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Abstract 

Spoofed speeches are becoming a big threat to society due to advancements in artificial intelligence techniques. 
Therefore, there must be an automated spoofing detector that can be integrated into automatic speaker verifica-
tion (ASV) systems. In this study, we recommend a novel and robust model, named DeepDet, based on deep-layered 
architecture, to categorize speech into two classes: spoofed and bonafide. DeepDet is an improved model based 
on Yet Another Mobile Network (YAMNet) employing a customized MobileNet combined with a bottleneck atten-
tion module (BAM). First, we convert audio into mel-spectrograms that consist of time–frequency representations on 
mel-scale. Second, we trained our deep layered model using the extracted mel-spectrograms on a Logical Access 
(LA) set, including synthesized speeches and voice conversions of the ASVspoof-2019 dataset. In the end, we clas-
sified the audios, utilizing our trained binary classifier. More precisely, we utilized the power of layered architecture 
and guided attention that can discern the spoofed speech from bonafide samples. Our proposed improved model 
employs depth-wise linearly separate convolutions, which makes our model lighter weight than existing techniques. 
Furthermore, we implemented extensive experiments to assess the performance of the suggested model using 
the ASVspoof 2019 corpus. We attained an equal error rate (EER) of 0.042% on Logical Access (LA), whereas 0.43% 
on Physical Access (PA) attacks. Therefore, the performance of the proposed model is significant on the ASVspoof 2019 
dataset and indicates the effectiveness of the DeepDet over existing spoofing detectors. Additionally, our proposed 
model is robust enough that can identify the unseen spoofed audios and classifies the several attacks accurately.

Keywords Deep learning, Spoofing detector, Fake speech detection

1 Introduction
Speech is commonly used as a transmitting medium in 
digital devices such as mobile phones and computers. 
Some other characteristics of speech exist, i.e., rhythm, 
genre, pitch, etc. However, with the advancement of arti-
ficial intelligence and deep learning models [1, 2], it has 
become easy to manipulate the signals and generate fake 

speech to deceive the listener. Moreover, various speech 
synthesis algorithms, i.e., GAN [3], Deepvoice [4], cotton 
[5], and wavelet [6], have gained importance to gener-
ate natural speech just like humans and defeat the auto-
matic speaker verification (ASV) systems. For example, 
false information related to politics based on deep fakes 
became a major threat to the US presidential elections in 
2020 [7]. Furthermore, an incident of loss of USD 243,000 
occurred when an audio-deep fake [8] was employed in 
bank transactions. Therefore, these incidents show the 
vulnerability of the ASV systems that are used widely in 
various security systems.

In the ASVspoof 2019 competition, the dataset has 
two partitions: logical access (LA) and physical access 
(PA) attacks. There exist several methods to synthesize 
speeches, including three main types: replay attack (RA), 
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text-to-speech synthesis (TTS), and voice cloning (VC), 
which are considered in the logical access (LA) set of the 
ASVSpoof2019 dataset, and physical access (PA) attacks 
include recordings that simulate attacks on physical 
access systems. These attacks may involve impersonation, 
replay, or other methods aimed at deceiving the verifica-
tion system respectively. Researchers have proposed dif-
ferent approaches [9–11] for spoofing detection. Some 
algorithms exist based on machine learning techniques to 
discern the audio based on data-driven and knowledge-
focused countermeasures [12–14]. However, in tradi-
tional machine learning algorithms, hand-crafted feature 
extraction is performed, which is a consuming task and 
more complex due to the need for feature engineering 
to select optimal features. Whereas in the deep learning 
model, features are extracted and selected automatically 
and are more flexible.

With the advancement in the domain of Convolutional 
Neural Networks(CNNs), some methods have been pro-
posed based on deep layers, such as Chintha et al., who 
proposed a recurrent CNN structure to detect spoofed 
(fake) audio [15]. Moreover, a lightweight convolutional 
neural network, namely LCNN, has been employed by 
[16], utilizing the softmax loss function to detect anti-
spoofed attacks. Furthermore, various combinations of 
detecting systems have been tested along with ResNet 
[17] and explored with other classifiers as well for bet-
ter performance [18, 19]. In [20], a model was employed 
based on an end-to-end ensemble method to learn the 
fusions of various detection systems. Even though the 
performance of these proposed algorithms was satisfac-
tory, there exists an issue of generalization for unseen 
attacks on the models. Therefore, it is necessary to intro-
duce an efficient and robust system that can carry out the 
detection of fake audio from any source.

The model proposed in this study focuses on the detec-
tion of synthesized speech rather than real due to two 
major concerns: (1) defining a comprehensive model for 
detecting all possible variations of genuine audio can 
be extremely complex and may lead to false positives or 
false negatives, and (2) adversaries can employ various 
techniques to generate fake audio that mimics genuine 
recordings, making it challenging to rely solely on detect-
ing genuine audio. Therefore, focusing on fake audio 
detection allows system designers to address potential 
threats and vulnerabilities introduced by malicious actors 
attempting to deceive the system.

This study proposes a novel and robust framework to 
detect spoofed voices, such as LA and PA attacks, based 
on a deep learning model, namely DeepDet. Our pro-
posed model is mainly divided into three phases. First, 
audio features have been extracted in the form of images 
known as mel-spectrograms. Second, a deep layered 

network has been trained using the ASVspoof-2019 
dataset to classify the audio input as fake or real. Third, 
the network performs the binary classification of mel-
spectrograms. To evaluate our proposed system’s perfor-
mance and effectiveness, we perform our experiments 
utilizing the publically available dataset, i.e., ASVspoof 
2019. More precisely, we proposed a robust system that 
identifies and classifies the spoofed audios generated by 
the text-to-speech and cloning algorithms-based sys-
tems. We assessed the performance of the suggested 
system using PA (replay and bonafide samples) and LA 
(voice conversion, speech synthesis, and bonafide) sets 
from the ASVspoof 2019 corpus. The major offerings of 
the proposed model are presented below:

• To propose a novel deep learning based model, 
namely DeepDet based on improved YAMNet’s archi-
tecture for spoofed audio detection similar to image 
classification models.

• The DeepDet employs an improved architecture 
using an attention module for the feature extraction 
from mel-spectrograms. It employs depth-wise sepa-
rable convolutions, that is why our proposed model is 
lightweight.

• An attention block makes our model focus on rele-
vant parts of the input, reducing the information loss 
and improving the model’s ability to capture fine-
grained patterns.

