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H I G H L I G H T S  

• A novel AUFF-NET model is proposed for FaceSwap, and Face-Reenactment deepfakes detection. 
• Accurate detection of deepfakes due to the ability of the model to tackle the model over-fitting. 
• Improved model explainability power due to the reliable feature selection ability of model. 
• Robust model due to its ability to detect deepfakes in the presence of various adversarial attacks. 
• Perform well to unseen examples due to the better generalization power of the AUFF-NET model.  
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A B S T R A C T   

Recently, the higher availability of multimedia content on social websites, together with lightweight deep 
learning (DL) empowered tools like Generative Adversarial Networks (GANs) has caused the generation of 
realistic deepfakes. Such fabricated data has the potential to spread disinformation, revenge porn, initiate 
monetary scams, and can result in adverse immoral and illegal societal issues, etc. Hence, the accurate identi
fication of deepfakes is mandatory to discriminate between real and manipulated content. In this work, we have 
presented a DL-based approach namely a unified network for FaceSwap (FS) and Face-Reenactment (FR) 
Deepfakes Detection (AUFF-Net). More clearly, both the spatial and temporal information from the video samples 
are used to detect two types of visual manipulations i.e., FS and FR. For this reason, a novel DL framework 
namely the Inception-Swish-ResNet-v2 model is introduced as a feature extractor for computing the information 
at the spatial level. While the Bi-LSTM model is utilized to measure the temporal information. Additionally, 3 
dense layers are included at the last of the model structure to suggest a discriminative group of the feature vector 
We performed extensive experimentation on a challenging dataset namely the FaceForensic++, and attainede 
average accuracy values of 99.21 %, and 98.32 % for FS, or FR, respectively. Furthermore, we introduced an 
explainability module to show the reliable keypoints selection capability of our technique. Moreover, we have 
performed a cross-dataset evaluation to show the generalization power of our approach. Both the qualitative and 
quantitative results have confirmed the effectiveness of the suggested approach for visual manipulation cate
gorization under the occurrence of various adversarial attacks.   

1. Introduction 

The accessibility to cost-effective digital devices i.e., cell phones, 
laptops, tablets, and digital cameras has resulted in an exponential 
escalation in digital data like audio, video, and images in the cyber 
world. In addition, the internet facility and social sites have connected 
people globally which enables them to share their memories. Mean
while, the marvelous achievement in the area of Machine Learning (ML) 

proposes sophisticated algorithms that have the capability of manipu
lating audiovisual content to propagate fabricated information through 
social websites. The easier availability of several ML-based tools and 
apps [1–3] can help people to make their data more appealing and 
delightful. However, it also makes the conveyed information unreliable 
and untrusted, particularly for scenarios where such samples are utilized 
in examining a legal claim or inspecting a criminal case. Due to such 
reasons, the researchers have declared this era as “post-truth” where 

* Corresponding author. 
E-mail address: ali.javed@uettaxila.edu.pk (A. Javed).  

Contents lists available at ScienceDirect 

Applied Soft Computing 

journal homepage: www.elsevier.com/locate/asoc 

https://doi.org/10.1016/j.asoc.2024.111854 
Received 25 April 2023; Received in revised form 17 November 2023; Accepted 2 June 2024   

mailto:ali.javed@uettaxila.edu.pk
www.sciencedirect.com/science/journal/15684946
https://www.elsevier.com/locate/asoc
https://doi.org/10.1016/j.asoc.2024.111854
https://doi.org/10.1016/j.asoc.2024.111854
https://doi.org/10.1016/j.asoc.2024.111854
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2024.111854&domain=pdf


Applied Soft Computing 162 (2024) 111854

2

false or manipulated news (disinformation) is spread by malicious in
dividuals to affect the public view. Disinformation is a malicious act of 
intentionally spreading altered information and has the power to affect 
political, social, and economic campaigns [4,5]. Deepfakes are heavily 
used these days to spread disinformation among the public. Deepfakes 
[6,7] represent the synthesized artificial intelligence-generated videos 
that contain the fabrication of audiovisual information [8]. Hence, given 
this ease of creating and spreading false information, it has interestingly 
become hard to differentiate real and fake data which may cause 
dangerous consequences [9–11]. 

Deepfakes is a combination of two terms deep and fake where DL- 
based methods are used to generate fake videos. In the future, deep
fakes are predicted to be employed as a major disinformation weapon 
that may cause to loss of the trustworthiness of state institutes, infor
mation media, and others due to the incompetence of common people to 
distinguish the pristine and altered videos [12,13]. Deepfakes are 
creating extreme concern among the people because of their unre
stricted access, and the capability for the scam, and cybercrimes [14, 
15]. Additionally, deepfakes also pose significant threats to democracy 
due to their rapid and unregulated progression in cyberspace [16]. 
Moreover, the employment of visual samples as proof in each area of 
proceedings and criminal hearings is appearing as a new medium [17]. 
Deepfakes techniques have several applications that can have a positive 
or negative impact on society. The positive implications of deepfakes 
can provide low-cost solutions to many problems such as deepfakes can 
generate voice speech for people without vocal sounds, entertainers can 
use such samples to show their creativity or drama, and movie producers 
can use them to update the scenes without reshooting them [18], 
however, the negative impact of deepfakes is creating more problems. 
Traditionally, manipulations were performed to show well-known peo
ple debatable in their followers, like, in 2017 an actor was plotted in a 
pornographic scenario by posting it on social sites. So, deepfakes can be 
utilized to affect the reputation of people for various objectives i.e. 
defamation of celebrities [19], blackmailing people for financial bene
fits, creating legislative or spiritual conflict by hitting government offi
cials or religious preachers with manipulated content [20], etc. The most 
devastating effects of deepfakes can disturb election campaigns, causing 

war-type conditions among countries by viral a forged sample of missiles 
thrown to destroy the rival area [21]. It can mislead the armed experts 
by depicting false information for example presenting a fake bridge 
across the river to deceive troops, etc., [20]. Moreover, with fake data 
generation, deepfakes can show a vast influence on the estimation of the 
stock and affect the investors. With the progression of sophisticated DL 
algorithms these days, we can easily generate forged content with a 
small amount of data even with a single static image [22]. For example, 
a Chinese app named Zao [23,24] allows the layman to switch his face 
with actors and see himself acting in dramas and movie shoots. There
fore, these tools have put a serious privacy violation not only for 
renowned persons but for common people as well [25]. A visual 
depiction of a generic pipeline of deepfakes generation is given in Fig. 1. 
The discussed scenarios clearly indicate the severity of fabricated con
tent that needs serious attention from the research community to combat 
the negative impact of deepfakes. 

Visual deepfakes are broadly divided into three classes which are FS, 
FR, and Lip-synching, respectively. For FS-based deepfakes manipula
tions, the face of the target is placed over the source person to produce a 
manipulated sample of the target. The FS deepfakes are produced to 
show the target person doing the actions which are originally performed 
by the source identity. The main reason to produce the FS-oriented vi
sual manipulations is to affect the fame of well-known persons like 
politicians and celebrities etc., [27] by showing them in controversial 
scenarios like non-consensual pornography [28]. In FR deepfakes, the 
gestures of the target identity i.e. eyes, facial expressions, and head 
alignments are copied [6] in a visual sample and animated according to 
the imitator’s wish. While in lip-sync-based deepfakes, the lips align
ments of a target identity are altered to make them consistent with an 
arbitrary audio sample [25]. The main motive of lip-sync-based deep
fakes generation is to show the target person speaking something that in 
actuality he did not speak. The presented work is concerned to detect the 
FS and FR-based deepfakes. A pictorial representation of FS and FR 
deepfakes is demonstrated in Fig. 2. 

