.31 99.24 98.35 98.79
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Moreover, we have compared the CNN models in terms of architecture, and the com-
parison is shown in Table 3. It is quite clear from Table 3 that the VGG19 model has the 
highest number of model parameters 138 million. Whereas, GoogleNet, DenseNet121, 
and Dense-Swish-Net121 frameworks have the lowest model parameters at 7 million only. 
Therefore, based on the results obtained by all CNN models with the Bi-LSTM approach 
(Fig.  11), and the model description demonstrated in Table 3, we can conclude that the 
Dense-Swish-Net121-based Bi-LSTM approach is more robust to deepfakes detection of 
both in terms of model complexity and classification results. The distinguishing character-
istic of the Dense-Swish-Net121-based Bi-LSTM that allows it to attain the highest classi-
fication results is the inclusion of the swish activation method which enables the approach 
to learn a more competent set of visual characteristics under varying sample capturing con-
ditions and better recognize the alterations of videos.

Moreover, we have presented the heatmaps with the help of Grad-Cam [38] correspond-
ing to the last layer of all pre-trained models and proposed Dense-Swish-Net121 to visual-
ize the inner working of all frameworks. The red color in Fig. 12 is signifying the potential 

Table 3  Architectural 
comparison of employed CNN 
models

Model Layers Param-
eters (Mil-
lion)

VGG16 16 138
VGG19 19 144
ResNet50 50 25.6
XceptionNet 71 22.9
GoogleNet 22 7
DenseNet121 121 7.2
Dense-Swish-Net121 121 7.2

Fig. 12  Visual representation of heatmaps where a presents sample, b shows heatmaps for VGG-16, c for 
VGG-19, d for ResNet50, e for XceptionNet, f for GoogleNet, g for DenseNet121, and h for Dense-Swish-
Net121
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areas where such manipulations are introduced. From Fig. 12, it is quite evident that among 
all approaches, the Dense-Swish-Net121 is more focused on the altered regions of visual 
samples where such modifications are introduced in the human faces and clearly prove the 
robustness of our approach. So, based on the visual results, we can say that the major cause 
for the improved classification results of the Dense-Swish-Net121-based Bi-LSTM is due 
to its effective keypoints extraction capability which enhances its recognition power to dis-
criminate the real and fake samples.

4.4.2  Class‑wise evaluation

Next, in this section, we have reported the class-wise performance of all employed DL 
approaches with the Bi-LSTM technique for both the WLDR and DFDC datasets to further 
provide a detailed comparison of all approaches.

Initially, the results of the C-LSTM approach are indicated for the WLDR dataset by 
performing two types of experiments. Initially, we evaluated the class-wise manipula-
tion detection results of the C-LSTM model with all employed CNN-based approaches 
namely the VGG16, VGG19, ResNet50, XceptionNet, GoogleNet, DenseNet121, and 
Dense-Swish-Net121. To show the class-wise evaluation performance for all CNN-
based Bi-LSTM models, we have selected the accuracy metric as it is a standard metric 
employed in the area of the image classification field and the obtained results are shown 
in Table 4. It is quite evident that all employed CNN models with the Bi-LSTM approach 
are proficient to detect both real and fake data. The highest results are reported by the 

Table 4  Class-wise comparative 
analysis of proposed approaches 
over the WLDR dataset

Model Real (Accuracy 
%)

Fake 
(Accuracy 
%)

VGG16 + Bi-LSTM 91.04 89.01
VGG19 + Bi-LSTM 92.66 90.61
ResNet50 + Bi-LSTM 92.24 91.89
XceptionNet + Bi-LSTM 94.86 93.89
GoogleNet + Bi-LSTM 96.6 96.47
DenseNet121 + Bi-LSTM 97.34 96.74
Dense-Swish-Net121 + Bi-LSTM 98.97 98.47

Table 5  Subject-wise 
comparative analysis of proposed 
approaches

Model BO HC BS DT EW

AUC 
VGG16 + Bi-LSTM 0.94 0.90 0.91 0.89 0.88
VGG19 + Bi-LSTM 0.92 0.93 0.91 0.92 0.9
ResNet50 + Bi-LSTM 0.93 0.92 0.93 0.91 0.91
XceptionNet + Bi-LSTM 0.95 0.94 0.94 0.96 0.98
GoogleNet + Bi-LSTM 0.99 0.98 0.97 0.97 0.99
DenseNet121 + Bi-LSTM 0.99 0.99 0.97 0.98 0.99
Dense-Swish-Net121 + Bi-LSTM 1 1 1 0.99 0.99
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Dense-Swish-Net121-based Bi-LSTM approach for both the original and manipulated 
classes. Whereas, the rest of the models have also exhibited comparative results.

