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A B S T R A C T   

Coffee is regarded as the highest consumed drink around the globe and has accounted as a major source of 
income in the regions where it is cultivated. To meet the coffee marketplace’s requirements around the globe, 
cultivators must boost and analyze its cultivation and quality. Several factors like environmental changes and 
plant diseases are the major hindrance to increasing the yield of coffee. The development in the field of computer 
vision has facilitated the earliest diagnostic of diseased plant samples, however, the incidence of various image 
distortions i.e., color, light, size, orientation changes, and similarity in the healthy and diseased portions of 
examined samples are the major challenges in the effective recognition of various coffee plant leaf infections. The 
proposed work is focused to overwhelm the mentioned limitations by proposing a novel and effective DL model 
called the CoffeeNet. Explicitly, an improved CenterNet approach is proposed by introducing spatial-channel 
attention strategy-based ResNet-50 model for the computation of deep and disease-specific sample characteris
tics which are then classified by the 1-step detector of the CenterNet framework. We investigated the localization 
and cataloging outcomes of the suggested method on the Arabica coffee leaf repository which contains the 
images captured in the more realistic and complicated environmental constraints. The CoffeeNet model acquires 
a classification accuracy number of 98.54%, along with an mAP of 0.97 that is presenting the usefulness of our 
technique in localizing and categorizing various sorts of coffee plant leaf disorders.   

1. Introduction 

The production of coffee, the most extensively traded commodity in 
the tropics, is produced by up to 25 million household farmers, who 
together account for up to 80% of global production. According to stats 
reported till 2021, Brazil was the highest exporter country of coffee, 
where Indonesia and India were in second, and third numbers, respec
tively (Aufar, Abdillah, & Romadoni, 2023). Moreover, studies indicate 
that Sumatra has produced the finest quality coffee yield (“ICO, Monthly 

coffee market report,”). The improvement of the agriculture industry 
including coffee production can be very beneficial for a nation’s econ
omy (Chang & Huang, 2021). Many other countries around the globe 
have put extraordinary effort into the area of agriculture to boost both 
the quantity and quality of various plants including coffee. It is 
impressive how Saudi Arabia’s agriculture has developed recently, 
especially in Jazan, where huge deserts have been turned into farmland 
and numerous plants are being grown. Specifically, Jazan is famous for 
cultivating coffee plants that harvest the finest Khoulani coffee, one of 
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the highest-quality coffees in the globe. Besides, the majority of coffee is 
produced in poor countries, where it is an important means of income 
and contributes significantly to worldwide export revenues. Coffee is 
among the highest consumed beverages in the globe and one of the top 
frequently traded goods [3], with a market that is constantly expanding 
due to increasing consumption in developing countries and its signifi
cant impact on specialized and modern products in established nations. 
However, the world’s rapidly changing environment is bringing in a 
number of coffee plant diseases that are harming its production quality 
and quantity and, eventually, lowering the revenue. The agricultural 
industry’s reliance on people to physically examine the spots to identify 
such diseases presents a greater obstacle to coffee plant disease diagnosis 
as this process highly relies on the availability of domain experts which 
slowdowns the detection procedure (Jepkoech, Mugo, Kenduiywo, & 
Too, 2021). Moreover, such manual examination of plants is vulnerable 
to errors. Therefore, there exists a demand to develop an effective and 
reliable automated approach capable of locating and differentiating 
among various infections of coffee plant leaves. 

The Fourth Industrial Revolution (FIR), the turning point of modern 
technological advancement, is the period in which physical and digital 
mechanisms can be interconnected via using advanced methods like 
deep learning (DL), machine learning (ML), artificial intelligence (AI), 
and big data (Hoosain, Paul, & Ramakrishna, 2020). Additionally, the 
FIR can boost production and expansion in a number of ways. Farming 
represents one of the industries undergoing scientific expansion and 
advancement, where innovations like AI, DL, and ML have an advan
tageous effect on agrarian expansion and manufacturing capacity 
(Dhanaraju, Chenniappan, Ramalingam, Pazhanivelan, & Kaliaperumal, 
2022). An emerging technique called “smart agriculture” combines 
cutting-edge methods for raising crop output while simultaneously 
boosting inputs to farming in an ecologically sound way. Today, it is 
possible to cut expenditures and mistakes in order to attain environ
mentally and financially equitable farming (Hitimana & Gwun, 2014). 
Recent years have seen a number of initiatives to employ AI to aid 
growers in precisely identifying illnesses and pests that harm the 
farming industry, as well as to assess the nature of signs of various plant 
infections. By imitating human thinking operations, AI aims to give 
computers an understanding resembling that of humans. It presents new 
information while allowing for investigation, acquiring knowledge, and 
resolving issues. AI can revolutionize agribusiness by enabling pro
ducers to generate more effective outcomes with less effort while also 
offering a wide range of extra advantages (Albahli & Nawaz, 2022). 
ML applications have significantly increased in AI research during the 
past few years, especially the latest generation of models termed DL. 
Particularly, DL approaches have outperformed conventional ML tech
nologies in several fields (Nawaz, Javed, & Irtaza, 2022; Nawaz, et al., 
2023) due to their ability to effectively capture the structur
al information of a sample. In the previous few years, a variety of ap
proaches have been employed to detect illnesses in plants, and DL 
techniques have been regarded as highly effective. Due to the promising 
performance of various DL methods in agriculture, several in
vestigations have been carried out, proving that image-based evaluation 
is trustworthy for recognizing various types of plant disorders (Albattah, 
Nawaz, Javed, Masood, & Albahli, 2022). Many researchers have uti
lized various DL models like convolutional neural networks (CNN) for 
diagnosing various types of plant infections including coffee plant leaf 
abnormalities. CNNs are among the most optimistic DL-based strategies 
for autonomously discerning characteristics and effective model tuning, 
that employ numerous convolutional layers to encode various learning 
keypoints depending on suspected samples. 

Vast volumes of pictorial samples are required for network modeling 
in DL, which is a downside (Saleem, et al., 2022). For instance, if there 
are fewer visuals in the databases, CNN’s classification results suffer. 
Usually, transfer learning is employed to overcome this crucial limita
tion by offering a number of benefits, among them is that it doesn’t need 
a lot of samples for network tuning because prior acquired knowledge 

from related activities can be applied to the present one. Although, 
significant works have been introduced for the timely recognition of 
coffee plant leaves, however, there is much room for improvement. Like 
many works employed the concept of applying object detection methods 
for locating and differentiating several types of plant leaf infections, 
however, little attention is paid to the employment of such approaches 
for recognizing the diseases of coffee plants. Further, historic ap
proaches are not much competent to perform well for unseen cases and 
lack generalization ability. Moreover, approaches lack to diagnose 
numerous coffee plant infections or to identify multiple occurrences of 
an abnormality on a single image (Paul, et al., 2020). Further, the 
extensive resemblance in the structural information of various illnesses 
complicates the classification task. The digital samples are subject to 
various types of distortions as well like containing light variations, 
clutter, blurring, color, and angle alterations which also introduces a 
challenge to the effective determination of the diseased plant leaf por
tions. There also exists a huge variation in the size of both coffee plant 
leaves and associated infected portions which is also a major challenge 
to this field. 