• Our proposed method is a robust speech spoofing 
detector that can be utilized to detect unseen syn-
thetic voice attacks along with replay attacks and 
voice conversion.

• We evaluated our proposed system by employing 
extensive experiments that confirm the significance 
of our proposed system over existing techniques.

The remaining paper is ordered as follows: Sect.  2 
defines the related work, Sect.  3 enlightens the meth-
odology of the proposed technique, Sect.  4 defines the 
experiments performed, and Sect.  5 demonstrates the 
conclusion and limitations.

1.1  Related work
With the advancement of technology and electronic 
devices, the processing of content based on speech, such 
as music, ambient sounds, games, and entertainment, has 
become a significant field for researchers. Various models 
have been proposed for the classification of audio based 
on audio features [21–25]. Moreover, in the last two dec-
ades, text-to-speech systems have become so powerful 
that they are capable of generating a realistic voice after 
training limited audio samples from target speakers [26]. 
Therefore, it is a huge threat for ASV systems as they 
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may attacked by the naturalness of the speech generated 
[27]. The applications that can protect the ASV systems 
from attacks are called deepfake speech detectors. Thus, 
various machine learning and deep learning-based works 
have been proposed for the detection of forged speech.

In [28], a support vector machine (SVM)-based clas-
sifier has been utilized as AVS employing GMM. They 
attained an equal error rate of 4.92% and 7.78% on the 
2006 NIST for speaker identification core test. The 
authors have proposed the Gaussian Mixture Model 
(GMM) and a relative phase shift with a support vec-
tor machine (SVM) for synthetic speech detection to 
minimize the weaknesses of speaker verification sys-
tems. Moreover, a detailed comparison of the Hidden 
Markov Model (HMM) and DNN has been performed 
for the detection of spoofed speech [29]. In [30], the pro-
posed model employs the spectrograms in image form as 
input to CNN, thus forming a base of audio processing 
using images. In [31], various feature descriptors have 
been used, such as Mel Frequency Cepstral Coefficient 
(MFCC), spectrogram, etc., and the effect of GMM-UBM 
on the accuracy has been analyzed. It is concluded that 
the combination of different feature descriptors gives 
better results in terms of equal error rate (EER). Chao 
et  al. [28] utilized SVM to discern the real speeches 
from the fake recordings of the claimed man. Similarly, 
in [32], Chao has employed two core methods, Kernel 
Fisher Discriminant (KFD) and SVM, to verify speakers 
and attained better results as compared to their previous 
work based on the GBM and UBM methods. Moreover, 
to decline the computational cost of the polynomial ker-
nel SVM by exchanging the dot product among two utter-
ances with two i-vectors [33]. Furthermore, the authors 
applied the features selection technique, attaining a 64% 
dimensionality reduction in features with an equal error 
rate of 1.7% [33]. Whereas Loughran et al. [34] overcame 
the issue of imbalanced data (where one class sample is 
greater than the other) by utilizing a genetic algorithm 
(GA) with an adjusted cost function. Malik et  al. [35] 
developed a system for audio forgery detection based on 
acoustic signatures of the environment by investigating 
the integrity of audio. However, these proposed models 
failed to address synthesized audio content with high 
precision.

In [36], a DNN-based classifier has been proposed to 
detect and employ highlight Human Log Likelihoods 
(HLL) as a metric for scoring and proved to be better 
than classical log-likelihood ratios (LLR). Additionally, 
they also utilized various cepstral coefficients for the 
classifier’s training [37, 38] also employed a convolutional 
neural network for the audio classification. An exten-
sive comparison has been made using DL techniques 
for fake audio detection in [39], demonstrating that 

CNN and recurrent neural network (RNN) based mod-
els give better results than all other employed techniques 
[40] explains that the spectral features are significant to 
use for the detection of synthetic speech. For example, 
MFCC features are better than other spectral features for 
the model’s input. Furthermore, [41] describes the chal-
lenges and limitations of the spoofed detection models. 
In [42], a bispectral method for the analysis and detection 
of synthetic voices has been proposed. They examined 
uncommon spectral features in fake speeches synthe-
sized using DNNs, which they called bispectral features. 
They also tried to find high-order polyspectral features 
to discern the fake audio. A capsule network-based 
approach has been proposed in [43]. They enhanced the 
generalization of the proposed system and examined 
the artifacts deeply to increase the overall performance 
of the model. They also investigated the replay attacks 
in audios employing their network. In [44], authors pro-
posed a model for fake audio detection named DeepSo-
nar. They analyzed the network layers and the activation 
patterns for various input audios to examine the differ-
ence between fake and real speeches. They employed 
three datasets consisting of English and Chinese lan-
guage and attained an average accuracy of 98.1%. In [45], 
authors have proposed a model for fake audio detection 
based on micro-features such as voicing onset timing 
(VOT) and coarticulation. They analyzed that VOT num-
bers are high in fake speeches and attained a 23.5% error 
rate employing a fusion of both feature descriptors. The 
authors claimed that these micro-features can be used 
as standalone features for fake audio detection. Moreo-
ver, temporal convolutional networks (TCN) [46] have 
outperformed traditional algorithms such as RNNs and 
LSTMs for various tasks.

The latest deep learning techniques for text-to-
speech synthesis systems, such as [47], clone the voice 
using original speech recordings. It requires a few 
minutes of recording in real voice and generates fake 
audio in some seconds. Although the techniques have 
been improved [48], they still face the challenge of 
naturalness. The authors in [49] have investigated the 
usage of RAWNet2 for the spoofing detection. They 
improved the architecture of RawNet2 and proved that 
their results are second best for the detection of A17 
attacks. The authors proposed a novel feature extrac-
tion process in [50] for replay attack detection. The 
developed l Cochlear Filter Cepstral Coefficients-based 
Instantaneous Frequency using Quadrature Energy 
Separation Algorithm (CFCCIF-QESA) features, with 
excellent temporal resolution as well as relative phase 
information [51] suggested integrating orthogonal con-
volution into RawNet for fake audio detection, which 
serves to decrease the correlation between filters when 
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optimizing Sinc-conv parameters, thereby enhancing 
discriminability. Additionally, they introduced tempo-
ral convolutional networks (TCN) to capture long-term 
dependencies in speech signals. Experimental results 
on the ASVspoof 2019 dataset reveal that their model, 
namely TO-RawNet, demonstrates a relative reduction 
of 66.09% in equal error rate (EER) on the logical access 
scenario compared to RawNet. This underscores the 
effectiveness of the approach in detecting fake audio 
attacks.