Several techniques have been presented in the literature for the 
automated detection and classification of visual deepfakes, however, 
there are still several open challenges that require further 

Fig. 1. A generic pipeline of deepfakes creation [26].  
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improvements. The approaches are not proficient enough to show better 
classification results well under the occurrence of several adversarial 
operations (i.e., compression, noise, clutter, rotation, zooming, and 
translation). Furthermore, the existing methods perform well for seen 
examples, however, unable to generalize well to untrained data. 
Meanwhile, the production of more truthful deepfakes data samples is 
deteriorating the detection performance [26]. Therefore, there is a need 
for such a model that can present an efficient and effective solution to 
visual manipulation detection. To cope with the challenges of existing 
works, we have proposed a DL-based approach namely the AUFF-NET. 
More specifically, we have extracted both the spatial and temporal in
formation of the input samples. For this reason, a novel 
Inception-Swish-ResNet-v2 CNN model is introduced to capture the in
formation at the frame level. Clearly, we have employed the Swish 
activation approach as an alternative to the ReLU approach in the 
conventional Inception-Resnet-v2 model for capturing a diverse set of 
sample characteristics. The employed Swish activation method uses the 
multiplication operation of input values by using the sigmoid function. 
The swish method is capable of smoothly altering the direction of 
negative values rather than abrupt change and allows their minimum 
negative range to flow through the network which assists the 
Inception-Swish-ResNet-v2 model to compute the complex patterns of 
data effectively. This activation method produces a smooth curve which 
eventually optimizes the model behavior by quickly converging with a 
small loss. While the Bi-LSTM model is utilized to compute the temporal 
information. Further, the addition of extra dense layers at the last of the 
AUFF-NET model assists it in effectively propagating a more significant 

group of visual key points. Lastly, the results are predicted based on both 
the frame level and temporal level information to make the final deci
sion. The method is competent in classifying both FS and FR-based 
deepfakes with a high recall rate. The approach is competent to tackle 
adversarial attacks and shows effective explainability results as 
compared to the latest works. Further, the proposed work is evaluated in 
the cross-corpus scenario where it has been observed that the work has 
undergone some performance degradation, however, the results are still 
convincing in comparison to the state-of-the-art works. The following 
are the distinctive contributions of the presented study:  

• Unified Model: We introduce a new technique that employs a novel 
spatial descriptor along with the temporal characteristics of the vi
sual samples and is capable of detecting and classifying both FS and 
FR-based deepfakes.  

• Explainability: We have visualized the computed features by using 
the heatmaps to present the explainability capacity of the proposed 
approach which helps us to show the actual manipulated portions of 
videos.  

• Generalizability: The cross-dataset validation is performed where 
the proposed model is tested on the unseen examples to show the 
generalization ability of our framework and proved with the evalu
ations that the presented solution is effective to unseen examples due 
to its ability to better tackle the model over-fitting problem.  

• Robustness: Several video adversarial operations like compression, 
blurring, noise, rotation, and size alterations are added at the test 

Fig. 2. Visual depiction of deepfakes, first row: FS deepfakes, second row: FR deepfakes.  
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time to check the robustness of the proposed approach and have 
proved the effectiveness of our model to such video alterations due to 
the distinctive features extraction empowerment of the AUFF-NET. 

The later manuscript follows the given outline: Section 2 contains an 
analysis of work performed in history for visual manipulation classifi
cation, while an in-depth elaboration of the suggested framework is 
given in Section 3. Section 4 shows a comprehensive explanation of the 
experimental evaluation while Section 5 comprises the conclusion and 
future work. 

2. Related work 

In this part of the manuscript, we have accomplished a critical 
investigation of historical approaches used for the detection of Face- 
Swap and Face-Reenactment-based deepfakes. The approaches for 
Face-swap and Face-Reenactment detection techniques are generally 
categorized either as handcrafted-based approaches or DL-based 
methods. 

2.1. Handcoded features 

Initially, scientists tested the ML frameworks generally employed for 
image forensic analysis. Zhang et al. [29] discussed a conventional ML 
method focused on recognizing the FaceSwap-based visual manipula
tions. Initially, the Speeded Up Robust Features (SURF) approach was 
used to compute the features and later used these features for the SVM 
learning to perform the categorization job. The technique shows better 
image-based deepfakes detection, however, unable to attain effective 
results for video-based deepfakes samples. An approach for revealing 
Face-swap deepfakes was discussed in [30] by computing the alignment 
of the 3D head poses by calculating 2D facemask key points. The esti
mated dissimilarity found among the head orientations was passed as a 
key vector. In the next step, the extracted visual characteristics were 
applied to perform the SVM training to classify the pristine and 
manipulated content. The framework [30] performs better for deepfakes 
classification, however, unable to work well for blurred samples. Guera 
et al. [31] discussed a method to locate the forensic changes found in the 
visual content by applying multimedia stream descriptors [32] for 
feature computation. Later, the SVM method was learned over the 
extracted sample characteristics to discriminate the original and fabri
cated samples. The work [31] is effective in deepfakes recognition, 
however, not proficient in tackling video re-encoding operations. 
Another approach was proposed in [33] where the frequency of the 
heartbeat from the examined samples was computed to locate the al
terations made within the videos. The extracted set of key features was 
passed as input to tuning the SVM and CNN approaches. The approach 
[33] enhanced visual modification identification performance, however, 
at the charge of an increased computing burden. Jung et al. [34] pre
sented a model to identify Face-swap-based deepfakes by locating 
abnormal eye patterns from the input videos. The work employed the 
Fast-HyperFace [35] and EAR methods to compute eye blinking patterns 
from the eyes. Then, the truthfulness verification technique was used by 
applying the variant of eye flickers with time to locate the original and 
altered visual samples. The work demonstrated in [34] shows better 
deepfakes identification accuracy, however, this method is not gener
alized well for persons with mental sickness which causes irregular eye 
blinking patterns. 

Amerini et al. [36] discussed a study to recognize 
Face-Reenactment-based visual fabrications. The model called the 
PWC-Net [37] was used to calculate the optical flow fields [38] of all 
suspected samples [37]. The extracted characteristics were passed for a 
DL-oriented predictor to classify the actual and forged data. This tech
nique [36] shows enhanced deepfakes recognition accuracy, however, 
the model needs evaluation over a complex dataset. Some researchers 
have presented techniques that can locate more than one type of 

deepfakes. One such work was presented in [39] to discriminate the 
original and fake data by using facial landmarks i.e. eye colors, and 
missing reflections. The computed keypoints were employed for logistic 
regression and MLP classifier training, to differentiate the altered and 
pristine sample. The framework performs effectively for deepfakes 
recognition; however, not proficient in images with closed eyes or 
invisible teeth. Agarwal et al. [16] discussed a method to reveal the 
deepfakes where the facial areas are located with the help of the 
OpenFace2 [40] software. The estimated visual characteristics were 
passed for the SVM algorithm learning to differentiate the actual and 
altered samples. The work attains improved recognition results, how
ever, does not perform well in cases where the subject is looking away 
from cameras. 