Agricultural losses can be kept under control by quickly identifying 
the coffee plant leaf virus reason and allowing the fast choice of the 
appropriate preventative measure. It also stands for the first and most 
important step in avoiding such infections. Our goal is to design an 
approach that can properly locate and categorize coffee plant leaf ill
nesses. An earlier diagnosis of such infections can lead to more curative 
measures and longer survival times. Therefore, an effort is put into the 
introduced work to overwhelm the above-mentioned problems of coffee 
plant leaf abnormalities recognition by suggesting an improved DL 
method called CoffeeNet. We have proposed an improved CenterNet 
approach by introducing an enhanced keypoints estimation ResNet-50 
framework with an attention mechanism to extract the reliable and 
precise features of various coffee plant leaf disorders. The redesigned 
feature extractor base enhances the model’s capacity to collect signifi
cant sample information in the context of complex backdrops and un
predictable environmental constraints. The proposed approach 
effectively operates in real-world conditions while concurrently per
forming identification and categorization utilizing an end-to-end 
training strategy. The nominative findings of the proposed technique 
are as follows: 

1) We introduced a novel model called CoffeeNet with enhanced key
points extraction CNN backbone for reliable identification and 
classification of coffee plant leaf syndromes.  

2) A spatial and channel attention strategy is proposed in the feature 
engineering stage that computes inter-channel associations and 
pixels incorporations to nominate exact diseased regions of exam
ined images with complex environment settings. 

3) Improved determination of both diseased areas and associated clas
ses of coffee plant leaves because of the better recognition capability 
of the proposed work.  

4) A computationally efficient approach is suggested to recognize the 
various coffee plant leaf disorders as CenterNet utilized one step 
object recognition strategy.  

5) We accomplished a vast assessment of the introduced method on a 
complex and publicly accessible data repository to show the 
robustness of our model. The attained model performance in the 
aspect of both numeric scores and pictorial representation ensures 
the improved results of our work even in complicated background 
settings like noise, blur attacks, and in alterations of lighting, and 
other sample distortions. 

Our remaining manuscript follows the following section arrange
ments: Section 2 comprises related work, while the proposed approach is 
discussed in Section 3. Section 4 contains the result discussion, and the 
conclusion is explained in Section 5. 
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2. Related work 

Various diseases have been affecting the yield of coffee production 
for years, therefore, the research community has put a huge effort to 
propose computerized solutions for the appropriate diagnostic of such 
abnormalities from the plants. The automated systems are based on the 
latest ML, and DL approaches to perform the identification of different 
coffee plant leaf infections. We investigate the existing approaches in 
this section to provide an overview of already performed work in this 
domain. One such work was proposed in (Alexandre Pereira Marcos, 
Natan Luis Silva Rodovalho, & André Ricardo Backes, 2019b) to locate 
the healthy and rust-effected coffee leaf images. The genetic procedure 
was applied to calculate the pertinent group of sample attributes 
focusing on the structure and colored aspects of the infected regions of 
samples to execute the categorization job. The approach (Marcos, et al., 
2019b) is proficient to recognize the affected samples of varying colored 
attributes, however, classification accuracy needs more enhancement. 
Gutte et al. (Gutte & Gitte, 2016) employed 3 steps to recognize the 
monocot and dicot infections of coffee plant leaves. Firstly, the k-mean 
method was used to perform the segmentation of examined sample from 
which next the structural, chrominance, and shape information was 
computed to be passed as the feature vector to the next phase. Last, the 
classification was performed with the support vector machine (SVM) 
predictor. The work (Gutte & Gitte, 2016) performs well in classifying 
the diseased samples, however, not proficient in handling the distorted 
image samples. Esgarioa et al. (Esgario, Krohling, & Ventura, 2020) 
discussed a DL framework to measure the level of plant leaf infections 
caused by different diseases. The work (Esgario, et al., 2020) used a 
residual model to extract the dense information of examined images and 
apply the classification step. The method (Esgario, et al., 2020) improves 
the recognition ability to recognize different coffee plant leaf diseases, 
however, degradation in classification performance has been witnessed 
for images with multiple signs of abnormalities. An approach was dis
cussed in [4] to classify the healthy and rust-affected samples. In (Marin, 
et al., 2021), structural and colored information of suspected images was 
computed to form the feature vector. Next, three different variants of the 
decision tree (DT) were used to distribute the input images into 2 
groups. This work (Marin, et al., 2021) reports the best classification 
results for the Logistic DT, however, the model lacks to execute effec
tively for unseen cases. 

Dogan et al. (Dogan, et al., 2023) proposed a hybrid technique to 
recognize the various classes of coffee bean abnormalities. First, a DL 
framework called GoogLeNet was applied to extract the dense set of 
sample attributes. Next, the extreme learning machine (ELM) was 
designated to achieve the categorization of samples. The work (Dogan, 
et al., 2023) also applied various swarm intelligence-based optimization 
approaches with the ELM predictor to boost the performance of model 
behavior. This work (Dogan, et al., 2023) shows better results, however, 
severe classification performance degradation has been reported for 
infected samples from different classes with a huge resemblance in the 
structure of the diseased portion. Another similar work was discussed in 
(Ruttanadech, et al., 2023) where various ML classifiers like SVM, KNN, 
linear discriminant analysis (LDA), DT, quadratic discriminant analysis 
(QDA), and Naive Bayes (NB) were designated for the categorization of 
different coffee bean abnormalities. The approach (Ruttanadech, et al., 
2023) reports the best results for the DT method, however, the technique 
lacks to diagnose the early signs of coffee bean infections. Hasan et al. 
(Hasan, Yusuf, Rahim, & Alzubaidi, 2022) also employed a DL strategy 
to recognize the normal and infected leaf images of coffee plants. A 
sample augmentation step was used to enhance the sample size. Next, 
the approach (Hasan, et al., 2022) utilized the graph-cut technique to 
perform the segmentation of examined images, on which the color ex
amination was utilized to differentiate the normal and diseased samples. 
This work (Hasan, et al., 2022) is also evaluated for the apple plant leaf 
diseases, however, the approach lacks to tackle the overlapped infection 
in a given image to tackle the presence of several infections in a single 

sample. A work was elaborated in (Yamashita & Leite, 2023) that uti
lized the MobileNet model to extract the sample information and 
perform the classification to locate various types of coffee plant leaf 
disorders. An augmentation phase was also used to increase the size of 
the data sample. This approach performs well in recognizing different 
coffee plant leaf infections; however, classification results degrade for 
unseen samples. Further, the work (Yamashita & Leite, 2023) also needs 
huge training data and is unable to tackle the presence of different 
diseased signs in a single sample. Lisboa et al. (Lisboa, Lima, & Queiroz, 
2021) designed a CNN model to distribute the samples into two groups 
either normal or rust-affected images. After performing a preprocessing 
phase on the input images on which the designed CNN method was used 
to do the categorization job. The approach (Lisboa, et al., 2021) requires 
further enhancement in the classification results. Novtahaning et al. 
(Novtahaning, Shah, & Kang, 2022) presented a framework where 
numerous DL approaches were used to perform the classification of 
coffee plant leaf diseases. Further, an ensemble approach was also 
designed merging the features of three differing DL approaches to 
extract a dense set of sample characteristics. The work (Novtahaning, 
et al., 2022) reports effective results for ensemble technique, however, 
with an increased computing burden. A technique was elaborated in 
(Alexandre Pereira Marcos, Natan Luis Silva Rodovalho, & André R 
Backes, 2019a) that introduced a CNN framework to detect rust disease 
from the plant leaves of coffee. The work also cross-verified the attained 
results from domain experts. This approach (Marcos, et al., 2019a) 
shows better results in recognizing the coffee plant leaf infections, 
however, unable to better tackle the distorted images. Dann et al. 
(Javierto, Martin, & Villaverde, 2021) utilized a DL model called the 
YOLO-V3 framework to locate and categorize the infected regions from 
the examined images of the coffee plant. The work (Javierto, et al., 
2021) is effective for coffee plant leaf illness diagnosis, however, unable 
to locate the small size infected regions. The work (Ventura, ESGARIO, 
& KROHLING, 2020) also employed different pertained DL approaches 
to categorizing the normal and infected samples of coffee plants. This 
work attained the best results for the residual approach; however, 
classification results need further improvements. Chang et al. (Chang & 
Huang, 2021) proposed an improved DL framework to distribute the 
coffee bean samples into numerous categories. First, a preprocessing 
step was applied to enhance the graphic representation of instances. 
Next, an improved AlexNet approach was suggested for dense sample 
characteristics computation and to execute the cataloging job. The 
method (Chang & Huang, 2021) shows improved generalization ability, 
however, classification performance needs evaluation for distorted 
samples as well. 