The existing studies have failed to fully discern the 
fake voices, and thorough evaluation has not been per-
formed to evaluate their robustness employing the vari-
ous manipulated voices (changing pitch, rhythm, and 
resampling it without changing the linguistics). Fur-
thermore, audio artifacts are more difficult to detect 
than image artifacts as transforming audio signals into 
a frequency representation (mel-spectrograms) facili-
tates pattern identification by models. The temporal 
and spectral information is also considered to capture 
the audio’s frequency content. In addition to this, as 
indoor or outdoor voices have environmental noises, 
it is very easy for fake voice generators to add real-
world noise to the voice to fool the listener or the ASV 
system. Thus, an automatic fake audio detector that 

is robust enough to identify the fake audio of various 
environments is still needed.

2  Methodology
Deep learning architectures are made of various layers, 
such as input, hidden, and classification layers, as shown 
in Fig. 1. These hidden layers have various types, i.e. con-
volutional, batch normalization, pooling, activation, etc. 
The deep learning models extract features utilizing vari-
ous filters convolving over the input images. Moreover, 
when the filters are convolved over all the data, then a 
feature map is formed. These feature maps are reduced 
in dimensions employing pooling layers, minimizing the 
computational power of the system. These feature maps 
can be fed again to further convolution layers, repeating 
the above steps.

Numerous applications exist for various purposes, 
such as facial feature recognition [52], speech identifica-
tion[45], and emotion [53]. The presented system con-
sists of three main phases, i.e., (1) features extraction, 
(2) training, and (3) classification. We employed features 
extraction utilizing a feature extraction layer through 
which mel-spectrograms have been generated and passed 
to an improved architecture of MobileNet [54] guided by 
the attention module as a base network in YamNet [55]. 
The audios comprised a 16000  Hz sampling frequency 

Fig. 1 General architecture of deep learning model
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to capture the essential characteristics of speech. It pro-
vides a balance between capturing the necessary fre-
quency content for clear speech communication and 
minimizing bandwidth requirements. Then, the audio 
was transformed into mel-spectrograms of 96 × 64 size. 
Secondly, we trained an improved network, i.e., Deep-
Det over the generated mel-spectrograms belonging to 
two classes such: as Bonafide (Real) and Spoofed (Fake). 
The Mel-spectrograms of fake audio are different from 
real audio. Therefore, the proposed system learns the 
patterns precisely for two classes. Thirdly, we classified 
various input audios using the trained classifier. Moreo-
ver, the MobileNet employs linearly separable depth-wise 
convolutions. Therefore, our proposed model becomes 
lightweight. The design of the proposed system is shown 
in Fig. 2.

In the improved version, we customized the base net-
work MobileNetV1, adding three layers grouped convo-
lutional 2D layer, instance batch normalization layer, and 
activation layer before the fully connected layer. Moreo-
ver, we have changed all the batch normalization layers 
in the original network to instance normalization, which 
improves the convergence of the network. We increased 
the depth of the proposed network while decreasing the 
sensitivity of the model to the hyperparameters. Our pro-
posed model extracts the most representative features 
from the mel-spectrograms generated from audio. Addi-
tionally, our model is lightweight due to depth-wise sepa-
rable convolutions.

2.1  YAMNet architecture
Transfer learning is a famous deep learning aspect in which 
the model can learn the features from any other trained 
model. The key aspect of transfer learning is to minimize 
the computational cost of utilizing previously learned pat-
terns. It is preferred to employ the transfer learning con-
cept when a large size of unlabeled data is available to train 
a model. Therefore the pre-trained model utilizes its previ-
ous training features to reduce the time and effort. YAM-
Net employs the MobileNetV1 as the base network and is 
a pre-trained model on the Google AudioSet dataset for 
521 audio events. Therefore, in our work, we are training 
YAMNet on unbalanced data and achieving significant 

performance. Before the features extraction phase, resam-
pling is performed into 16,000 Hz with one channel audio. 
Moreover, YAMNet is a DL-based model. Therefore it 
extracts the audio features automatically due to the fea-
ture extraction layer. The feature extraction layer extracts 
the audio features in the form of spectrograms, and then 
these spectrograms are fed to improved MobileNet layers 
for classification. The layered architecture of the original 
YAMNet is shown in Fig. 3.

2.2  MobileNet
The MobileNet is developed using depth-wise separa-
ble convolutions that factorize a simple convolution into 
depth-wise convolution, as well as a 1 × 1 convolution that 
is identified as a point-wise convolution. These depth-wise 
convolutions employ one filter to each channel, splitting 
the standard convolution into two separable layers, one to 
apply filter and the other for concatenation. Furthermore, 
the point-wise convolution is employed of 1 × 1 size and 
concatenates the output with the depth-wise convolution. 
Due to this factorization, the size and computational com-
plexity are decreased significantly. The standard convolu-
tion, along with depth-wise and point-wise convolution, 
are shown in Fig. 4. An input as Dk x Dk x M feature map 
k is fed to the standard convolutional layer, and the output 
feature map is generated as G. Here, Dk represents the spa-
tial height and width of an input feature map, M represents 
the total number of channels as input, DG refers to the spa-
tial height and width of the feature map in output, and N 
represents the total output channels.

The standard convolutional layer is represented by conv. 
Kernel as L having a size of DL × DL × M × N. Here, DL 
refers to the dimension in the spatial context of a square 
kernel, M represents the total input channels, and N refers 
to the total output channels. Suppose we employ stride 1, 
and padding, therefore the output feature map is calculated 
as below:

Moreover, the standard convolutional operation 
involves the cost as below:

(1)GL,l,n =

i,j,m

.kL+i−1,L+j−1,m

Fig. 2 Flow diagram of the proposed system
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Here, the cost of computation relies upon the product 
of the total input channels as M, the total output channels 
as N, and the kernel size as DL and the size of the feature 
map as Dk .Dk . Furthermore, the Mobile network consid-
ers all these computational terms and their respective 
connections. It breaks the connections employing depth-
wise separable convolutions among the output channel 
and the kernel size. The standard convolutional functions 
utilize the filtering and combining operations on features 
using the convolutional kernels, providing the new out-
put of feature representations. Moreover, these two steps, 
such as filtering and combining, can be divided into two 

(2)DL.DL.M.N .Dk .Dk
separate processes via depth-wise separable convolutions 
to minimize the computational cost.