We have performed another analysis on the WLDR dataset, in which we have com-
pared the performance of all CNN-based Bi-LSTM models in terms of all five subjects 
mentioned in the dataset description. For this reason, we have taken the AUC metric and 
obtained results are shown in Table  5. The results demonstrated in Table  5 are clearly 
depicting that the C-LSTM approach is capable of differentiating several subjects effec-
tively which is showing the recognition power of our approach. Moreover, the results are 
clearly showing that the Dense-Swish-Net121-based Bi-LSTM technique has a better recall 
ability to differentiate and recognize the various subject with high proficiency. The second 
highest results are depicted by the DenseNet121-based Bi-LSTM model. While the other 
approaches also show better results.

Next, we have discussed the classification results for all networks over the DFDC data-
set to check the recognition ability of all C-LSTM modules in differentiating the real and 
fake videos. The attained accuracy values for all models are given in Table 6 which clearly 
depicts the accurateness of all frameworks. In a precise way, the highest class-wise results 
are shown by the Dense-Swish-Dense121 approach along with the Bi-LSTM framework 
to categorize both real and fake videos with scores of 99.38%, and 99.24%. Whereas, the 
Bi-LSTM-oriented DenseNet-121 and GoogleNet approaches also perform effectively, 
where the initial model reports accuracy scores of 98.21%, and 98.01% for the original and 
altered videos samples which are 98.18%, and 98.80% for the later approach and clearly 
indicating the efficacy of spatiotemporal-based sequence analysis for deepfakes detection. 
The VGG16-based Bi-LSTM framework shows the lowest classification results with accu-
racy scores of 90.23%, and 89.05%.

4.4.3  Comparison with state‑of‑the‑art

The results reported in the above sections are clearly showing that the Dense-Swish-
Net121-based Bi-LSTM approach has shown the highest manipulation detection results in 
comparison to all other employed models. Therefore, to compare the deepfakes detection 
results with other latest approaches, we have chosen the C-LSTM model with the Dense-
Swish-Net121-based network. We have evaluated the results of our approach with several 
new techniques for both datasets named the WLDR and DFDC datasets.

Initially, we have compared the results of our approach attained with the Dense-Swish-
Net121-based Bi-LSTM approach for new studies in terms of the WLDR dataset. For this 

Table 6  Class-wise comparative 
analysis of proposed approaches 
over the DFDC dataset

Model Real (Accuracy 
%)

Fake 
(Accuracy 
%)

VGG16 + Bi-LSTM 90.23 89.05
VGG19 + Bi-LSTM 90.58 89.48
ResNet50 + Bi-LSTM 98.00 97.76
XceptionNet + Bi-LSTM 98.05 97.78
GoogleNet + Bi-LSTM 98.18 97.8
DenseNet121 + Bi-LSTM 98.21 98.01
Dense-Swish-Net121 + Bi-LSTM 99.38 99.24
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reason, we have performed two types of performance evaluations, where initially, we com-
pared the results of our method in terms of all subjects, and then, we compared our results 
with new techniques in terms of entire dataset results. For the subject-wise evaluation of 
the proposed approach, we have selected the study given in [1, 32] and obtained results 
are shown in Table 7. We have selected two evaluation metrics namely AUC and TPR for 
this reason. It is quite evident from the results shown in Table 7 that our work is more 
accurate in terms of both the AUC and TPR as compared to the works presented in [1, 32]. 
More descriptively, the works in [1, 32] shows an average AUC value of 0.974 which is 
0.996 for our case, hence presenting an average performance gain of 2.2%. Similarly, for 
the TPR metric, the approach in [1, 32] shows an average value of 0.904 which is 0.978 for 
our work. Therefore, for the TPR evaluation measure, we have acquired an average perfor-
mance gain of 7.4% which is clearly demonstrating the effectiveness of our work.