Hsia et al. (Hsia, Lee, & Lai, 2022) also provided a DL approach for 
classifying coffee bean diseases. For this, firstly, a preprocessing stage 
was performed for improving the pictorial appearance of examined 
samples. Next, the processed samples were passed through an image 
resizing phase to meet the model requirements. Then, a dense CNN was 
proposed that employed the resized samples as input and accomplished 
the classification task by extracting the essential sample characteristics 
and assigning them to related groups. The approach (Hsia, et al., 2022) 
performs well for coffee bean infection recognition, however, unable to 
locate the early diseased signs effectively. Paulos et al. (Paulos & Wol
deyohannis, 2022) designed a CNN approach to categorize the infections 
from the leaves images of coffee plants. After accomplishing a pre
processing phase, the designed CNN model was used to capture the 
detailed characteristics of examined samples and distribute them into 
relevant groups. The work (Paulos & Woldeyohannis, 2022) presents an 
efficient approach for coffee plant lead disorders categorization, how
ever, the model needs evaluation on a complicated dataset. Ayikpa et al. 
(Ayikpa, Mamadou, Gouton, & Adou, 2022) elaborated an approach in 
which an improved CNN model is designed to recognize the input coffee 
plant leaf samples as being healthy or rust-affected. First, a pre
processing stage was applied to enrich the representation of examined 
samples. Next, the designed CNN approach was evaluated on the data 
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sample and compared with different ML classifiers. The results (Ayikpa, 
et al., 2022) state that the suggested CNN model improves the classifi
cation results, however, the model needs evaluation on a large and 
diverse data sample to better explain its recall ability. Chowdhury et al. 
(Chowdhury & Burhan, 2021) also performed an analysis to recognize 
the infections of coffee plants. For this reason, the GIST feature 
descriptor was utilized to get the visual characteristics of samples. The 
computed features were used with numerous ML predictors like SVM, 
NB, and KNN methods to distribute the images in the relevant classes. 
This work (Chowdhury & Burhan, 2021) shows improved performance 
with the SVM predictor, however, the work requires the assessment of a 
complicated database. Based on the extensive analysis of already per
formed work on the diagnosis of coffee plant leaves it can be seen that 
even though huge effort has been put in by the scientist for the early 
recognition of various sample disorders, however, still there is a 
requirement for a better strategy. Existing approaches lack to perform 
well for distorted samples or are unable to locate multiple categories of 
coffee plant leaves infections robustly. Moreover, the presence of al
terations in the color, size, mass, and alignment of infected regions also 
introduces challenges that need further investigation. 

3. Proposed methodology: CoffeeNet 

Our presented method called CoffeeNet consists of the following two 
major phases namely features extraction and recognition. Fig. 1 explains 
the complete flow and functionality of our proposed model. In the first 
phase, we prepared our dataset according to the model’s requirements 
and perform annotation operation which is necessary for model training. 
The annotation process is essential for model training in which we have 
highlighted the affected regions in the form of a bounding box. The other 
phase comprises the improved deep learning model CenterNet with 
ResNet-50 having a Convolutional Block Attention module. From Fig. 1, 
it can be seen that the ResNet-50 with an attention unit is applied for 
deep feature calculation from the input images. As input, we passed the 
images and bounding box information to the network for model 
learning. After downsampling, the heatmap head identifies potential 
object center points for each class, the dimension head predicts the di
mensions of the bounding box around each detected object, and the 
offset head refines the position of the bounding box based on the object’s 
center. By combining the predictions from all three heads and per
forming post-processing steps like non-maximum suppression, the Cof
feeNet is trained to recognize the affected regions of coffee plants. After 
the test phase, we employed evaluation metrics for the calculation of 
results. 

3.1. Data preparation and annotations 

In the initial step, we performed mandatory steps for dataset prep
aration and generated annotations from input samples with the help of 
available ground truths. For better training, it is essential to accurately 
identify the location and class of specified regions in the images. To 
generate the annotations, we used the freely available tool LabelImg 
[27], which gives us the details in the form of XML files along with each 
image. 

3.2. CenterNet 

For precise recognition of diseases or regions, it is essential to 
effectively calculate the deep features from images. However, feature 
extraction is still a challenging task due to some reasons: techniques may 
outcome in over-fitting by using the larger feature sets, and ii) the model 
can miss learning in the case of a smaller feature set. 

It is essential to use an automatic keypoints engineering method 
rather than hand-crafted feature calculation to produce a discriminative 
and robust set of features. Due to the significant variations in the size, 
texture, color, and location of lesions, models using hand-crafted fea
tures are not reliable for appropriately diagnosing plant diseases. We 
used CoffeeNet, a DL-based framework, to address the issues because it 
can instantly calculate the useful features. The CenterNet convolution 
filters analyze the structure of the suspicious image to calculate its 
important points. The CenterNet [26] approach is preferred for identi
fying Coffee leaf diseases over RCNN, Fast-RCNN [28], Faster-RCNN 
[15], and [29] because these approaches classify objects using a 2-step 
object locator. In these techniques, to find the region of interest (RoIs) 
that may surround an object, the region Proposal Network (RPN) is 
employed that is originally used in [29]. The unconnected recognition 
heads of the technique then identify the output label of the detected 
region and construct a bounding box using the combined key points 
familiar to each RoI. These techniques are therefore complex in the 
aspect of computing burden and unreliable for real-time recognition 
demands. By providing both characteristics and position of RoI in an 
investigated sample concurrently, the CenterNet more effectively over
comes the shortcomings of RCNN, Fast, and Faster-RCNN. As a result, 
CenterNet is computationally efficient and more generally applicable to 
real-time object detection due to its one-stage object detection 
capability. 

The following factors make it difficult to pinpoint the important 
features of interest for the classification of eye diseases: i) extreme 
brightness and shade changes, predicting the precise place of the 
diseased areas from the input image. ii) the class that each object be
longs to. By using its heat maps and switching from a 2-phase to a 1- 

Fig. 1. Flow diagram of Proposed Technique.  
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phase object locator approach, the CenterNet technique can effectively 
identify and categorize afflicted regions of various classes. The Heat- 
map unit uses the center of key points and shows improved recall re
sults, which aids to lower the proposed framework’s feature computa
tion cost. 

3.3. Custom CenterNet: CoffeeNet 

ResNet-101 and VGG16 were used in the traditional CenterNet [30] 
to compute image keypoints for sample examination. The VGG16 
approach suffers from the model overfitting problem, while the ResNet- 
101 approach makes use of skip-links and identity methods to prevent 
non-linear transformations that, when utilizing the identity function, 
result in a straight gradient flow from the back to the front layers and 
cause huge computing burden. We have presented a customized Cen
terNet model that uses a lightweight model called the ResNet-50 
together with the Convolutional Block Attention mechanism (CBAM) 
for keypoints selection from the Coffee plant leaves to address the 
shortcomings of the current framework. Since ResNet-50 contains fewer 
hyperparameters than backbone architectures, it is computationally 
more efficient. In order to recognize and classify various Coffee leaf 
ailments, the CoffeeNet system employs four processes called feature 
extractor, RPN, ROI pooling, and classification. 