Depth-wise separable convolution consists of 2 layers, 
i.e., pointwise convolution and depth-wise convolution. 
We utilize depth-wise convolution to employ a unit fil-
ter to all input channels. Whereas, point-wise convolu-
tion is applied using 1 × 1 convolution to make a linear 
combination of the output from the depth-wise layer. 
Moreover, mobile networks use two more layers, batch 
normalization, and ReLU non-linearity, for both types of 
layers. Batch normalization layers are usually employed 
in convolutional neural networks. The output of batch 
normalization (BN) is made of 4-D tensors, which are 
referred to as Ib,c,x,y, and Fb,c,x,y correspondingly. Where 

Fig. 3 Architecture of original YAMNet

Fig. 4 Standard 3 × 3 convolution Vs depth wise convolution
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b represents batch, c is the channel, and x and y are two 
spatial dimensions, respectively. When an input is a form 
of images, then channels are based on RGB channels. BN 
layers employ a similar normalization in each channel for 
all activations.

In Eq. 3, BN deducts the mean activation µc, as shown 
in the below equation. It is subtracted from all input 
activations of channel c and ∅ comprises channel c acti-
vations across all mini-batches features b and spatial 
locations x,y. Moreover, the centered activation is divided 
by the standard deviation σc and added to ∈ for the sta-
bility in computation. The normalization in BN is fol-
lowed by various affine transformations using and βc in 
each channel during training. The significance of employ-
ing BN is that it evades activation explosion by improv-
ing all the activations to make them zero-mean. Due to 
this, it becomes possible to train a network employing 
large learning rates, as the means and variances have 
been normalized. Therefore activations should not grow 
uncontrollably. Furthermore, large learning rates allow 
the algorithm to reach the convergence point fast. Small 
learning rates show slight progress in flat directions of 
the optimization and may converge at the sharp local 
minimum, exhibiting less generalization performance 
[56].

Rectified linear units (ReLU), referred to as an activa-
tion function, first found importance in acoustic models 
[57] exhibiting mathematical and biological character-
istics. It is described as a source of improved training 
processes of deep learning models. It works based on 
threshold values at 0, such as f(x) = max(0,x). It gives 
output as 0 when x is less than 0 and provides a linear 

(3)Ib,c,x,y = γc
Ib,c,x,y − µc
√

σ 2
c + ∈

+ βc∀ ↔ b, c, x, y

(4)µc =
1

|∅|

∑

b,x,y

Ib,c,x,y

function when x is larger than or equivalent to 0 i.e., 
x ≥ 0. The improved YAMNet, i.e., DeepDet, is exhibited 
in Fig. 5.

The rectified linear unit (ReLU), which is an activation 
function, yields 0 as an output where x < 0 and then yields 
a linear having a slope of 1 where x > 0.

We employ the ReLU activation function among all 
hidden layers of a deep neural network and as the clas-
sification function in the output layer of the proposed 
network.

The depth-wise convolution having one filter for a sin-
gle input channel is computed as shown in the equation 
below.

Here, L represents the depth-wise convolutional ker-
nel having size DL x DL x M; here, the mth filter in L is 
employed on the mth channel in K to form an output fea-
ture vector as } . The cost for computation of depth-wise 
convolution is computed as below:

Moreover, the depth-wise convolution is more profi-
cient than the standard convolution. However, it employs 
filtering only on input channels and does not merge 
to form new features. Therefore, an additional layer is 
required that can combine the depth-wise convolution’s 
output using 1 × 1 convolution to form new features. 
The combined form of depth-wise and point-wise con-
volution is known as depth-wise separable convolution, 
which was first introduced by [58]. The summation of 
depth-wise and point-wise 1 × 1 convolutions can be rep-
resented mathematically as below:

We can express convolution in two steps, i.e., filtering 
and combining mathematically in Eq. 8.

(5)}L,l,m =
∑

i,j

Li,j,m.KL+i−1,L+j−1,m

(6)DL.DL.M.DK ,

(7)M.DL.DL.DK .DK +M.N .Dk

Fig. 5 Improved YAMNet’s architecture
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The mobile network employs 3 × 3 convolutions that 
require approximately eight times less computational 
cost than standard convolutions.

2.3  Improved architecture
The MobileNet is developed using depth-wise separable 
convolutions as described in the previous unit, excluding 
the first fully convolutional layer. The architecture of our 
improved MobileNet is shown in Table  1. It is depicted 
that we have added three extra layers before the global 
average pooling layers, such as the grouped convolu-
tional 2D layer, instance batch normalization layer, and 
ReLU layer. We increased another block of three layers 
to increase the efficiency of the model by extracting the 
most representative features from the mel-spectrograms. 
Moreover, we have changed all the batch normaliza-
tion layers with instance normalization layers [59]. They 
operate differently on input data. While instance nor-
malization (IN) transforms an individual training sample, 
Batch Normalization (BN) applies the transformation to 
the entire mini-batch of samples. This makes BN reliant 
on the batch size, as a larger batch size is necessary to 
obtain a statistically more accurate mean and variance. 
Implementing a large batch size can be challenging due 
to memory constraints. Consequently, when faced with 
memory limitations, smaller batch sizes may be chosen, 
which can pose problems in certain situations. The use 
of a very small batch size can introduce training errors 
because the mean and variance become more prone to 
noise. IN outperforms BN in scenarios where a small 
batch size is employed.

Moreover, because BN’s effectiveness is tied to the 
batch size, it cannot be applied in the same manner dur-
ing test time as it is during training. This limitation arises 
because, typically, only one example is processed during 
the testing phase, making it impossible to compute mean 
and variance in the same way as during training. Instead, 
BN utilizes moving averages and variance for inference 
during test time. In contrast, IN is independent of the 
batch size, ensuring consistent implementation for both 
training and testing. Besides this, batch normalization 
introduces additional noise during training since the out-
come for a specific instance is influenced by neighboring 
instances. Interestingly, this type of noise can have both 
positive and negative effects on the network.