2.2. Deep features 

Numerous approaches have used DL methods for Face-swap-based 
deepfakes identification. Li et al. [41] introduced an algorithm for 
multimedia forensic analysis. Initially, face areas from the input videos 
were located by using the dlib library [42]. Then, several DL methods 
namely ResNet-with 50, 101, and 152 layers, along with the VGG-16 
were applied for computing the visual characteristics for forged con
tent classification. The technique [41] works well for deepfakes detec
tion, however, lacks to perform well for highly compressed visual 
samples. Another framework was discussed in [43] where a CNN 
framework was used to compute the set of deep features at the frame 
level of videos. In the next step, the RNN model was used to compute the 
visual sequence analysis with time to identify the original and modified 
video samples. The approach [43] attains better deepfakes identification 
performance, however, workable with samples of small length. A 
framework was elaborated in [44] to reveal the visual fabrications by 
tracking the irregular eye blinking patterns. A CNN/RNN model was 
used to specify the missing eye blinking from the examined samples. The 
work [44] performs effectively in identifying the visual modifications, 
however, unable to perform well for visual samples having a person with 
closed eyes. Montserrat et al. [45] suggested a methodology to reveal 
Face-swap-based deepfakes detection. At the start, the human faces for 
the input samples were located by using a Multi-task CNN (MTCNN) 
[46]. In the next step, a CNN framework was used over the detected 
faces for deep feature computation. In the last step, an RNN method was 
applied to identify the altered visual content. The technique in [45] 
shows effective deepfakes categorization results, however, not proficient 
to acquire predictions from the key points in several video frames. 
Another DL-based approach was introduced in[47] where a VGG-16 
approach was used for deep key points estimation. Then, the LSTM 
method was used for temporal sequence examination to detect real and 
fake content. This technique [47] advances visual modification identi
fication performance, however, suffering from high processing 
complexity. Agarwal et al. [48] discussed a technique to identify 
Face-swap-based alteration by joining the facial features along with 
behavioral biometrics key points. The VGG-16 model along with the 
encoder-decoder framework was used for features computation and 
manipulation detection. This work presented in [48] shows better per
formance for unseen examples, however, the method is not robust to 
lip-synch-oriented visual manipulations. An approach was proposed in 
[49] to recognize video-based alterations by estimating the heart rate of 
persons. In the first step, the heart rate was measured by using several 
methods namely skin color alteration [50], average optical intensity 
[51], and Eulerian video magnification [52]. The calculated features 
were employed for Neural Ordinary Differential Equations (Neu
ral-ODE) [53] training to distinguish the pristine and forged samples. 
The approach [49] is robust to deepfakes identification but with an 
increased computing burden. Kolagati et al. [54] proposed an approach 
for Face-swap-based deepfakes detection. Initially, the Dlib library was 
used to compute the landmarks of the facial region. Then, a set of deep 
features was computed by employing a CNN model. Both landmark and 
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deep features were combined to perform the classification task. The 
work [54] performs well for visual modification recognition, however, 
recognition evaluation shows degraded values for videos with dark light 
settings. 

Mazaheri et al. [55] introduced an approach for Face-reenactment 
detection by employing a two-stream. Initially, deep features were 
computed by employing the XceptionNet framework which was later 
passed to a decoder unit to differentiate the original and manipulated 
content. The work [55] attains better Face-reenactment recognition 
accuracy, however, suffering from high computational cost. Many re
searchers have employed DL-based approaches to detect both Face-swap 
and Face-reenactment-based deepfakes. Like, Sabir et al. [56] high
lighted an observation that the manipulated content lacks temporal 
consistency. To investigate this, an RNN-based approach was employed 
to locate the alerted samples. This work [56] attains robust visual 
manipulation detection accuracy, however, workable only with 
image-based alterations. Another approach was presented in [57] that 
combined the handcrafted and deep key points for deepfakes detection. 
The work [57] shows better visual alteration detection accuracy, how
ever, unable to perform well for compressed samples. To better assess 

the mesoscopic characteristics of altered content, Afchar et al. [58] 
presented a technique comprising two types of CNN approaches with a 
lightweight architecture namely Meso-4 and MesoInception-4. The work 
is robust from the perspective of computing burden, however, detection 
performance needs improvements. Nguyen et al. [59] introduced a CNN 
model to concurrently identify and recognize forged digital data. For 
classifying the deepfakes, an auto-encoder was utilized, while the 
manipulated area segmentation was performed via a y-shaped decoder. 
The approach is robust to deepfakes detection; however, does not suit 
well to real-life cases. To deal with the deepfakes detection degradation 
problem like the one that occurred in [59], Stehouwer et al. [60] 
introduced a CNN model for manipulation recognition. However, the 
strategy discussed in [60] is computationally inefficient. Another 
approach was presented in [61] where a framework namely the super
vised contrastive (SupCon) model with Xception network was used for 
detecting both Face-swap and Face-reenactment-based visual manipu
lation. The approach [61] generalizes well to unseen cases, however, 
performance needs more improvements. Yu et al. [62] suggested a 
framework called the SegNet to reveal visual manipulations. Initially, 
the suspected samples were divided into four patches, then, a CNN 

Table 1 
Comparison of existing FS and FR detection approaches.  

Reference Method Best Results Database Type Limitations 

Handcrafted keypoints-based methods 
[29] SURF features with SVM Precision= 97 % 

Recall= 88 % 
Accuracy= 92 % 

Custom FS  • Incapable of preserving facemask expressions.  
• Applicable to images only. 

[30] 68-D key points with SVM ROC=89 % UADFV FS  • Not robust to blurred samples. 
ROC=84 % Custom FS 

[31] Multimedia stream descriptor  
[29] with SVM and RF 

AUC= 93 % (SVM) 
AUC= 96 % (RF) 

Custom dataset. FS  • Not generalize well to samples re-encoding 
attacks 

[33] Heart rate features with the 
CNN  

• Accuracy= 96 % Face-Forensics FS  • Computationally complex. 

[34] Landmark key points  • Accuracy= 87.5 % Eye Blinking 
Prediction database 

FS  • Nor workable for people with mental health 
issues. 

[36] Optical flow fields with CNN  • Accuracy= 81.61 % Face-Forensics ++ FS  • Performance needs evaluation on a more 
complex dataset. 

[39] 16-D features with the MLP.  • AUC=.0.851(FS)  
• AUC=.823 (FR) 

Face-Forensics ++ FS 
FR  

• The approach is workable for cases with open 
eyes and visible teeth. 

[16] Landmarks feature with SVM AUC= 93 % (FS) 
AUC=98 % (FR) 

Custom dataset. FS 
FR  

• The lowest classification results are for 
scenarios where a subject is looking off-camera. 

DL keypoints-based methods 
[41] VGG-16, 

ResNet-50,101,152 
AUC=84.5 (VGG16), 97.4 (ResNet50), 95.4 
(ResNet101), 93.8 (ResNet152) 

TIMIT FS  • Unable to work well for compressed samples. 

[43] CNN + RNN Accuracy=97.1 % Custom dataset. FS  • Workable with short-length visual samples. 
[44] CNN + RNN TPR= 99 % Custom dataset. FS  • Not generalized well for subjects with closed 

eyes. 
[45] CNN + RNN Accuracy=92.61 % DFDC FS  • Accuracy requires enhancement. 
[47] VGG11 along with LSTM Accuracy= 98.26 %, Celeb-DF FS  • Economically expensive. 
[48] VGG6 + CNN AUC= 99 % WLDR FS  • Does not work well for unseen samples. 

AUC= 99 % Face-Forensics FS 
AUC= 93 % DFD FS 
AUC= 99 % Celeb-DF FS 

[49] Biological signals with Neural- 
ODE model 

Loss=0.0215 Custom FS  • Computationally expensive 
Loss=0.0327 TIMIT FS 

[54] Landmarks and deep features 
with CNN 

AUC=0.87 DFDC FS  • Not robust to samples with dark light. 

[55] Two-stream network Accuracy= 98.43 % Face-Forensics ++ FR  • Computationally complex. 
[56] CNN + RNN Accuracy= 96.3 % (FS) 

Accuracy= 94.35 % (FR) 
Face-Forensics ++ FS 

FR  
• Work for the image-based alterations only. 

[58] MesoInception-4 with deep 
classifier 

TPR= 81.3 % (FS) 
TPR= 81.3 % (FR) 

Face-Forensics ++ FS 
FR  

• Not robust to compressed samples. 

[59] CNN Accuracy=83.71 % (FS) 
Accuracy=92.50 % (FR) 

Face-Forensics ++ FS 
FR  

• Fewer classification results for unseen 
examples. 

[60] CNN Accuracy=99.43 % (FS) 
Accuracy=99.4 % (FR) 

DFFD FS 
FR  

• Computationally complex. 

[57] CNN + SVM Accuracy= 90.29 % (FS) 
Accuracy= 86.86 % (FR) 

Face-Forensics ++ FS 
FR  

• Low performance on compressed videos. 

[61] SupCon model with Xception 
network 

Accuracy= 94.74 % (FS) 
Accuracy= 94.36 % (FR) 

Face-Forensics ++ FS 
FR  

• Performance degrades for highly compressed 
samples. 