3.4. Features extraction 

The centerNet approach utilizes a backbone network to calculate 
meaningful and semantic descriptions from input samples. These fea
tures play a crucial role in localizing RoI and performing cataloging in 
the detection head. The classification performance strongly relies on the 
quality of the learned keypoints (Nawaz, Javed, et al., 2022). Tradi
tionally, CNN models, initially developed for image classification tasks, 
have been commonly used as the base model for CenterNet. Previous 
studies have combined the baseline CenterNet with different base 
models, i.e. VGG16 and ResNet101 (Masood, et al., 2023). However, 
research has shown that CNN models tend to prioritize irrelevant fea
tures rather than key features when faced with complex backgrounds 
during training. To address this issue and improve the learning of target 
representations from the input, attention mechanisms have recently 
been integrated into CNN networks (Alqahtani, et al., 2023). In the case 
of coffee disease spot feature representation learning, an attention unit 
has been incorporated into the base CNN to emphasize important fea
tures. This integration enhances the CenterNet model’s ability to cate
gorize Coffee leaf infections even in the existence of complex 
environment settings and practical complications. The attention mech
anism employed in this context is based on the CBAM (Nazir, et al., 
2022). CBAM adaptively refines features by understanding inter- 
channel linkages and spatial location properties. It achieves this by 
consecutively conjecturing attention maps alongside the channel and 
spatial alignment from the transitional keypoints map. The CBAM block 
then specifically multiplies the input keypoints map and the attention 
maps to enhance the process of feature representation learning. 

The proposed backbone architecture consists of a CBAM attention 
block and a ResNet-50 CNN which is a well-known model that uses re
sidual linkages between convolutional layers and identity shortcut 
connections to achieve high accuracy. While the Dense models, every 
layer typically passes its computed value to the layer below it, enabling 
it to create more enlightening keypoints. The gradient vanishing issue, 
however, makes the convergence outcomes worse as the network depth 
rises. Multiple residual blocks in the ResNet architecture enable the 
training process to skip some convolution layers with no degrading ac
curacy. Convolution layer results are coupled with the processed value 
of cutoff links to reduce training degradation, which is typically 
observed in truly deep networks, and get around the restriction of 
adding more layers. The ResNet model’s overall design can be thought of 
as a collection of numerous CNNs, where several networks are connected 

by short-cut links and the best outcomes are obtained by averaging the 
output of all nets. The thorough layer-by-layer setup of the ResNet-50 
with CBAM configuration, which is the backbone of the CoffeeNet 
network, is shown in Table 1. It has 48 convolutional layers broken up 
into 5 stages, each of which has numerous residual blocks stacked on top 
of one another. 3 × 3 convolutional layers, a normalization layer, ReLU 
activation, and a skip connection make up the residual block. The re
sidual block’s stacked layers provide fast connections that carry out 
identity mapping in order to complete residual mapping. 

In order to designate the crucial elements from a given image in 
advance and utilize them as the input for the following network, we 
added the attention block to the model. It helps the model focus on virus- 
infected areas while reducing irrelevant data and improving diagnosis 
accuracy in situations like varying shade, brightness, and intensity that 
occur in the real world. To achieve adaptive keypoints improvement, the 
CBAM unit multiplies the computed keypoints map with the calculated 
attention map after sequentially inferring the attention map along with 
the spatial and channel dimensions using the intermediate keypoints 
map. To cut down on the computing burden, the channel for the 
substituted convolution layers is set to 64. 

3.5. Heatmap head 

In CenterNet, the Heatmap head is designated for estimating features 
heatmaps that show the existence and position of the object in an image. 
This head is a key component of the CenterNet model and is utilized for 
object detection and localization of objects. 

The heatmap head takes the features acquired from the feature 
extractor model as input and processes them to construct a set of feature 
heatmaps. The outcome is feature maps set with the same dimensions 
but decreased channels. Each channel in feature maps signifies the 
heatmap for a specific feature. In training time, the head is optimized 
through the loss function which can be binary cross-entropy loss. This 
loss is calculated for every pixel in this heatmap and then accumulated 
from the whole heatmap loss. These heatmaps serve as a crucial 
component for subsequent steps in the CenterNet framework, such as 
object localization and dimension estimation. 

3.6. Dimension head 

In CenterNet, the dimension head is responsible for calculating the 
size of the objects identified in an image. Particularly, it predicts the 
width and height of each object based on the locations of features. The 
head is implemented as a convolutional layer or a series of convolutional 
layers. These layers take the features extracted from the features heat
maps as input and produce predictions for the object dimensions. 

The output of this head is a set of feature maps with spatial 

Table 1 
ResNet-50 network.  

Block/layer Original Modified 

Conv1 7 × 7, 64 [3 × 3, 64] × 3  
3 × 3 max pool 7 × 7 Attention 

Conv2 
⎡

⎣
1 × 1,64
3 × 3,64
1 × 1, 256

⎤

⎦ × 3 

⎡

⎣
1 × 1,64
3 × 3,64
1 × 1, 256

⎤

⎦ × 3 

Conv3 
⎡

⎣
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤

⎦ × 4 

⎡

⎣
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤

⎦ × 4 

Conv4 
⎡

⎣
1 × 1,256
3 × 3,256
1 × 1, 1024

⎤

⎦ × 6 

⎡

⎣
1 × 1,256
3 × 3,256
1 × 1, 1024

⎤

⎦ × 6 

Conv5 
⎡

⎣
1 × 1,512
3 × 3,512
1 × 1, 2048

⎤

⎦ × 3 

⎡

⎣
1 × 1,512
3 × 3,512
1 × 1, 2048

⎤

⎦ × 3 

Conv5 
⎡

⎣
1 × 1,512
3 × 3,512
1 × 1, 2048

⎤

⎦ × 3 

⎡

⎣
1 × 1,512
3 × 3,512
1 × 1, 2048

⎤

⎦ × 3  
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dimensions that relate to the original input image. Each spatial location 
in these feature maps represents the location of a specific feature, and 
the dimension head forecasts the breadth and altitude of the object 
centered at that feature. The dimension head is usually designed to 
output two channels per spatial location, representing the width and 
height predictions. These channels are passed through an activation 
function to produce positive values for the predicted dimensions. During 
training, the dimension head is improved using a loss function, i.e., the 
smooth L1 loss, to determine the discrepancy in the projected di
mensions and the original dimensions of the objects. The loss is calcu
lated for each spatial location and then aggregated to form the overall 
dimension loss. 

3.7. Offset head 

The offset head is responsible for calculating the offsets between the 
features and the centers of the objects from an image. The offset head 
plays an essential role in localizing the objects precisely. The head is 
implemented as a convolutional layer, these layers take the features 
extracted from the backbone network as input and process them to 
produce a set of offset estimates. The result is a set of feature maps with 
the same spatial dimensions as the input image however decreased in 
channels. During training, the offset head is enhanced through a loss 
function, such as the smooth L1 loss. The loss is computed for each 
spatial location and then aggregated to form the overall offset loss. 