More precisely, a mel-spectrogram in the form of a 
2D image having dimensions of 96 × 64 × 1 is fed from 
the image input layer to the first convolutional 2D 
layer. Then, the convolutional 2D layer gives an out-
put of 48 × 32 × 32 channels having stride two and the 

(8)
M.DL.DL.DK .DK + Dk .Dk .M.N

Dk .Dk .DL.DL.M.N
=

1

N
+

1

D2
L

same padding. In 3rd step, instance normalization is 
employed with 32 channels having offset 1 × 1 × 32 and 
scale 1 × 1 × 32. In the 4th step, the ReLU activation func-
tion is employed, which gives 48 × 32 × 32 activations. At 
the 5th step, depth-wise 2d convolution is employed on 
32 groups of 1 3 × 3 × 1 convolutions having learnable as 
weights: 3 × 3 × 1 × 1 × 32, bias: 1 × 1 × 1 × 32 with stride 
one and padding same. At the 6th and 7th steps, instance 
normalization and activation function ReLU is employed, 
giving activations as 48 × 32 × 32. Similarly, this sequence 
is followed till the last activation function at step 85, giv-
ing output 3 × 2 × 1024. As described before, when audio 
files are converted into mel-spectrograms, the number of 
bands is 64.

2.4  BAM attention module
Channel dependency usage is a significant way of 
improving CNN model execution. To increase the per-
formance of state-of-the-art models with negligible com-
putational cost, we used attention block, i.e., BottleNeck 
Attention Module (BAM) [60], in our improved YAMNet 
model, as shown in Fig.  5. BAM’s architecture depends 
on two pathways: spatial and channel. It gets training in 
an end-to-end way with our proposed DeepDet. Differ-
ent channel weights are trained using the cost function, 
and the weight coefficients of the feature channel are 
obtained automatically. The attention module assists the 
model in attaining intermediate features more effectively. 
The proposed attention module’s architecture is shown in 
Fig.  6. The F represents the feature map, whereas M(F) 
is an attention map computed by the module using two 
attention methods: spatial as Ms and channel as Mc. Two 
hyperparameters exist, i.e., r as the reduction ratio and 
d as the dilation value. More specifically, r controls the 
overhead among both attention methods, and d spatially 
helps in contextual information using the receptive field 
size.

The incorporation of the attention mechanism in BAM 
aids in acquiring more informative and distinctive rep-
resentations. This, in turn, improves the extraction of 
features and fosters a deeper comprehension of intricate 
patterns in the data, ultimately augmenting the network’s 
capacity for learning and generalization. Additionally, 
BAM plays a role in enhancing the robustness of a neural 
network by empowering it to dynamically adjust its atten-
tion in response to the input context. This adaptability 
equips the network to effectively manage variations and 
shifts in the input data, bolstering its resilience to diverse 
conditions and scenarios. Attention mechanisms, exem-
plified by BAM, have the potential to mitigate computa-
tional overhead by allowing the network to concentrate 
on pertinent segments of the input, thereby conserving 
computational resources.
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Table 1 Layer-wise details of our proposed MobileNet

Type Activations Learnable Stride/channel Total learnable

Image input 96 × 64 × 1 – – 0

Convolution 2D (Conv) 48 × 32 × 32 Weights: 3 × 3 × 1 × 32
Bias: 1 × 1 × 32

32 3 × 3 × 1 convolutions
Stride: [2 2]
Padding: same

320

Instance normalization 48 × 32 × 32 Offset: 1 × 1 × 32
Scale: 1 × 1 × 32

32 Channels 64

ReLU 48 × 32 × 32 – – 0

Grouped convolution 
depthwise (GConv DW)

48 × 32 × 32 Weights: 3 × 3 × 1 × 1 × 32
Bias: 1 × 1 × 1 × 32

32 groups of 1 3 × 3 × 1 convolutions
Stride: [1 1]
Padding: same

320

Instance normalization 48 × 32 × 32 Offset: 1 × 1 × 32
Scale: 1 × 1 × 32

– 64

ReLU 48 × 32 × 32 – – 0

Conv 48 × 32 × 64 Weights: 1 × 1 × 32 × 64
Bias: 1 × 1 × 64

64 1 × 1 × 32 convolutions
Stride: [1 1]
Padding: same

2112
128
0

GConv DW 24 × 16 × 64 Weights: 3 × 3 × 1 × 1 × 64
Bias: 1 × 1 × 1 × 64

64 groups of 1 33 × 1 Convolutions
Stride: [2 2]
Padding: same

640
128
0

Conv 24 × 16 × 128 Weights: 1 × 1 × 64 × 128
Bias: 1 × 1 × 128

128 1 × 1 × 64 Convolutions
Stride: [1 1]
Padding: same

8320
256
0

GConv DW 24 × 16 × 128 Weights: 3 × 3 × 1 × 1 × 128
Bias: 1 × 1 × 1 × 128

128 groups of 1 3 × 3 × 1 Convolutions
Stride: [1 1]
Padding: same

1280
256
0

Conv 24 × 16 × 128 Weights: 1 × 1 × 128 × 128
Bias: 1 × 1 × 128

128 1 × 1 × 128 Convolutions
Stride: [1 1]
Padding: same

16,512
256
0

GConv DW 12 × 8 × 128 Weights: 3 × 3 × 1 × 1 × 128
Bias: 1 × 1 × 1 × 128

128 groups of 1 3 × 3 × 1 Convolutions
Stride: [2 2]
Padding: same

1280
256
0

Conv 12 × 8 × 256 Weights: 1 × 1 × 128 × 256
Bias: 1 × 1 × 256

256 1 × 1 × 128 Convolutions
Stride: [1 1]
Padding: same

33,024
512
0

GConv DW 12 × 8 × 256 Weights: 3 × 3 × 1 × 1 × 256
Bias: 1 × 1 × 1 × 256

256 groups of 1 3 × 3 × 1 convolutions
Stride: [1 1]
Padding: same

2560
512
0

Conv 12 × 8 × 256 Weights: 1 × 1 × 256 × 256
Bias: 1 × 1 × 256

256 1 × 1 × 256 Convolutions
Stride: [1 1]
Padding: same

65,972
512
0

GConv DW 6 × 4 × 256 Weights: 3 × 3 × 1 × 1 × 256
Bias: 1 × 1 × 1 × 256

256 groups of 1 3 × 3 × 1 Convolutions
Stride: [2 2]
Padding: same

2560
512
0

Conv 6 × 4 × 512 Weights: 1 × 1 × 256 × 512
Bias: 1 × 1 × 512

512 1 × 1 × 256 Convolutions
Stride: [1 1]
Padding: same

131,584
1024
0

GConv DW 6 × 4 × 512 Weights: 3 × 3 × 1 × 1 × 512
Bias: 1 × 1 × 1 × 512

512 Groups Of 1 3 × 3 × 1 Convolutions
Stride: [1 1]
Padding: same

5120
1024
0

Conv 6 × 4 × 512 Weights: 1 × 1 × 512 × 512
Bias: 1 × 1 × 512

512 1 × 1 × 512 convolutions
Stride: [1 1]
Padding: same

262,656
1024
0

GConv DW 6 × 4 × 512 Weights: 3 × 3 × 1 × 1 × 512
Bias: 1 × 1 × 1 × 512

512 groups of 1 3 × 3 × 1 convolutions
Stride: [1 1]
Padding: same

5120
1024
0

Conv 6 × 4 × 512 Weights: 1 × 1 × 512 × 512
Bias: 1 × 1 × 512

512 1 × 1 × 512 convolutions
Stride: [1 1]
Padding: same

262,656
1024
0
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Table 1 (continued)