To further assess the deepfakes detection performance of our work over the WLDR data-
set, we have compared the obtained results against other well-known DL-based approaches 
namely ResNet [28] and InceptionNet approach, the acquired comparison is exhibited in 
Fig. 13. Figure 13 is clearly showing that our technique has outperformed the other meth-
ods. More clearly, the comparative methods show an average TPR value of 88.45% which 
is 97.80% for our method. Hence, we have provided an average performance gain of 9.35%. 

Table 7  Subject-wise 
comparative analysis of 
Dense-Swish-Dense121-based 
Bi-LSTM model with the latest 
approaches over the WLDR 
dataset

Subject AUC TPR

[1] [32] Proposed [1] [32] Proposed

BO 0.99 0.98 1 0.97 0.99 0.99
HC 0.95 1 1 0.89 0.94 0.96
BS 0.96 1 1 0.92 0.93 0.98
DT 0.90 0.99 0.99 0.74 0.80 0.98
EW 0.98 0.99 0.99 0.92 0.94 0.98

Fig. 13  Comparision of Dense-Swish-Dense121-based Bi-LSTM model with state-of-the-art approaches 
over the WLDR dataset
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The major reason for the better performance of the proposed solution is because of the 
better face recognition ability of the Dense-Swish-Net121-based Bi-LSTM model which 
assists in effectively detecting real and manipulated faces.

Next, the performance results attained with the Dense-Swish-Net121-based Bi-LSTM 
approach are compared with several approaches [13, 15, 16, 31, 36, 43] for the DFDC data 
sample, and obtained comparison is given in Table 8. The scores in Table 8 are proving 
that we have attained the highest results as compared to the techniques given in [13, 15, 16, 
36, 43] for all reported measures. Ranjan et al. [36] used a DL approach for videos-based 
deepfakes classification and reported an accuracy score of 84.70%, while the work in [13] 
utilized both the pixel and temporal information of video samples and reported an accuracy 
number of 97.94%. While the method [43] has secured the AUC of 92.44%, whereas, the 
approaches in [15, 16, 31] are showing accuracy numbers of 95.42%, 94.40%, and 99.26% 
respectively, In comparison, we have exhibited the highest accuracy and AUC values of 
99.31%, and 99.39%. In a more brief manner, the comparative approaches have shown 
average accuracy and AUC scores of 94.34%, and 97.22%, while, we have shown average 
values for accuracy, and AUC measures with numbers of 99.31%, and 99.39% and reported 
performance gains of 4.97%, and 2.17%.

The performance analysis performed on both challenging datasets in comparison to 
other latest approaches has clearly proven the proficiency of our approach in better recog-
nizing the manipulated visual samples. The leading attribute of the Dense-Swish-Net121 
approach to propagate the negative scores in the process of features computation allows 
it to extract a more dense and nominative group of visual characteristics which causes 
to enhance the classification results of our approach in comparison to other comparative 
techniques.

5  Conclusion

In this work, we have presented a DL-based approach namely C-LSTM to detect the real 
or deepfakes samples from input videos. More descriptively, we have employed both the 
spatial and temporal information of the visual samples to locate the forensic changes. We 
have used several CNN models namely VGG16, VGG19, ResNet50, XceptionNet, Goog-
leNet, and DenseNet121 to compute the frame-level information. Further, a novel DL-
based feature extractor named the Dense-Swish-Net121 is also presented. While for the 
temporal sequence analysis, the Bi-LSTM approach is used. For performance evaluation, 
we have utilized two challenging datasets named the WLDR, and DFDC. We have gained 

Table 8  A comparative analysis 
of the Dense-Swish-Dense121-
based Bi-LSTM model with the 
latest approaches over the DFDC 
dataset

Method Accuracy (%) AUC (%)

[36] 84.70 -
[13] 97.94 -
[43] - 92.44
[15] 95.42 98.93
[16] 94.40 98.20
[31] 99.26 99.31
Proposed 99.31 99.39
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the highest accuracy for the Dense-Swish-Net121-based Bi-LSTM approach with values of 
98.72%, and 99.31% over the WLDR, and DFDC databases respectively. In the future, we 
plan to extend the approach to other challenging datasets and test other CNN models with 
the Bi-LSTM approach to further improve the deepfakes detection performance.
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