[62] Patch-based CNN framework Accuracy= 83.8 % (FS) 
AUC=0.84 (FS) 
Accuracy= 94.6 % (FR) 
AUC=0.946 (FR) 

Face-Forensics ++ FS 
FR  

• Degrades detection accuracy for unseen 
examples.  
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framework was used to extract the visual characteristics. Finally, the 
features from all patches were combined to predict the outcome of 
content being real or manipulated. The approach [62] is robust to 
deepfakes detection, however, recognition performance degrades for 
unseen samples. A comparative analysis of existing methods for both 
FaceSwap and Face-Reenactment deepfakes detection is performed in  
Table 1. It is fairly visible from the investigation performed in Table 1, 
that despite of huge studies presented for the detection of visual ma
nipulations, still there is a need for a more reliable and effective deep
fakes detection model. 

3. Proposed methodology: AUFF-NET 

The introduced framework for visual manipulation detection consists 
of a convolutional Bi-LSTM approach to manage the video frame se
quences. The proposed model namely the AUFF-NET comprises two 
main modules described as i) the CNN section that is concerned to 
extract the reliable features to capture the spatial information of the 
input video samples, ii) a Bi-LSTM module that is responsible for 
computing temporal video sequences analysis to evaluate its behavior 
over time. In the convolutional part, which is the first unit of the sug
gested framework, we have introduced a novel swish activation 
approach-based Inception-swish-Resnet-v2 module to obtain the sample 
characteristics at the frame level. Then, the computed key points from 
numerous consecutive frames are passed to the Bi-LSTM unit for 
sequence analysis. After this, three additional dense layers are added to 
the AUFF-Net model to designate a more representative group of key 
points. At last, the probability based on both the spatial and temporal 
features is computed to estimate whether the suspected video is original 
or either its FS- or FR-based deepfakes. The complete workflow of the 
proposed approach is given in Fig. 3. 

For a given visual sample, the Inception-swish-Resnet-v2-based Bi- 
LSTM framework is utilized to attain the spatial and temporal infor
mation to detect and classify the forensic manipulations. Using the idea 
of end-to-end training, the grouping of dense layers is employed to pull 
the Bi-LSTM approach to an output classification score. More clearly, the 
Inception-Resnet-v2 technique is modified by using the swish activation 
approach. Moreover, it contains three extra dense layers at the end of the 

model structure to avoid the occurrence of the model over-fitting issue. 
The introduced AUFF-Net contains the CNN module and a Bi-LSTM unit 
to capture the local pixel information at the frame level and temporal 
sequences, respectively. The detailed demonstration of both modules is 
defined in the consequent sections. 

3.1. CNN module 

The first unit of the proposed approach is a CNN framework that is 
directed to extract the group of dense features from the examined visual 
sample. The computed information is later employed as input for the Bi- 
LSTM module to compute the final result (real, FS, and FR). In the 
presented approach, we have adopted a pre-trained CNN model namely 
the Inception-Resnet-v2 framework, and modified it by proposing the 
swish activation approach. The basic reason to employ a pre-trained 
model at the CNN unit of the AUFF-Net is that it is efficient to calcu
late a more robust set of key points over an extensive, publicly available 
database namely the ImageNet dataset. During the training procedure of 
such a CNN model, the initial layers are concerned to capture low-level 
information like the face texture and edges, etc. While the advanced 
layers are concentrated to extract the task-explicit key points that are far 
away from human intuitive understanding. More specifically for deep
fakes detection, the initial layers learn the target position, while the 
deep layers are concerned with recognizing the manipulation. As a pre- 
trained framework has already learned substantial information and 
gained huge sample structure knowledge, hence, its employment to 
accomplish a new job like using it for deepfakes identification minimizes 
the network training time and increases the model recognition accuracy. 
A visual description of the ‘transfer learning’ procedure is elaborated in  
Fig. 4. The employed approach is proficient in extracting the efficient 
key points from the input sample i.e., face orientation, nose, and eye 
alignments, etc. 

3.2. Custom CNN module: inception-swish-ResNet-v2 

Inception-ResNet-v2 is a renowned CNN framework that is empow
ered to attain an effective group of image key points to perform several 
classification tasks. The structure of Inception-ResNet-v2 consists of a 

Fig. 3. A detailed view of the presented framework for the FS and FR deepfakes detection.  
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Fig. 4. A visual depiction of transfer learning.  

Fig. 5. Architecture view of the Inception-ResNet-v2.  
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mixture of Inception and residual modules (ResNet) interconnection. 
The main reason to employ the Inception-ResNet-v2 model for deep 
features computation is that this model can minimize the performance 
reduction issues and avoid model over-fitting problems that can occur 
from deep network structures and provide a concise set of image fea
tures. The inception model comprises several convolutions, and pooling 
layers, together with key-points maps that are combined to form a single 
feature. While, the ResNet framework is famous for its skip links, which 
efficiently join the key points from the previous to the next layer. Such 
structure of the ResNet model permits it to extract a robust group of 
sample characteristics and attain better performance in a deep network. 
The Inception-ResNetv2 model uses the benefits of both the Inception 
and ResNet models and is capable of achieving better recognition per
formance. The Inception-ResNet-v2 network contains Inception-Resnet- 
A, B, and C blocks as shown in Fig. 5. The first block of the Inception- 
ResNet-v2 approach is responsible for calculating the low-level sample 
features like edges, face, nose, and eye orientations of the targets. The 
second block is concerned to capture the texture, and sharpness of 
samples and locating the target location, while the last block is focused 
to capture high-level sample information like people recognition to 
determine the forensic alterations from the visual samples. The basic 
structure of the Inception-ResNet-v2 contains the convolutional, acti
vation, and pooling layers with the ReLU activation method. We have 
presented a novel Inception-swish-ResNet-v2-based approach by 

employing the swish activation on the Inception-ResNet-v2 model. The 
introduced activation method permits the framework to boost its 
learning via showing minimum loss and a better ability to learn complex 
sample patterns. The comprehensive depiction of the Inception-swish- 
ResNet-v2 approach is illustrated in Fig. 6. 

Comprehensive details of all mentioned layers are given in the below 
sections: 

3.2.1. Convolution layer 
This layer is responsible to extract the deep features from the given 

video sample by using Eq. (1): 

FL
i = f(

∑

j∈Ni

(KL
ji ∗ FL− 1

j + aL
i ) (1) 

Here, L shows the total framework layers, while F denotes the ob
tained feature vector with filter size K, and * is representing the 
convolution operation. While a is showing the bias value with Ni is 
depicting the feature maps. In our approach, all video frames are resized 
to 229×229 to meet the model requirements. The employed approach 
consists of a total of 825 convolution layers used for deep key points 
computation. 

3.2.2. Activation layer 
To boost the video-based fabrication detection empowerment of the 

suggested framework, we employed the Swish activation approach in 

Fig. 6. A detailed depiction of the proposed Inception-swish-ResNet-v2 model: (a) stem block, (b) Inception-swish-ResNet block A, (c) reduction module, (d) 
Inception-swish-ResNet block B, (e) reduction B, and (f) Inception-swish-ResNet block C. 
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place of the ReLU function in the proposed Inception-swish-ResNet-V2 
framework after all convolutional 2-D layers. The employed activation 
function is non-monotonic smooth unrestrained above and limited 
below in its learning curve. The mentioned attributes of the swish 
activation approach allow the CNN model to avoid saturation and over- 
fitting issues of a framework. The swish activation approach is uncom
plicated by definition, and research shows that it outperforms the most 
popular ReLU activation strategy in the challenging study fields of image 
categorization and object identification [28]. The core factor for the 
effective results of the swish approach is that the ReLU method blocks 
the propagation of negative numbers inside the framework feature en
gineering process which leads to the elimination of crucial sample data. 
Contrary the swish technique allows the slight negative numbers to 
circulate through the network which is crucial for calculating compli
cated behavior from examined samples in the dense models. Fig. 7 
provides a graphic representation of the swish and ReLU activation 
techniques. The swish approach is mathematically represented as 
follows: 

s(f) = f × sigmoid(αf) (2) 

Here, f is the input, while α is showing the per-channel trainable 
parameter. Furthermore, the quick learning ability of the introduced 
activation method also makes the Inception-swish-ResNet-v2 model 
computationally more efficient as it requires minimum time for training 
in comparison to other activation functions. 