Type Activations Learnable Stride/channel Total learnable

GConv DW 6 × 4 × 512 Weights: 3 × 3 × 1 × 1 × 512
Bias: 1 × 1 × 1 × 512

512 groups of 1 3 × 3 × 1 convolutions
Stride: [1 1]
Padding: same

5120
1024
0

Conv 6 × 4 × 512 Weights: 1 × 1 × 512 × 512
Bias: 1 × 1 × 512

512 1 × 1 × 512 convolutions
Stride: [1 1]
Padding: same

262,656
1024
0

GConv DW 6 × 4 × 512 Weights: 3 × 3 × 1 × 1 × 512
Bias: 1 × 1 × 1 × 512

512 groups of 1 3 × 3 × 1 convolutions
Stride: [1 1]
Padding: same

5120
1024
0

Conv 6 × 4 × 512 Weights: 1 × 1 × 512 × 512
Bias: 1 × 1 × 512

512 1 × 1 × 512 convolutions
Stride: [1 1]
Padding: same

262,656
1024
0

GConv DW 6 × 4 × 512 Weights: 3 × 3 × 1 × 1 × 512
Bias: 1 × 1 × 1 × 512

512 groups of 1 3 × 3 × 1 convolutions
Stride: [1 1]
Padding: same

5120
1024
0

Conv 6 × 4 × 512 Weights: 1 × 1 × 512 × 512
Bias: 1 × 1 × 512

512 1 × 1 × 512 convolutions
Stride: [1 1]
Padding: same

262,656
1024
0

GConv DW 3 × 2 × 512 Weights: 3 × 3 × 1 × 1 × 512
Bias: 1 × 1 × 1 × 512

512 groups of 1 3 × 3 × 1 convolutions
Stride: [2 2]
Padding: same

5120
1024
0

Conv 3 × 2 × 1024 Weights: 1 × 1 × 512 ×  × 1024
Bias: 1 × 1 × 1024

1024 1 × 1 × 512 convolutions
Stride: [1 1]
Padding: same

525,312
2048
0

GConv DW 3 × 2 × 1024 Weights: 3 × 3 × 1 × 1 × 1024
Bias: 1 × 1 × 1 × 1024

1024 groups of 1 3 × 3 × 1 convolutions
Stride: [1 1]
Padding: same

10,240
2048
0

Conv 3 × 2 × 1024 Weights: 1 × 1 × 1024 × 1024
Bias: 1 × 1 × 1024

1024 1 × 1 × 1024 convolutions
Stride: [1 1]
Padding: same

1,049,600
2048
0

Conv 3 × 2 × 1024 Weights: 1 × 1 × 1024 × 1024
Bias: 1 × 1 × 1024

1024 1 × 1 × 1024 convolutions
Stride: [1 1]
Padding: same

1,049,600
2048
0

Avg. Pooling 1 × 1 × 1024 – – 0

FC Layer 1 × 1 × 2 Weights: 2 × 1024
Bias: 2 × 1

– 2040

Softmax 1 × 1 × 2 – Binary classifier
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Algorithm 1. Steps for DeepDet 

3  Experimental evaluation
3.1  Dataset
The challenge of spoofed voice detection came in 2015, 
known as the ASVSpoof 2015 corpus [61]. The aim was 
to develop a system to detect the synthesized or cloned 
speech and analyze the performance using the data-
set samples. After 2  years, the ASVSpoof 2017 corpus 
[41] came into existence for the evaluation of the replay 
detection systems. A large and assorted dataset was 
introduced in 2019, known as ASVSpoof 2019 [62], com-
prising both logical access (LA) and physical access(PA) 
attacks. The first contained the voice conversion and syn-
thesized speech samples, including bonafide audio. The 
later part consists of replay and bonafide audio samples. 
Real speech data is sourced from 107 speakers (46 male, 

61 female) without notable channel or background noise 
influences. Spoofed speech is then created using various 
spoofing algorithms based on genuine data.

Furthermore, both parts have been split further into 
three sub-parts, namely, development, training, and eval-
uation sets. The logical access dataset comprises seven-
teen various text-to-speech and voice cloning systems. 
Moreover, these systems are trained using the voice clon-
ing toolkit VCTK [63]. Among these systems, six have 
been labeled as known attacks, whereas the other 11 
systems are known as anonymous attacks. The training 
and development audio samples are taken from known 
attacking systems, and evaluation samples are collected 

Fig. 6 BAM attention module

Table 2 Statistics of ASVSpoof 2019 LA and PA sets

Set Logical access Physical access

Spoofed Bonafide Spoofed Bonafide

Train 22,800 2580 48,600 5400

Evaluate 63,882 7355 116,640 18,090

Dev 22,296 2548 24,300 5400

Total 36,326 12,483 189,540 28,890

Table 3 System specifications for the employed model

Hardware Specifications

Computer GPU Server

CPU Intel Core i5

RAM 16 GB

GPU NVIDIA GEFORCE GTX × 4
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from 11 unknown and two known attacks. The Logical 
Access set consists of 2 VC systems that utilize spectral 
filter and artificial neural networks-based approaches. 
Furthermore, the LA set consists of 4 TTS systems that 
utilize artificial neural networks or concatenation of 
wave-form employing vocoders based on source-based 
filter Vocoder [64] or WaveNet Vocoder [65]. The 11 
unknown spoofing systems consist of 2 VC, 6 TTS, and 
3 Hybrid forms of VC and TTS systems utilizing various 
waveform-based methods such as GriffinLim [66], Neu-
ral waveform techniques [67], Generative adversarial net-
works (GAN) [68], and combinations of waveform and 
spectral filtering. The statistics of the ASVSpoof 2019 
dataset are shown in Table 2, whereas a depth summary 
of the LA set is shown in Table 3.