3.8. Multitask loss 

CenterNet is a technique that aims to accurately localize objects and 
classify them in an end-to-end manner. It accomplishes this by utilizing 
multi-task loss functions during the training. The multi-job loss method, 
denoted as L, is applied to each sampled head in the model. 

Lcenternet = Lmap + λdimLdim + λoff Loff (1) 

The multi-task loss function L combines the losses from these other 
heads to establish a complete loss that gets both classification and 
localization information. By optimizing these tasks, the model can learn 
to accurately localize objects and predict their corresponding classes. 

The specific form of the multi-task loss function L can vary depending 
on the implementation and the specific objectives of the method. 
Different components such as classification loss, regression loss, and 
other auxiliary losses may be combined in various ways to form the final 
loss function. 

The Lmap denotes Heatmap loss and is estimated with Equation (2): 

Lmap =
− 1
n

∑

i.j,c,

⎧
⎪⎪⎨

⎪⎪⎩

(
1 − ôi,j,c

)αlog(ôi,j,c)
if ôi,j,c = 1

otherwise
(
1 − Oi,j,c

)β( ôi,j,c
)α

log(1 − ôi,j,c)

(2) 

Here, n = total keypoints Oi,j,c = center of real candidate key point, 
whereas ̂oi,j,c is the projected. Also, α and β are the hyperparameters with 
the values of 2 and 4, respectively. Equation (3) shows the dimension 
head loss: 

Ldim =
1
n
∑n

k=1
|b̂k − bk| (3) 

Here, b̂k is the projected bbox directs, while bk is showing the 
genuine values of bboxes and n specifies the total images. Lastly, 
Equation (4) shows the Offset-head loss: 

Loff =
1
n

∑

p

⃒
⃒
⃒F̂ p̂ −

(
p/R − p̂

)⃒
⃒
⃒ (4) 

Here, F̂ is the estimated offset, p is the real, p̂ is the down-sampled 

key point and R is the output stride. 

3.9. Bounding box estimation 

The bounding box (bbox) estimation refers to the process of pre
dicting the coordinates or parameters that define the rectangular 
bounding box around an object in an image. The bounding box repre
sents the spatial extent of the object and is commonly used for object 
detection and localization tasks. In the center point representation, the 
bounding box is typically parameterized by the center coordinates, 
width, and height. These parameters are predicted by a model based on 
the given input image. 

During the inference stage of CenterNet, the heatmaps are processed 
independently for each class. To identify the center points of a specific 
category (c), a criterion is applied to the heatmap responses. If a 
response score is more than or identical to its eight-linked neighbors, it is 
considered a potential peak. This helps locate local maxima, which 
represent potential object center points. Once criteria are applied, the 
top 100 peak candidates are chosen based on their resultant values. 

Q̂ =
{(

x̂j, ŷj
) }N

j=1 (5) 

We have used the coordinates (x̂j, ŷj) to denote the positions of each 

detected point, while Q̂ indicates a set of located center points. These 
features are associated with a confidence value Ô_(x,y,c), which in
dicates their recognition point. The bounding box is processed based on 
the keypoint values, using techniques such as regression. The confidence 
score of each keypoint provides the overall value of the detection, 
supporting a more robust and accurate localization. This approach al
lows us to influence the information provided by keypoints, rather than 
relying on a single point, increasing the performance of our method. The 
estimation of the bounding box is performed by using Equation (6). 
(

x̂j + ∂̂xj − ŵj
/

2, ŷj + ∂̂yj − ĥj
/

2, x̂j + ∂̂xj + ŵj
/

2, ŷj + ∂̂yj + ĥj
/

2
)

(6) 

In this work, we have used the offset prediction (∂̂xj, ∂̂yj) denoted by 
ôx̂, ŷ to represent the predicted offsets. These offsets establish the change 
required to improve the location of the keypoints. Furthermore, we 
employed the size prediction (ŵj , ĥj) denoted as d̂x̂, ŷ. to represent the 
predicted width and height of the bounding box related to each key
point. To generate the final bbox, we directly apply the estimated key
points deprived of using IoU-based non-maxima suppression (NMS). 
This means that instead of using a traditional method like NMS to 
eliminate redundant bounding boxes, we directly use the estimated 
features to determine the final bounding box. 

3.10. Detection procedure 

A DL-based system called CenterNet is unconstrained by strategies 
like selective search and proposal development. To determine the center 
points of the Coffee leaf affected part, offsets to the × and y directs, and 
the magnitudes of the bboxes together with the related output label, the 
CenterNet is fed the examined image and the bbox as input to the tuned 
framework. In our work, we use epochs with a 50 value and a learning 
rate of 0.001 as the hyper-parameters for model tuning. 

4. Results 

This section comprises the explanation of the utilized data repository 
along with the evaluation measures. A large experimental analysis 
comprising various investigations is also discussed to prove the efficacy 
of the presented solution for locating and cataloging the various types of 
coffee plant diseases. 
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4.1. Evaluation measures 

To numerically elaborate the performance results of the presented 
work, various standard metrics are chosen like intersection over union 
(IoU), mean Average Precision (mAP), accuracy, precision, F1-score, 
and recall. The model categorization accuracy is computed by using 
Equation (7). 

Accuracy =
TP + TN

TP + FP + TN + FN
(7) 

Equation (8) exhibits the description of the mAP score, where the AP 
specifies the average precision computed for all groups, and t is denoting 
the processed sample. While T designates the total samples. 

mAP :=
∑T

i=1
AP(ti)/T (8) 

Fig. 2 denotes the graphic form of precision, recall, and IOU, 
respectively. 

4.2. Dataset 

For network training and evaluation, we have selected a standard 
database called the Arabica coffee leaf dataset (Jepkoech, et al., 2021) 
comprises a total of 18,985 images from five classes of coffee plant 
leaves named Phoma, Cescospora, Rust, Healthy, and Miner. This 
dataset is further distributed as JMuBEN and JMuBEN2, where the 
JMuBEN part comprises samples of three types namely Phoma, Cesco
spora, and Rust with 8337, 7682, and 8337 images of mentioned cate
gories. While JMuBEN2 comprises samples from healthy, and Minor 
classes with 18,985 and 16,979 instances. All images of the employed 
dataset are captured under real-world and complex settings which 
makes it a challenging dataset in this field. Samples contain several 
image distortions like color, size, brightness, and orientation variations. 
An example of the samples from the employed dataset is shown in Fig. 3. 

4.3. Model assessment 

To prove the efficacy of the CoffeeNet approach, we have executed 
numerous experimental evaluations. Initially, we tested the presented 
work to check its localization power and discuss the class-wise catego
rization ability of the CoffeeNet approach. Here, we also investigated the 
internal feature computation ability of the approach in the subsequent 
sections. 

4.4. Model detection results 

To propose an effective strategy for recognizing the coffee plant 
leaves abnormalities, it must be proficient in exactly locating the 
diseased region and the class associated with the detected area. For this 
reason, an experiment is presented here to show the localization capa
bility of the framework by showing the achieved results on the test 
samples as provided in Fig. 4. The results in Fig. 4 are clearly explaining 
that the CoffeeNet framework is competent in exactly locating the 

diseased portion under the complex sample background setting with 
different artifacts like color, brightness, size, and position variations. To 
quantitatively discuss the results, we computed the mAP, and IOU scores 
for the CoffeeNet framework as these are the standard result computa
tion measures utilized in the field of object detection and classification. 
Clearly, we attained the mAP, and IOU numbers of 0.970, and 0.973 
which is clearly explaining the robustness of our technique. 