3.2.3. Pooling layer 
This layer is employed to minimize the feature dimension by 

removing the unnecessary key points. In the proposed approach, the 
computed key points are taken from the average pooling layer which is 
later propagated to the Bi-LSTM module for the temporal sequence 
analysis. The Inception-swish-ResNet-v2 approach calculates the feature 
vector with the dimension of 1536 from a single frame which is later 
used to accomplish the deepfakes detection task. 

3.3. Bi-LSTM 

The recurrent neural networks (RNNs) are proficient in analyzing the 
hidden progressive configurations of time-based data, however, they 
suffer from the vanishing gradient issue which obstructs the model pa
rameters from being correctly updated during the backpropagation 
procedure. Such structure of RNN causes to degrade of the video clas
sification performance of a model. To tackle the issues of the RNN 
model, the LSTM approach is presented which has the same architecture 
as RNN with added memory cells” as a substitute for its weight update 
procedure and the added memory cells can store the information for a 
long period. Suppose the computed feature vector from the CNN module 
is presented by vt, while the final hidden state and memory cell are 
presented by st− 1 and mt− 1, respectively, then the Equations from 3 to 7 

are used to implement the LSTM approach. 

xt = ς(ωvxvt + ωsxst− 1 + ωmxmt− 1 + βx ) (3)  

Ft = ς(ωvFvt + ωsFst− 1 + ωmFmt− 1 + βF) (4)  

mt = Ftmt− 1 + xttanh(ωvmvt + ωsmst− 1 + βm) (5)  

yt = ς(ωvyvt + ωsyst− 1 + ωmymt + βy) (6)  

st = yt .tanh(mt) (7) 

Here, ς represents the sigmoid activation method, while for time t, 
the x, F, y, and m are showing the input, forget, output gates, and 
memory cell state, respectively. While the ω and β are denote the 
weights and biases, respectively. From the perspective of deepfakes 
detection and classification, the major limitation of the LSTM approach 
is that it computes past information only. To capture the entire context 
of suspected samples, it is mandatory to take both information on both 
ends for example past and future. Hence, for this reason, we have 
employed the bidirectional LSTM (Bi-LSTM) approach for deepfakes 
identification as it is capable of storing the information on both ends. A 
graphic elaboration of Bi-LSTM is given in Fig. 8. 

The Bi-LSTM approach comprises two types of hidden units namely 
the forward (sf

t ) and backward (sb
t ) hidden layers, respectively. The sf

t 
takes input in forwarding manners of time like t=1,2,3,…., T, while the 
sb
t accepts input in reverse manners of time t like t= T, T-1,…1, respec

tively. Finally, the resultant value st is calculated by joining the values of 
both sf

t and sb
t . Equations from 8 to 10 are used for the implementation of 

the Bi-LSTM approach. 

sf
t = tanh( ωf

vsvt + ωf
sss

f
t− 1 + βf

s) (8)  

sb
t = tanh( ωb

vsvt + ωb
sss

b
t+1 + βb

s ) (9)  

yt = ωf
sss

f
t +ωb

sss
b
t + βy (10)  

3.4. Added dense layers 

After the Bi-LSTM layer, three dense layers along with the ReLU 
method and dropout layers are incorporated. The added layers allow the 
model to emphasize the altered visual areas while eliminating unwanted 
background data and improving deepfakes recognition performance 
under varying transformation conditions, like changes in intensity, hue, 
and facial area positions. The introduced layers produce huge proba
bilities by combining the information coming from the previous layer 
with the activation units of coming layers; therefore, a dropout of 0.25 is 
used to evade the framework over-fitting issue. After this, the calculated 
key points are passed to the softmax layer. 

3.5. Softmax layer 

The final layer of our model the softmax layer is focused on cate
gorizing the input sample into the defined classes. In our case, this layer 
is used to categorize the suspected video sample into three classes 
namely the real, FS, and FR deepfakes, respectively. The presented 
technique combines a softmax activation method in the final fully con
nected (FC) layer to predict the comparative likelihood of three output 
neurons. Eq. (11) is used to compute the softmax activation method 
given as: 

δ(Zx) =
exp (Zx)

∑n− 1
m=0exp (Zm)

(11) 

Here, (Zx) and (Zm) are presenting the input and final vectors, while 
m is showing the total number of outcome categories which are three for 
our case. Fig. 7. ReLU vs. Swish activation method [63].  
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3.6. Loss method 

The loss method assists to analyze the framework’s effectiveness. For 
the training samples, the model employs automatic learning to detect 
the patterns and mark estimations. The loss method computes the degree 
of deviation in the real and estimated results. The method is repeatedly 
refined in the procedure of the model training till the optimized values 
are attained to reduce the prediction error. For the categorization tasks, 
the softmax layer uses the cross-entropy loss function [23] for estimating 
the variance in the predicted and original scores and is effective to 
handle the class imbalance problem as well. The mathematical expla
nation of the cross-entropy loss function L is given as: 

L =
1
n
∑m

j=1
log

(
esm

∑
kesj

)

(12) 

Here m is the total neurons in the output layer and sm is the input 
vector. 

3.7. Explainability module 

One of the major requirements for a video manipulation approach is 
to make them explainable to increase their truthfulness which can assist 
the forensic analyzers to use them for processing legal claims. To 
accomplish this, we have proposed an explainability unit in our frame

work. More specifically, we have used the Grad-CAM approach that uses 
the gradient of the output classes concerning the key points map to 
visualize the class discrimination power of a framework. The visibility 
power of the Grad-CAM approach to view the inner working of a CNN 
model allows them to become more transparent. Such behavior assists 
the forensic analyzers in understanding which parts of the samples are 
important to determine the manipulations made within the visual con
tent [64]. The internal working of the Grad-CAM is depicted in Fig. 9 
which is clearly indicating that the backpropagation gradient of the mth 

output class against the kth feature map is elaborated as ∂sm

∂f l . A weight 
against each lth feature map is attained by employing the gradient 
approach over its pixels and computing an average value as given in the 
Eq. (13): 

wm
l =

1
Z
∑

i

∑

j

∂sm

∂f l
ij

(13) 

Here, wm
l is depicting the weight computed against the lth feature map 

with respect to the m target class. While sm is showing the confidence 
score of each m target class before passing the softmax method. Whereas, 
f l

ij is denoting the element (i,j) belonging to the lth key points map 
containing an accumulative of Z pixels. The Grad-CAM approach uses 
the ReLU method to perform the weighted summation of all key points 
plots to produce the category activation heatmaps as given in Eq. 14: 

Fig. 8. A pictorial view of the structure of the Bi-LSTM model.  
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Hm
GC = ReLU(

∑

l
wm

l f l) (14) 

Here, Hm
GC is representing the class activation heatmaps against each 

class m. The major purpose of the activation method is to lay emphasis 
on the region of interest and overwhelm the unnecessary information in 
the feature maps as we are concerned with the key points having a 
positive impact on the class of interest. Finally, a mask mMask for each 
frame from all classes is computed to show the different areas of the 
suspected samples with different colors by using Eq. 15: 

mMask =
∑3

m=1
Hm

GC (15) 

The computed mask mMask contains extensive information about the 
sample and showed it with different colors. In our case, the red color is 

depicting the most significant areas where the manipulations occur. 

3.8. Overview of the presented method 

A thorough explanation of the entire introduced approach for FS and 
FR deepfakes detection is elaborated in Algorithm 1. The frames from 
the input videos are resized to the fixed resolution of 229×229×3 pixels 
which are then passed to the CNN module for deep features computa
tion. The Inception-swish-Resnet-v2 model computed the key-points 
vector of the number of frames (nof)×8×8×1536 dimensions. The 
computed key points are restructured and passed as input to the Bi-LSTM 
framework. The flattening layer is introduced to convert the key points 
to a 1-dimensional vector. Then, a sequence of 3 FC layers along with the 
ReLU method is introduced. The dense layers produce extensive prob
abilities by joining the coming data from one layer to all activation units 

Fig. 9. A visual description of the GradCam module.  