Moreover, ASVspoof 2017 [41] comprises real replay 
speeches, while ASVspoof 2019 comprises synthesized 
replay recordings recorded under an acoustic environ-
ment to enrich the ASV system’s reliability. Training and 
development recordings are produced, conferring to 9 
replay and 27 acoustic configurations. The sizes of rooms 
are categorized as large, medium, and small rooms. All 
speeches are generated in various zones, such as A, B, 
and C, exhibiting varying distances (Da) between the 
talker and zone. The zone A voice quality is better than 
the B and C zones. Moreover, the eval recordings have 
been gathered in the same way as train and dev sets.

To evaluate the model on the LA set, we utilized the 
training samples as 25,000, including 2580 bonafide sam-
ples and 22800 spoofed samples to train DeepDet. We 
tested our model using both sets, that is, eval and dev 
sets. The eval set consists of 71,237 samples, including 
7355 spoofed and 63882 bonafide samples, while the dev 
set consists of 24,844 samples, including 22,296 spoofed 
and 2548 bonafide samples. Furthermore, we have eval-
uated our proposed model using the PA dataset; we 
employed 54,000 samples, including 48,600 spoofed and 
5400 bonafide samples, for the model’s training. Addi-
tionally, we evaluated DeepDet using both remaining sets, 
that is, eval and dev sets of the PA database. The eval set 
comprises 134,730 samples, including 116,640 spoofed 
and 18,090 bonafide samples, and the dev set comprises 
29,700 audios, including 24,300 spoofed and 5400 bon-
afide samples.

3.2  Environment
We performed the experiments using a GPU NVIDIA 
card, i.e., GEFORCE GTX with 4 GB memory. The details 
of the employed hardware are shown in Table  3. The 
operating system was Windows 10, which had 16  GB 
RAM. The experiment was performed on the Matlab 
2021a.

3.3  Metrics
For the performance evaluation of the proposed model, 
we have utilized various metrics such as precision, recall, 
accuracy, equal error rate, and Tandem-detection cost 
function(t-DCF). Moreover, these metrics are relied 
on true positive (TP), false positive (FP), true negative 
(TN), and false-negative (FN). The TP refers to the cor-
rectly classified spoofed audios by our proposed model, 
FP refers to the number of audios that were incorrectly 
classified as spoofed, FN denotes the number of audios 
that were incorrectly classified as negative, i.e., bon-
afide, and TN refers to the number of audios that were 
correctly classified as a negative class such as bonafide. 
Furthermore, precision refers to the fraction of TP over 
the total audios (mel-spectrograms) classified as positive. 
The mathematical equation is given below.

The accuracy of the system indicates the correctly clas-
sified audio by the proposed system. The equation is pre-
sented below.

The recall is the fraction of the classified positive class 
audios to all spoofed audios whether they were classified 
as a real class by the system. The recall value closer to 1 
refers to the better model. The equation of Recall is given 
below.

Moreover, we employed an Equal Error Rate (EER) 
and t-DCF to analyze the performance of the proposed 
spoof detector. Suppose FAR (θ) and FRR (θ) refer to the 
false acceptance and rejection rates at threshold value θ, 
respectively. FRR and FAR decrease and increase mono-
tonically at the rate of θ; therefore, the EER estimates the 
value of θ at which both FRR and FAR become equal.

The formula for t-DCF is given below.

(10)Precision =
TP

TP+ FP

(11)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

(12)Recall =
TP

TP+ FN

(13)
FRR(θ ) =

count
(

human trials having score
)

< θ

Total human trials

(14)

FAR(θ ) =
count

(

spoofed trials having score
)

> θ

Total spoofed trials

(15)t − DCF = min
{

βPcm
miss(s)+ Pcm

fa (s)
}
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where the value of β is depends on application-specific 
parameters, such as priors and costs, as well as the per-
formance of the ASV. Pcm

miss(s) and Pcm
fa (s) represent the 

miss and false alarm rates of the countermeasure system 
at the threshold s.

4  Performance over synthesized speech and voice 
conversion

In this experiment, we want to evaluate our proposed 
model, i.e., DeepDet, over text-to-speech synthesis (TTS) 
and voice conversions (VC) samples. Therefore, we 
employed an improved MobileNet as the base network 
of YAMNet to categorize the speeches into bonafide and 
spoofed speeches of TTS and voice conversion samples. 
The training dataset comprises genuine and falsified 
speech samples from 20 speakers (8 male, 12 female). In 
the datasets, there exist 4 TTS spoofed systems, including 
A01, A02, A03, and A04, whereas 2 VC spoofed methods, 
including A05 and A06, are utilized to generate spoofed 
samples for the LA dataset for training. The voice con-
version systems include (1) neural network-based and (2) 
transfer function-based approaches. The speech synthe-
sis systems were implemented using (1) waveform con-
catenation, (2) neural network-based parametric speech 
synthesis employing source-filter vocoders, and (3) neu-
ral network-based parametric speech synthesis utilizing 
Wavenet. In the developmental set, fake speech is pro-
duced using one of the spoofing algorithms employed 
in creating the training dataset. Meanwhile, in the eval 
set, spoofed data is generated through combinations of 
unseen spoofing algorithms similar to those used to syn-
thesize in the development set.

In the eval set of LA, 13 spoofed systems are included 
comprising of 7 text-to-speech syntheses, i.e., A07-A12, 
A16, 3 TTS-VC systems, i.e., A13, A14, A15, and 3 VC 
spoofed systems, such as A17-A19 that are used to gen-
erate the spoof speeches. We employed an experiment 
based on three phases to assess the effectiveness of the 
DeepDet for VC and TTS systems.

In the Logical Access (LA) scenario, the training set 
comprises 2580 bonafide utterances and 22,800 spoofed 

utterances. The development set consists of 2548 bon-
afide and 22,296 spoofed utterances, while the evalu-
ation set includes 7355 bonafide and 63,882 spoofed 
utterances.