4.5. Class-wise performance 

After discussing the localization ability of our approach, next we 
performed an experiment to elaborate on the group-wise performance 
scores of our model. To do this, numerous standard performance 
measuring parameters like precision, recall, accuracy, confusion matrix, 
F1-score, and error rates for all categories are discussed in this part of the 
paper to thoroughly show the classification behavior of the CoffeeNet 
model. First, precision, and recall are calculated for all five classes of 
coffee plant diseases, and attained values are given in Fig. 5. The scores 
are clearly indicating the robustness of our technique for performing the 
categorization of coffee plant infections. Descriptively, we obtained 
precision scores of 97.21%, 96.94%, 96.97%, 97.38%, and 97% for 
Phoma, Cescospora, Rust, Healthy, and Miner classes while in the aspect 
of recall, the CoffeeNet approach shows numbers of 96.69%, 96.58%, 
96.53%, 97.13%, and 96.47% for above-mentioned groups respectively. 

Next, the group-wise results of the CoffeeNet model are calculated in 
the aspect of F1-score and error values for all 5 types of coffee plant 
diseases. The key cause to computing this evaluation metric is that the 
complete classification results of an approach cannot be fully captured 
by the precision, and recall values as some techniques can acquire better 
precision, with degraded recall values and inversely. So, the F1 metric is 
computed as it is empowered to take the contribution of both precision 
and recall and explain the classification results more appropriately. The 
attained F1-scores, and error values for all five sets of coffee plant leaves 
are given in Figs. 6 and 7. The scores in Figs. 6 and 7 clearly display that 
our methodology executes effectively in the aspect of the F1-score and 
shows small error rates for all five groups of coffee plant leaves disor
ders. Descriptively, we attained the highest error rate of 3.25% for the 
Minor class which can be due to the reason that this class contains very 
small sign of abnormalities and show huge color resemblance with the 
healthy regions of plants. Moreover, we acquired the lowest error value 
of 2.75% that is depicting the competency of our model to recognize the 
healthy class samples. Moreover, the CoffeeNet approach shows 
96.95%, 96.76%, 96.75%, 97.25%, and 96.73% for Phoma, Cescospora, 
Rust, Healthy, and Miner classes, respectively. 

Accuracy is another standard metric for reporting the categorization 
outcomes of a methodology. Here, we computed group-wise classifica
tion accuracy for all five types of coffee plant leaf abnormalities, and 
calculated values are given in Fig. 8. The classification scores are 
exhibited with the help of box graphs as these plots are effective to 
explain the results in more detail by elaborating the highest, minimum, 
and average values for all groups. The numbers in Fig. 8 are indicating 
that the CoffeeNet model is robust to perform well for all categories of 
coffee plant infections. Clearly, we obtained accuracy scores of 98.52%, 
98.68%, 98.69%, 98.81%, and 98% for Phoma, Cescospora, Rust, 

Fig. 2. Graphic depiction of (a) Precision, (b) Recall, and (c) IOU measures.  
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Healthy, and Miner coffee plant disease groups. Further, the plot shows 
that for all groups the classification score remains from a minimum 
value of 98% to the highest score of 98.81%, thus a maximum variation 
of 0.81% has been observed among all five classes of coffee plant dis
eases. This also suggests an average error rate of 1.46% in the aspect of 
the classification score for all categories of the coffee plant leaf 
abnormalities. 

Further, the confusion matrix attained for the CoffeeNet model is 
reported as this graph is effective to explain the classification capability 
of a technique by determining the scores in perspective of true positive 
rates. The confusion matrix for the presented approach is given in Fig. 9 
that is proving the efficiency of our approach to recall all classes of 
coffee plant leaves due to its high recognition power. Descriptively, the 
CoffeeNet model has attained an average TPR of 96.68%. Additionally, 
the scores in Fig. 9 are indicating that the maximum error value is stated 
among the healthy and minor groups with an average value of 1.50% 
which is due to the reason that the miner class shows very few signs of 
leaf abnormalities and has a significant similarity with the healthy re
gions, however, still, both groups are well recognized by the proposed 
approach. 

So, after performing numerous group-wise assessments of the Cof
feeNet approach in this phase of the manuscript, we can conclude that 
our method is skilled and well-suited to recognize and categorize the 
numerous kinds of coffee plant leaf disorders. The fundamental factor 
for this improved classification behavior of the CoffeeNet model is its 
empowerment to capture the more related and nominative group of 
visual characteristics of the investigated samples. Further, the inclusion 
of spatial and channel attention strategy in the feature extractor assists 
the CoffeeNet approach to highlight the diseased-specific areas of the 
input images which as a result boosts the recognition power of the 
proposed approach. 

4.6. Visualization and overall performance 

In this phase of the paper, we have provided an evaluation of our 
approach by investigating its internal behavior and reporting the clas
sification results entirely. To analyze the internal working of the model, 
we computed the heatmaps by using the Grad-Cam in the final convo
lution layer of the CoffeeNet model which assists to determine whether 

an approach is taking the accurate disease region of a sample to perform 
the recognition task. The attained visual results for samples from the 
employed dataset are reported in Fig. 10 in which the reddish color is 
signifying the area considered by the CoffeeNet approach to accomplish 
the classification task. So, the visual results given in Fig. 10 reveal that 
the CoffeeNet model is taking the right areas of diseased portion to 
execute the distribution of coffee plant leaves into relevant groups. The 
key factor which assists the CoffeeNet approach to attain improved 
explainability behavior is its high recognition power which permits it to 
separate the numerous groups of coffee plant leaves effectively and 
distribute the images into respective types. 

Further, we also explain the overall classification performance of the 
CoffeeNet model by reporting its results on the test images of the 
employed data sample. To do so, we have taken several standard mea
sures like AUC, accuracy, recall, F1-score, Precision, and an error value 
on the test sample, and obtained classification performance values are 
elaborated in Fig. 11. The results in Fig. 11 are proving the better 
classification behavior of the CoffeeNet approach for all performance 
measures. Descriptively, the CoffeeNet approach has reported an accu
racy of 98.54%, along with the F1-score and error values of 96.89%, and 
3.11%. Further, the CoffeeNet model has attained an AUC score of 
98.40%, while for precision metric, a number of 97.10% is attained 
which is 96.68% in the aspect of recall measure. All these visual and 
numeric results are clearly indicating the high classification results of 
our approach which are clearly showing the efficacy of the CoffeeNet 
model in diagnosing and cataloging all five types of coffee plant leaf 
diseases. 

4.7. Comparison with DL models 

In this section, we have provided an investigation to compare the 
recognition performance of the presented model with various DL 
frameworks. To perform this, we used numerous latest DL approaches 
like VGG-16 (Nawaz, et al., 2021), Inception-V3 (Xia, Xu, & Nan, 2017), 
ResNet-152 (Nawaz, Javed, et al., 2022), Xception (Chollet, 2017), 
MobileNet-V2 (Chen, Zhang, Suzauddola, & Zeb, 2021), DenseNet 
(Nawaz, Nazir, et al., 2022), InceptionResNet-V2 (Ferreira, et al., 2018), 
and NASNetMobile (Saxen, et al., 2019). We have provided two types of 
comparison in the subsequent sections where initially, we have 

Fig. 3. Samples from the employed dataset.  
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compared the class-wise result of our approach with the DL approaches, 
while in the next phase, the results are discussed in terms of the entire 
dataset. 

4.8. Class-wise performance comparison with DL models 

Here, the performance of our approach is evaluated with the nomi
nated DL approaches in the aspect of the AUC metric as it is the standard 

Fig. 4. CoffeeNet model localization results.  