Fig. 10. Samples from the FaceForensic++ dataset, first row: real videos, second row: FS deepfakes, third row: FR samples.  
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of coming layers; so, a dropout rate of 0.25 is applied to prohibit the 
model over-fitting issue. Lastly, the final layer called the softmax layer 
generates the resultant classification score. Further, we have discussed 
the big(O) notation to elaborate on the time complexity of the proposed 
approach. The time complexity of a spatial along with Bi-LSTM model is 
primarily determined by the number of time steps in the input sequence 
and the number of hidden units in the model. Let’s assume we have a 
sequence of length N and H hidden units. For the forward pass of the Bi- 
LSTM, where the sequence is processed from the beginning to the end, 
the time complexity can be approximated as O (N *H). For the backward 
pass, where the sequence is processed in reverse order, the time 
complexity is also O (N *H). Since the proposed approach employs 
bidirectional feature sequence analysis, the overall time complexity is 
the sum of the forward and backward pass complexities, resulting in 
approximately O (2 * N * H), which can be simplified to O (N *H). 

Algorithm 1. Steps for visual manipulation detection using the AUFF- 
Net approach. 

4. Results 

Here, we have given the particulars of the employed data sample for 
model evaluation along with the used performance measures. Moreover, 
we have executed several experiments to show the robustness of our 
technique for FS and FR detection. 

4.1. Dataset 

To assess the visual fabrication detection accuracy of our proposed 
approach, we have used a large publically accessible database namely 
FaceForensic++ [65]. This dataset is a large-sized dataset of altered 
videos that contain 1000 real and 4000 forged samples of several sub
jects. The videos are fabricated by using several alteration approaches 
like DeepFakes [66], FaceSwap [65–67], Face2Face [68], and Neu
ralTextures [69]. Moreover, the samples are available for three quality 
levels which are as follows: high-quality (Raw or C0), slightly com
pressed (C23), and deeply compressed (C40). We have considered the 
samples of all quality levels for the FaceSwap, and Face2Face visual 
manipulations. A few examples from the employed repository are given 
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in Fig. 10. 

4.2. Evaluation metrics 

For performance measurement, various standard evaluation mea
sures called precision, recall, F1-measure, accuracy, and AUC/ROC 
curves are utilized. The technical details of utilized performance mea
sures are given in Eq. (16) to Eq. (19), respectively. 

Pr =
ď

ď + Ɣ
(16)  

Re =
ď

ď + ʠ
(17)  

Accuracy =
ď + ŕ

ď + ŕ + Ɣ + ʠ
(18)  

F1 =
2 × Pr × Re

Pr + Re
(19)  

Where ď indicates the true positives (correct forged detected exam
ples), and ́r represents true negatives (true pristine detected examples). 
Moreover, Ɣ determines the false positives (incorrectly classified real 
examples), and ʠ shows false negatives (incorrectly classified deepfakes 
examples). 

4.3. Implementation explanation 

The framework is executed in Matlab 2021 software and executes on 
Nvidia GTX1070 GPU-based computer system. The utilized data sample 
is classified randomly into 70:10:20 parts to generate three individual 
data parts namely the training, validation, and test sets. The given set
tings are used to implement the proposed approach.  

i) For all channels, the mean is subtracted.  
ii) The video frames are set to 299-by-299 resolution to meet the 

framework requirement.  
iii) The network is tuned for 30 epochs with a learning rate of 0.0001 

and batch size of 16. 

For the introduced work, a visual demonstration of the optimal loss 
graph is given in Fig. 11 from which it can be visualized that our 
approach has reached the best loss value of 0.00018 at the epoch rate of 
30. Moreover, we have shown the train time model accuracy learning 
graph in Fig. 12. It is visible that our framework has shown a training 
accuracy of 99.88 %. The values reported in both figures are clearly 
explaining the better learning behavior of our model. 

4.4. Evaluation of the proposed framework 

Here, we have discussed the deepfakes identification results of our 
framework via using several experiments. Initially, we exhibited the 
class-oriented deepfakes detection performance and then showed the 
performance entirely. Moreover, we have analyzed the explainability 
power of our approach along with the discussion of model performance 
for several adversarial attacks as well. 

4.4.1. Class-wise performance evaluation 
For an accurate forensic model, it must have the power to correctly 

distinguish among various types (FS, FR of visual manipulations and can 
separate the real data as well. To check this ability of our approach, we 
have performed an experiment on the FaceForensic++ dataset. 

In the first phase, the box graphs are used to demonstrate the ac
quired category-oriented precision and recall scores as box diagrams are 
capable of effectively explaining the attained performance values by 
showing the minimum, maximum, and mean results together with the 

uniformity and deviation of the results (Fig. 13). The scores in Fig. 13 
clearly indicates that our approach can effectively identify the Real, FS, 
and FR-based deepfakes content. 

To further show the deepfakes detection power of our model from the 
visual samples, we have reported the accuracy, F1 score with the error 
rate in Fig. 14. One can clearly see from Fig. 14 that the presented 
framework is effective in categorizing the visual samples as Real, FS, and 
FR deepfakes by attaining an average error rate of 1.03 %. More clearly, 
the introduced AUFF-Net model has shown the F1 measures of 99.55 %, 
99.13 %, and 98.21 % for the Real, FS, and FR deepfakes, together with 
the error scores of 0.45 %, 0.87 %, and 1.79 %, respectively. Further
more, the presented AUFF-Net approach exhibits better class-wise 
categorization accuracy results of 99.74 %, 99.21 %, and 98.32 % for 
the real, FS, and FR deepfakes. The major cause for the effective cate
gorization outcomes of our method is the addition of the Swish activa
tion method which enhances the feature engineering capability of the 
presented framework at the spatial level. Further, the introduced FC 
layers permit the technique to effectively tackle the model over-tuned 
data. 

Next, the confusion matrix is shown to further discuss the categori
zation performance of the proposed framework (Fig. 15). The employ
ment of only an accuracy evaluation measure can be ambiguous for 
datasets with class imbalance problems. A model can attain results 
higher than 90 %, however, this performance is not good for scenarios 
where 90 % of images are from one class. Therefore, the confusion 
matrix effectively elaborates the categorization results of a model by 
indicating the real and estimated scores of all classes. The presented 
AUFF-Net model has shown the TPR rates of 99.43 %, 98.94 %, and 
98.01 % for the real, FS, and FR deepfakes, respectively. Moreover, we 
have attained the minimum false positive rate of 0.09 % among the FS 
and real classes, which depicts that the model has correctly identified 
and differentiated the real and FS classes. However, for the real and FR 
classes, we have attained the false positive rate of 1.02 %, which in
dicates that little association has been found between the real and FR 
deepfakes. It can be because of the reason that for the FR deepfakes, only 
the expressions of identity are manipulated without making any changes 
to the facial attributes. From the conducted analysis it is quite obvious 
that our framework is proficient in the multi-class environment and can 
robustly recognize the FS and FR deepfakes from pristine samples. 

Furthermore, the AUC-ROC graphs are elaborated (Fig. 16) for the 
real, FS, and FR deepfakes detection as these curves are empowered to 
robustly elaborate the recognition capability of the model for numerous 
classes. AUC-ROC graphs are the crucial model assessment metric for 
evaluating the behavior of an approach in categorizing the visual sam
ples into respective classes. ROC specifies the likelihood curve while the 
AUC elaborates on the measurement of separability. In the presented 
approach, it assists in showing how much the technique is capable of 
differentiating the input samples and classifying them into real, FS, and 
FR, classes. The AUC near 1 shows that an approach is effective for 
classification, signifying a higher level of separability and Fig. 16 is 
clearly depicting that the introduced approach can correctly classify the 
videos into their respective classes due to its higher recall ability. 
Further, the proposed approach has taken a training time of 23 hours 
and 40 minutes, while an average time of 1 second to test a video sample 
of 1 minute that shows the efficacy of the suggested work as well. 

The performed analysis presents that our approach namely the 
AUFF-Net model is robust to identify and categorize the FS and FR-based 
deepfakes samples and is empowered to categorize the original samples 
from the manipulated data. The major reason for the robustness of our 
technique is the inclusion of spatial and temporal information which 
assist in calculating a nominative group of visual characteristics and 
contribute to improving the recall rate of our approach. 