More precisely, first, we utilized the spoofed and bon-
afide samples of TTS from a train set of logical access 
datasets for the training of our DL model. The results 
are shown in Table 4. We attained an EER of 0.50% and 
t-DCF of 0.005. Second, we utilized samples from the 
train set of the VC system of the LA dataset for the train-
ing of our proposed model to analyze the performance. 
We attained an EER of 0.90% and t-DCF of 0.06. It is con-
cluded from the results that the DeepDet performs bet-
ter for the detection of TTS spoofed speeches than VC 
spoofed detection. The reason behind the better perfor-
mance of DeepDet for TTS spoofing detection is that 
the voice generated from the VC systems is based on the 
original audio samples’ periodic characteristics. However, 
TTS systems lack this property. Third, we performed an 
experiment using the general LA dataset to analyze the 
performance of the proposed model and achieved 0.042 
EER. The overall performance of the proposed system is 
significant on the LA set. Therefore, we can say that our 
model, i.e., DeepDet, effectively detects the fake audio. 
Similarly, the experiments are performed for the dev set 
as well, and the results are reported in Table 4.

5  Ablation study
In this experiment, we analyzed the performance of our 
proposed DeepDet using varying schemes. First, we 
assessed the results with the original YAMNet. Then, 
we attached the BAM module with YAMNet without 

Table 4 Results for synthesized speech and voice conversion

Set category Spoofing system Accuracy (%) Precision (%) Recall (%) EER (%) Min-tDCF

Eval VC 93.3 97 95 0.90 0.06

TTS 99.8 99.6 99.4 0.50 0.005

LA(overall) 99.92 99.2 99.76 0.042 0.0015

Dev VC 94.1 95 95 0.50 0.11

TTS 98.8 98.6 99.1 0.010 0.015

LA(overall) 98.9 98.2 98.9 0.015 0.002

Table 5 Comparison with a base model

Model Accuracy(%) Precision(%) Recall(%) EER(%)

Base network 90.1 93.4 91.1 2.3

YAMNet with BN 
and BAN

95.4 97.3 95.4 1.30

DeepDet 99.92 99.2 99.76 0.042
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changing the BN layers. In the end, we changed the BN 
layers with IN layers to improve the performance further. 
The results are reported in Table  5. It is clearly visible 
from the results that DeepDet attains more remarkable 
results than the first two schemes.

6  Performance analysis over physical access 
attacks

In this experiment, we aim to examine the performance 
of our spoofing audio detector using physical access 
attacks. Therefore, we transformed the auditory samples 
of the PA set into mel-spectrograms and passed them to 
an improved YAMNet’s base network, i.e., customized 
MobileNet for the classification into bonafide and replay 
samples. We achieved an EER of 0.43% and 3.11% for eval 
and dev sets. Moreover, the min-tDCF of 0.0021 and 0.05 
is achieved for eval and dev sets, as reported in Table 6. 
The results show that our suggested spoofing detector 
attained significant performance compared to the exist-
ing models. Particularly, our proposed model is based 
on an improved MobileNet, which utilizes depth-wise 
separable convolutional layers to extract the most repre-
sentative features from the mel-spectrograms generated 
from audio. Therefore, we attained EER, which is less 
than the EER achieved for the existing system on the eval 
set, such as in [69]. We believe, after the experiment, that 
our improved MobileNet is capable of effectively extract-
ing features from replay samples to detect physical access 
attacks.

7  Performance comparison with existing 
techniques

In this experiment, we compared DeepDet with the exist-
ing models for voice spoofing detection. The compara-
tive results are reported in Table 7, which considers the 
evaluation and development set of the ASVspoof 2019 
LA corpus. It can be seen that our proposed spoofing 
detector attains the lowest EER as 0.0015 and 0.042 for 
dev and eval sets, outperforming the existing systems. 
The second lowest EER 0.045 is achieved by EDL-Det, 
and then W2V2-light-DARTS attains, for the eval set as 
1.08. Moreover, the second lowest EER for the dev set 
is achieved by LFCC-PC-DARTS as 0.02. However, the 
system attained the highest EER for the eval set, which 
was 4.87. From this analysis, it is concluded that our 
spoofing detector can effectively detect various spoofed 
attacks and voices based on cloning algorithms. More 
precisely, our proposed algorithm outperforms the exist-
ing techniques.

8  Conclusion
In this paper, we have presented a voice spoofing detec-
tor, i.e., DeepDet, employing an improved deep learn-
ing model, YAMNet, to detect synthetic attacks. We 
employed an improved MobileNet along with the BAM 
attention module as the base network for feature extrac-
tion and classification of mel-spectrograms into bon-
afide and spoofed samples. An improved MobileNet 
with BAM effectively captures the sample dynamics, 
artifacts of cloning algorithms and environment, and 
microphone variations of the replay attacks. Moreover, 
the significance of utilizing MobileNet lies in an implica-
tion of linearly separable depth convolutional layers that 
makes it light-weight. The BAM module guides the over-
all network for extraction of key features from mel-spec-
trograms. We assessed the performance of the proposed 
model using a diverse and large-scale dataset, i.e., ASVs-
poof 2019 corpus, and it was concluded that our system 
is applicable for the detection of several types of spoof-
ing attacks. More precisely, our model attained an EER of 
0.43% and 0.042% for PA and LA attacks correspondingly. 
Our system effectively distinguishes the various clon-
ing algorithms employed for the generation of speech. 
Additionally, our comparative assessment with existing 
models unveils that DeepDet outperforms them for vari-
ous forms of speech spoofing detection, such as cloning-
based, text-to-speech, and replay attacks. Furthermore, it 
is worth mentioning that evaluation samples of the data-
set include speeches from unseen speakers, and our pro-
posed system attained excellent results on the ASVspoof 
2019 evaluation set. Therefore, we believe that Deep-
Det is a robust spoofing detector due to its effectiveness 

Table 6 Results on PA set of ASVSpoof 2019

Set 
Category

Accuracy 
(%)

Precision 
(%)

Recall (%) EER (%) Min-tDCF

Dev 99.65 98.4 98.9 3.11 0.05

Eval 99.8 99.8 99.1 0.43 0.0021

Table 7 Comparison with existing spoofing detection systems

Model Logical access

Dev Eval

FFT-L-SENet [70] - 1.14

Attention-based CNN [71] 0.16 1.87

LFCC-PC-DARTS [72] 0.002 4.87

RAWNet2 [73] - 1.12

W2V-Siamese [74] 0.004 1.15

W2V2-light-DARTS [75] 0.02 1.08

EDL-Det [76] 0.80 0.045

DeepDet 0.015 0.042
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on the evaluation set of ASVspoof 2019. In the future, we 
aim to cross-validate our model on other voice spoofing 
datasets as well and further improve the performance.
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