Fig. 5. Group-wise precision, and recall results for the CoffeeNet model.  
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measure in the area of image classification. The AUC scores of VGG-16, 
Inception-V3, ResNet-152, Xception, MobileNet-V2, DenseNet, 
InceptionResNet-V2, and NASNetMobile are reported and compared for 
all five classes of coffee plant leaf diseases against the CoffeeNet 
approach as mentioned in (Novtahaning, et al., 2022). The obtained 

Fig. 6. Group-wise F1 for the CoffeeNet approach.  

Fig. 7. Group-wise Error-rates for the CoffeeNet approach.  

Fig. 8. Group-wise accuracy scores attained with the CoffeeNet model.  

Fig. 9. Confusion matrix for the CoffeeNet model.  
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comparison is given in Table 2 which clearly signifies that our work has 
attained the highest AUC scores for all five groups of coffee leaf disor
ders. Clearly, for the Phoma group, the comparison DL approaches have 
shown an average AUC number of 0.946 which is 0.99 for the proposed 
approach. Consequently, for the Phoma group, a performance gain of 
4.37% is stated. Then, for the Cescospora group, the relative techniques 
attained an average AUC score of 0.92, while the CoffeeNet approach 
attained an average AUC score of 0.98 and exhibited a performance gain 
of 6%. Further, in terms of Rust, Healthy classes of coffee plant leaf 

disorders, the comparison DL techniques show average AUC numbers of 
0.898 and 0.896 which is 0.99, and 1 for the proposed work, and pre
sented performance gains of 9.25% and 10.37% for the mentioned 
groups respectively. Finally, for the Miner class, the selected DL ap
proaches have attained an AUC number of 0.856 which is 0.97 for the 
proposed approach. Hence, for the Miner class, the CoffeeNet approach 
has exhibited a performance gain of 11.37% clearly signifying the effi
cacy of our model. The given performance comparison clearly validates 
that the proposed CoffeeNet approach effectively computes the coffee 

Fig. 10. Heatmaps attained with the CoffeeNet model.  

Fig. 11. Overall performance results of the CoffeeNet approach over the employed dataset.  

M. Nawaz et al.                                                                                                                                                                                                                                 



Expert Systems With Applications 237 (2024) 121481

12

plant leaf abnormalities-specific characteristics in the model training 
phase and consequently correctly recalls them from examined images. 
Further, regardless of the similarity in the healthy and infected sections 
of leaves and the complex surrounding environmental conditions, the 
suggested methodology is competent in differentiating all groups of leaf 
infections with a high recall rate. Comparatively, the other DL ap
proaches are not much competent to robustly extract the fine-level at
tributes of the examined samples under such diverse environmental 
constraints and eventually result in performance degradation. This 
comparison proves that the introduction of the ResNet-50 feature 
extractor with added attention strategy boosts the finer-grained disease- 
specific feature extraction power of the CoffeeNet approach by allowing 
the propagation of highly significant sample information at pixel and 
channel levels. 

4.9. Overall performance comparison with DL models 

Next, the classification results of the CoffeeNet model are equated 
with the DL frameworks in terms of the entire data sample. This 
experiment is conducted by comparing the results of our approach with 
the peer models via taking various performance measures like accuracy, 
F1, error rate, recall, and precision, and values are given in Table 3. The 
results in Table 3 are clearly explaining the robustness of our approach 
in comparison to all other DL models as we outperformed the competitor 
models in the aspect of all performance measures and achieved the 
highest classification values. More explicitly, the minimum classifica
tion performance is reported by the MobileNet-V2 approach with ac
curacy, and error rates of 74.60%, and 26.50%. While, the second lowest 
results are acquired by the DenseNet, and NASNetMobile approaches 
with accuracy and error values of 83.80% and 16.70%. The VGG-16 
approach shows comparable results with accuracy and error values of 
94.20%, and 5.90%, however, with an increased computing burden. 
Comparatively, the CoffeeNet technique exhibits the maximum accuracy 
score of 98.54%. Descriptively, for precision metric, the relative tech
niques exhibit an average score of 86.34% which is 97.10% for the 
proposed model and give a performance gain of 10.76%. Then, in the 
aspect of the recall measure, the competitor models attain an average 

number of 85.50%, while the CoffeeNet approach attains a value of 
96.68% and exhibits a performance gain of 11.18%. Next, for the F1- 
score measure, the peer works have reported an average number of 
85.29%, which is 96.89%, and attains a performance gain of 11.60. 
While, for accuracy measure, the selected DL works have shown an 
average score of 85.80%, which is 98.54% for our model and we have 
attained a performance gain of 12.74%. Moreover, the peer works have 
reported an average error rate of 14.71%, which is 3.11% for our 
approach and clearly indicates the efficacy of our model for recognizing 
all types of coffee plant infections. 

The key characteristic of our approach is its improved recall capa
bility which enhances the recognition results of the CoffeeNet approach. 
The inclusion of the attention mechanism-based ResNet-50 approach in 
the proposed work improves the reliable visual characteristics compu
tation capability of our approach which boosts its learning behavior in 
the existence of various sample distortions like noise, clutter, color, size, 
and orientation variations, and assists the approach to acquire infection- 
specific signs in the complicated background settings. Whereas, the 
comparative techniques lack such behavior, and hence the comparison 
provided both in the aspect of classes and on the whole data sample 
proves that the CoffeeNet approach is more reliable in both locating and 
classifying the investigated samples. 

4.10. Comparison with base models 

In this phase, an experiment is performed to analyze the localization 
and classification performance of the proposed CoffeeNet approach in 
contrast to various other object recognition approaches. The test sam
ples from the employed dataset are used to check the performance of all 
approaches in the presence of various sample artifacts like light, color, 
size, and position variations of infected image areas. 

For this reason, two categories of object identification approaches 
are taken which are known as 1-step, and 2-step methods. The main 
distinction in both types of approaches is that the 2-phase object 
detection approaches perform by initially determining the location of 
the area of interest in the examined samples and then the categorization 
job is accomplished. In comparison, the one-phase object recognition 
approaches perform both tasks in a single step. For a fair comparison, we 
have taken both types of approaches that have exhibited effective results 
on the COCO data sample (Lin, et al., 2014) and evaluated the perfor
mance of the Arabica coffee leaf dataset. For the 2-phase approaches, we 
have taken the Fast-RCNN (Girshick, 2015) and Faster-RCNN (Ren, He, 
Girshick, & Sun, 2016) model while for the 1-phase approaches, we have 
taken the You Only Look Once (YOLO)(Redmon & Farhadi, 2018) and 
single shot detector (SSD) (Liu, et al., 2016), and RetinaNet (Lin, Goyal, 
Girshick, He, & Dollár, 2017) models. All these frameworks are trained 
with the following parameters: a batch size of 32, a learning rate with a 
value of 0.001, and a momentum score of 0.9 respectively. The attained 
performance analysis is given in Table 4. 

The mAP, and IOU scores for all techniques are estimated as these 
measures have been heavily investigated in the area of object recogni
tion and marked as standard measures. Further, the test time of all 

Table 2 
Group-wise comparison of the CoffeeNet model with DL frameworks in terms of 
AUC.  

Model Phoma Cescospora Rust Healthy Miner 

VGG-16  0.98  0.97  0.95 0.97  0.95 
Inception-V3  0.93  0.86  0.88 0.74  0.83 
ResNet-152  0.97  0.98  0.97 0.99  0.90 
Xception  0.91  0.95  0.92 0.90  0.86 
MobileNet-V2  0.95  0.94  0.67 0.82  0.81 
DenseNet  0.95  0.90  0.91 0.89  0.83 
InceptionResNet-V2  0.92  0.85  0.98 0.97  0.84 
NASNetMobile  0.96  0.91  0.90 0.89  0.83 
Proposed  0.99  0.98  0.99 1  0.97  

Table 3 
Comparison of the CoffeeNet model with DL approaches on the entire data 
sample.  