4.4.2. Comparative analysis of the proposed AUFF (Inception-Swish- 
ResNet-v2 along with Bi-LSTM) model with other activation methods 

The objective of this experiment is to investigate the impact of 
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various activation methods tested in the proposed framework. For this 
purpose, we have examined the performance of the presented network 
with ReLU, PReLU LeakyReLU, and swish activation methods, and the 
results are shown in Table 2. We have selected the mentioned activation 
methods for comparing the model results as these functions are heavily 

explored for image classification and considered standard. The scores 
exhibited in Table 2 are effectively indicating that the proposed 
Inception-Swish-ResNet-v2 along with the Bi-LSTM model outperforms 
the other activation methods-based model variants. The key cause for 
the effective results of the Inception-Swish-ResNet-v2 model is due to 

Fig. 11. Loss graph pictorial demonstration.  

Fig. 12. Visual depiction of model training graph.  

Fig. 13. Pictorial representation of obtained class-oriented Precision and Recall scores for the real, FS, and FR deepfakes detection.  

M. Nawaz et al.                                                                                                                                                                                                                                 



Applied Soft Computing 162 (2024) 111854

15

the non-monotonic characteristic of the employed activation approach. 
This nature of the swish method permits the output to decline even for 
the high input scores which eventually enhances the information storage 
ability of the introduced framework and authorizes it to compute a 
robust key points set of underlying visual samples. Whereas the 
remaining activation techniques lack this attribute, therefore, the 
Inception-Swish-ResNet-v2 along with the Bi-LSTM framework shows 
the highest performance values in terms of all employed evaluation 
measures comparatively to the rest of the activation methods. 

4.4.3. Explainability 
The role of multimedia forensic systems is very important, especially 

in those scenarios where such models can be used to process legal 
claims. The employment of such techniques demands the explainability 
or reasoning of suspicious areas that have caused nominating a sample 
as being real or fake. To show this, we have designed an evaluation to 
check the explainability power of our approach. To accomplish this task, 
we have attained the heatmaps related to the final layer of the intro
duced technique with the employment of the Grad-Cam tool [68]. In  
Fig. 17, we have shown the heatmaps both for the FS and FR. Fig. 17 
clearly shows that the presented AUFF-Net method emphasizes those 
areas of a suspected sample where the modification exists. The key 
reason for the improved explainability power of the AUFF-Net model is 
because of the better key points engineering capability of our approach 
as it utilizes both the spatial and temporal sequences which empower it 

to effectively tackle the forensic alterations of visual data. 

4.4.4. Performance analysis over adversarial attacks 
One of the major hindrances to the generation of effective deepfakes 

recognition systems is the occurrence of several adversarial operations 
among which the most prominent is the compressed samples. The videos 
which are posted on social sites are subject to severe compression. 
Moreover, other post-processing attacks involve the incidence of noise, 
blurring, and light variations. Therefore, a robust deepfakes detection 
approach must be capable of performing accurately for such data sam
ples. To validate the deepfakes identification results of our model in the 
presence of such attacks, we have performed an experiment. 

The samples in the employed dataset namely the FaceForencsic++

are present at three quality levels and contain extensive compression 
and light variations attack. Moreover, we have added further pertur
bations like noise, blurring, zooming, and rotational variations in sam
ples at the evaluation stage to assess the effectiveness of the presented 
approach over adversarial attacks. We translated the samples into a 
width and height span of [-2, 2] and performed the rotation and zoom 
operation with the span of [-0.2, 0.2]. Moreover, clutter and blur are 
also added to the samples with different window dimensions i.e., 5,7, 
and 9, etc., to increase the diversity of the evaluation samples. This 
experiment assists us in validating the robustness of our approach to 
adversarial attacks as the model is not trained on such perturbations and 
only faces them during the test time. 

We have tested our approach for all quality stages with added 
adversarial operations and the obtained scores are presented in Table 3. 
The results demonstrated in Table 3 depict that our approach is profi
cient in performing well under the presence of several perturbations as 
well. Even for low-quality samples with a quality level of 40 and added 
adversarial attacks, the presented approach shows effective results for 
both FS and FR deepfakes with accuracy scores of 98.41 %, and 98.01 %. 
So, it is quite clear from the scores given in Table 3 that our model is 
competent in identifying the manipulated content even for unseen 
adversarial attacks during training which is clearly indicating its effec
tiveness for visual manipulation detection. 

4.5. Comparative analysis with base models 

We accomplished an evaluation to compare the results of our sug
gested strategy with several base models like VGG16 [69], GoogleNet 
[70], ResNet50 [71], DenseNet [72], and MobileNetv2 [73]-based 
Bi-LSTM models for the detection and classification of visual 

Fig. 14. A visual demonstration of the obtained F1-Measure and error scores 
for the Real, FS, and FR deepfakes. 

Fig. 15. Confusion matrix attained by the AUFF-Net.  

Fig. 16. The AUC curve attained by the AUFF-Net.  
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manipulations. The attained values are given in Table 4 from where it is 
quite evident that the proposed framework is more effective compared 
to the rest of the techniques in classifying the visual manipulations from 
the video samples. More clearly, the GoogleNet-based Bi-LSTM 
approach depicts the lowest results with an accuracy of 91.53 % and 
92.19 % for the FS and FR deepfakes. The second lowest result values are 
shown by the MobileNetv2-based Bi-LSTM with scores of 91.86 %, and 
92.32 % for the FS, and FR classes, as this approach presents a light
weight architecture, however, at the compromise of performance 
degradation. While the DenseNet-based Bi-LSTM model shows compa
rable results with accuracy values of 96.30 %, and 94.35 % for the FS 
and FR deepfakes respectively. Comparatively, the proposed improved 
AUFF-Net model indicates the highest accuracy number of 99.21 % and 
98.32 % for the FS and FR deepfakes. Descriptively, for the FS deep
fakes, the relative base models attain an average accuracy score of 
93.97 %, which is 99.21 % for our case, and the proposed model has 
given a performance improvement of 5.24 %. Similarly, in the aspect of 
the FR visual fabrications, the competitor frameworks exhibit an 
average accuracy score of 92.81 %, which is 98.32 % for the proposed 
model. So, for the FR deepfakes, we have shown a performance 
improvement of 5.51 % which indicates the effectiveness of the sug
gested work. The key reason for this effective recognition of our 
approach is due to the improved key points nomination capability of the 
AUFF-Net network which assists it in robustly identifying the altered 
regions and improves the deepfakes recognition results of our work. 
While the other approaches lack to capture the in-depth details of the 
manipulated samples, therefore, our model is more competent than 
other techniques. 

4.6. Comparison with new methods 

In this section, we have executed an evaluation to compare the 
deepfakes classification results of the introduced work with the latest 
techniques [56,74–76] employing the same dataset. The detection per
formance of our model both for the FS and FR deepfakes is compared via 
employing the standard evaluation metrics namely the accuracy and 
AUC measures, respectively. The obtained analysis shown in Table 5 
elaborates on the effectiveness of our work compared to other tech
niques. Afchar et al. [56] proposed two approaches namely Meso4 and 
Mesoinception4 for visual manipulation detection and attained the best 
results with the second model. Similarly, the work in [74] employed a 
DL framework for visual manipulation detection with the best accuracy 
value of 97.17 % for the FR deepfakes. Nguyen et al. [75] proposed a 
model namely the Capsule network for the accurate identification of 
digital forgeries made within videos and showed the best accuracy re
sults of 97.80 % for the FS deepfakes. The method in [76] proposed a DL 
approach for identifying the alterations made within the video by 
measuring the difference between the facial region and the background. 
This work showed the highest accuracy of 98.69 % for the FS deepfakes. 
Whereas, in comparison, the proposed approach attains the highest re
sults for both the FS and FR deepfakes detection. Descriptively, for the 
FS deepfakes, the nominated approaches attained average accuracy and 
AUC scores of 89.17 %, and 94.55 %, which are 99.21 %, and 99.86 for 
the presented strategy. So, in the case of FS deepfakes, we have given the 
performance improvements of 10.04 %, and 5.31 % for the accuracy and 
AUC evaluation measures. Similarly, for the FR deepfakes, the peer 
models have shown the average accuracy and AUC numbers of 89.45 %, 
and 94.44 %, which is 98.32 %, and 99.41 for our method. Therefore, 

Table 2 
Performance assessment of the AUFF-Net with different activation approaches.  