Model Precision Recall F1- 
score 

Error- 
rate 

Accuracy 

VGG-16 94.40% 94%  94.10%  5.90%  94.20% 
Inception-V3 83.50% 85.10%  83.50%  16.50%  83.90% 
ResNet-152 94% 93.20%  93.30%  6.70%  93.80% 
Xception 85.50% 85.30%  85.20%  14.80%  85.40% 
MobileNet-V2 76.80% 74.10%  73.50%  26.50%  74.60 t% 
DenseNet 84.70% 83.20%  83.30%  16.70%  83.80% 
InceptionResNet- 

V2 
86.70% 86%  86.10%  13.90%  86.90% 

NASNetMobile 85.10% 83.10%  83.30%  16.70%  83.80% 
Proposed 97.10% 96.68%  96.89%  3.11%  98.54%  

Table 4 
Performance analysis of the CoffeeNet model with other object recognition 
approaches.  

Model Feature extractor mAP IOU Test time (sec/img) 

Two-Stage Models 
Fast-RCNN VGG-16  0.80  0.830  0.30 
Faster-RCNN VGG-16  0.85  0.853  0.28 
Faster-RCNN ResNet-101  0.93  0.938  0.26 
One-Stage Models 
YOLO-V3 DarkNet-53  0.82  0.830  0.26 
SSD ResNet-101  0.81  0.838  0.29 
RetinaNet ResNet-101  0.90  0.901  0.25 
Proposed DenseNet-77  0.97  0.973  0.23  
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approaches is also investigated to examine them from the perspective of 
processing complexity. The scores in Table 4 validated the effectiveness 
of our approach both in the aspect of running time and recognition 
performance. Descriptively, the VGG16-based Fast-RCNN approach has 
shown the lowest classification results with mAP, and IOU scores of 
0.80, and 0.830. This model is also more computationally expensive and 
takes 0.30 s to process a sample. The second minimum identification 
values are reported by the YOLO-V3 model with scores of 0.82, and 
0.830. While in terms of processing time, the SSD approach displays the 
second lowermost performance with a time of 29 s in processing a given 
sample. Comparatively, the proposed CoffeeNet approach performs 
better in the aspect of both coffee plant leaf infections recognition and 
processing time with mAP, IOU values of 0.970, and 0.973 with a sample 
processing time of 0.23 s. The main reason for this better performance of 
the CoffeeNet approach is due to its high recognition ability, compara
tively, the Fast-RCNN approach employed the hand-coded features and 
is unable to tackle the image distortions. Moreover, the ResNet101- 
based Faster-RCNN approach shows better results with mAP, and IOU 
numbers of 0.93, and 0.938, however, with an increased processing time 
of 0.26 s per sample because of its 2-phase object recognition frame
work. Further, the SSD and YOLO approaches are not proficient to 
recognize the infected regions of small sizes and resulting in perfor
mance degradation. Moreover, although the RetinaNet can handle small 
regions, however, the approach is incompetent to draw reliable anchors 
over the acentric keypoints. The proposed CoffeeNet model better 
handle such issues of all approaches by presenting a better feature 
computation network by incorporating the spatial and attention mech
anism which empowers the approach to nominate the more disease- 
specific keypoints which are later effectively localized and categorized 
by the presented network. Moreover, the 1-phase detector of the Cof
feeNet approach also provides a processing advantage as well. So, our 
approach is more effective and proficient than all other comparative 
object recognition approaches. 

4.11. Performance analysis with state-of-the-art 

We accomplished an investigation to analyze the classification per
formance of the CoffeeNet model with various state-of-the-art ap
proaches to compare our results with them. To perform this, we 
executed two types of evaluation where initially, we investigated class- 
wise results and then compared the classification performance on the 
entire dataset. 

The class-wise result comparison with the latest approaches defined 
in (Atila, Uçar, Akyol, & Uçar, 2021; Novtahaning, et al., 2022) in terms 
of AUC metric is given in Table 5, whereas the comparative analysis over 
the entire data sample is provided in Table 6. The comparative inves
tigation in Table 5 and Table 6 is showing that our proposed work is 
more proficient in recalling all groups of coffee plant infections as 
compared to new works. The (Atila, et al., 2021) presents a DL model 
called EfficientNet-B0 which is tuned to classify the abnormalities from 
the coffee plants with an accuracy value of 95%, whereas the method in 
(Novtahaning, et al., 2022) presented an ensembling approach by 
joining three different CNN models for dense features computation 
which are later classified to five groups of coffee plant leaf abnormalities 
and gained an accuracy value of 97.30%. The models in (Atila, et al., 

2021; Novtahaning, et al., 2022) show better classification results, 
however, our model outperforms both techniques in terms of both 
group-wise and entire sample evaluations. The comparative approaches 
deploy more dense networks for keypoints computation and are unable 
to learn a more disease-specific feature vector of examined samples. 
Comparatively, our approach performs reliably due to the more effective 
visual characteristics computation ability which enables it to prohibit 
the model over-fitting issue and better learn the sample information in 
the feature engineering phase. The inclusion of an attention mechanism 
allows the CoffeeNet approach to reliably extract the fine-level infection 
information both along the pixel and channel orientation of samples, 
which eventually permits the framework to correctly identify the area of 
focus in the given image and enhances the overall recognition power of 
the model in the incidence of complex sample background settings. So, 
we can conclude that our model is more reliable to identify and classify 
all five types of coffee plant leaf diseases. 

5. Conclusion 

This research work has presented an effective and improved DL 
model named the CoffeeNet framework to locate and categorize 
different types of coffee plant leaf abnormalities. Descriptively, a 
customized CenterNet framework is introduced by proposing the spatial- 
channel attention strategy-based ResNet50 model as its backbone 
network to extract a denser and disease-specific set of sample keypoints 
vector. The extracted characteristics are then localized and categorized 
by the 1-phase locator of the CenterNet approach. A huge experimental 
analysis accompanying various evaluations has been accomplished on a 
complex data sample called the Arabica coffee leaf to show the efficacy 
of the suggested approach. We have proved through experiments that 
the proposed CoffeeNet approach is more effective than several latest 
approaches and capable of better handling various types of sample 
distortions. We acquired an accuracy value of 98.54%, along with an 
mAP number of 0.97 that is clearly signifying the reliability of our 
approach to diagnosing the various types of coffee plant leaf contami
nations. As a future concern, we are willing to investigate other DL nets 
to further boost the categorization performance. 
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Table 5 
Comparison with new works in terms of AUC.  

Model Phoma Cescospora Rust Healthy Miner 

EfficientNet-B0 (Atila, 
et al., 2021)  

0.96  0.98  0.98 0.99  0.93 

Ensemble Model ( 
Novtahaning, et al., 
2022)  

0.97  0.98  0.98 1  0.92 

Proposed  0.99  0.98  0.99 1  0.97  

Table 6 
The CoffeeNet model comparison with the latest works on the entire data 
sample.  

Model Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

Accuracy 
(%) 

EfficientNet-B0 (Atila, 
et al., 2021)  

95.20  94.80  94.90 95 

Ensemble Model ( 
Novtahaning, et al., 
2022)  

95.70  95.20  95.10 97.30 

Proposed  97.10  96.68  96.89 98.54  
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