InceptionResNet-v2-based Bi-LSTM model with different Activation method Precision (%) Recall (%) F1-Measure (%) Accuracy (%) 

FS FR FS FR FS FR FS FR 

ReLU  98.97  97.86  97.63  96.81  98.29  97.33  98.93  97.79 
PReLU  99.38  98.11  97.99  97.23  98.68  97.66  99.29  98.09 
LeakyReLU  99.64  98.19  98.31  97.52  98.97  97.85  99.67  98.13 
Swish  99.93  98.41  98.94  98.01  99.13  98.21  99.21  98.32  

Fig. 17. Visual depiction of the heatmaps attained by the Grad-Cam module of the AUFF-Net model to show the explainability empowerment of the suggested 
framework. The first four rows show the results of the FS deepfakes detection. While the later four rows show the results of the FR deepfakes detection. 
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the proposed approach has shown performance gains of 8.87 %, and 
4.96 % for the accuracy and AUC measures over the FR deepfakes 
respectively. 

The key factor for the accurate deepfakes detection results of the 
suggested framework is that the work in [56] is unable to perform well 
for the low-quality visual content, while the approach in [74] is not 
robust to highly compressed samples, whereas the methods in [75,76] 
are suffering from the model over-fitting problem. The proposed 
approach has better tackled the limitations of existing works by pro
posing a more effective framework that employs both the spatial and 
temporal information of video frames and presents the complex content 
transformations more reliably. Therefore, we can say that our technique 
is more effective in detecting both FS and FR deepfakes. 

4.7. Generalization ability testing 

Here, we experimented to test the introduced model in cross-dataset 
evaluation. The major reason for this experiment is to check the 
generalization power of our technique. For this reason, we have trained 
the framework on the FaceForensic++ data sample and tested it on the 
World Leaders (WLDR) [14] repository. The WLDR [14] dataset contains 
visual examples of five subjects and varies in length from a range of 
10 sec to 2.5 min. Also, the videos are taken at 30 fps in mp4 format. The 
major reason to select the WLDR [14] dataset is that it contains the 
samples for both FS and FR deepfakes. The obtained values are exhibited 
with the help of a boxplot in Fig. 18 as it better provides the elaboration 
of the obtained values. The reported results in Fig. 18 indicate that our 
model has undergone performance degradation over the cross-dataset 
evaluation in comparison to the intra-dataset evaluation case. The 
major factor for the degradation of model results is due to the fact that 
the FaceForensics++ dataset was created by employing computer 
graphics approaches while the other dataset was generated with the help 
of DL methods. However, we have somehow improved the generaliza
tion results which can serve in the field of multimedia forensic investi
gation. More clearly, we have shown the AUC value of 79.78 % for the 
FS deepfakes and 78.31 % for the FR deepfakes which elaborates the 
competence of our network to the unseen cases. 

4.8. Discussion 

Separating authentic material from artificial intelligence-generated 
bogus media is of the highest concern. Investigators have made 
numerous efforts to develop techniques for deepfakes sample identifi
cation. We have performed a critical investigation of historic approaches 
proposed for the reliable recognition of altered visual content as given in 
Table 1. However, from the analysis provided in Table 1, it can be seen 

that effective detection and classification of original and manipulated 
content is a challenging task as the approaches used for creating fabri
cated data are getting improved and ultimately resulting in the pro
duction of more complex and realistic data samples, on which the 
methods from history may not show effective results. Moreover, the 
existing approaches are not robust to real-world scenarios and post- 
processing attacks. Besides, the work from history lacks to provide a 
better aspect of model explainability which is a major requirement in the 
area of multimedia forensic analysis. Moreover, there is a need for a 
more generic model that can detect and classify several types of deep
fakes. We have attempted to better tackle the challenges of historic 
works by proposing a DL model called the AUFF-Net framework. 

The proposed approach presents a unified model that can detect two 
types of deepfakes namely FS and FR visual manipulations from the 
original content. The model utilizes both the pixel and temporal features 
of videos to perform the classification task. At the spatial level, we have 
proposed a novel CNN framework namely the Inception-swish-Resnet- 
v2 for the reliable computation of deep features. Whereas, for tempo
ral sequence analysis of videos, we have used the Bi-LSTM approach. 
Additionally, dense layers are added at the end of the model architecture 
to nominate the most significant features. Finally, the results are 
determined based on both the frame level and temporal level informa
tion to categorize a video into three classes i.e., real, FaceSwap, and 
Face-Reenactment, respectively. We have presented extensive class-wise 
categorization results of the proposed approach to show the generic 
nature of our model. The AUFF-Net has attained AUC scores of 99.86 
and 99.41 for the FS and FR deepfakes. 

Moreover, our work is capable of tackling adversarial operations like 
compression, clutter, blur, zoom, rotation, and translation attacks 
effectively. We have tested our model on different quality levels with the 
added perturbations at the test time only and have confirmed through 
the results that the presented work can be employed to effectively locate 
the forensic changes under the occurrence of adversarial attacks in vi
sual samples as well. This nature of the proposed work can assist the 
forensic analyst as the videos uploaded on social media have gone to 
severe quality reduction to save the network bandwidth. We have 
further analyzed the internal working of our work to better elaborate its 
explainability power by generating heatmaps. The computed results 
show that our work majorly focused on those areas where the manipu
lations are made. This analysis can assist in processing legal claims 
where videos can be used as proof. Moreover, to check the adaptability 
of the introduced work to real-world cases, we have performed a cross- 
corpus analysis where the model is tested on another dataset. It has been 
observed that the work has undergone some performance degradation, 

Table 3 
Evaluation of the AUFF-Net model in the incidence of adversarial operations.  

AUFF-NET results in added adversarial attacks at different compression levels Precision (%) Recall (%) F1-Measure (%) Accuracy (%) 

FS FR FS FR FS FR FS FR 

C0  99.59  98.22  99.11  98.71  99.35  98.46  99.23  98.21 
C23  99.28  98.11  98.63  97.69  98.95  97.89  99.12  98.13 
C40  98.42  98.07  98.21  97.18  98.31  97.62  98.41  98.01  

Table 4 
Performance comparison of the AUFF-Net with the base models.  

Technique FaceSwap Face-Reenactment 
Accuracy (%) 

VGG16-based Bi-LSTM  94.77  92.13 
ResNet50-based Bi-LSTM  95.40  93.05 
GoogleNet-based Bi-LSTM  91.53  92.19 
DenseNet-based Bi-LSTM  96.30  94.35 
MobileNetv2-based Bi-LSTM  91.86  92.32 
Proposed  99.21  98.32  

Table 5 
Performance comparison of the AUFF-Net with the latest deepfakes detection 
techniques.  

Technique FaceSwap Face-Reenactment 

Accuracy AUC Accuracy AUC 

Afchar et al. (Meso4) [58]  66.31 %  80.04  73.91 %  81.04 
Afchar et al. (Mesoinception4) [58]  86.78 %  94.29  81.13 %  94.19 
Li et al. [76]  96.25 %  99.07  97.17 %  99.09 
Nguyen et al. [77]  97.80 %  99.57  97.48 %  98.93 
Pan et al. [78]  98.69 %  99.79  97.57 %  98.97 
Proposed  99.21  99.86  98.32%  99.41  

M. Nawaz et al.                                                                                                                                                                                                                                 



Applied Soft Computing 162 (2024) 111854

18

however, the results are still convincing. So, based on the extensive 
experimental analysis, we can conclude that the proposed work can play 
a vital role in the field of multimedia forensic investigation. The major 
reason for the improved classification performance results of the pro
posed approach is due to the effective feature engineering ability of the 
Inception-Swish-ResNet-v2 module that results in extracting the more 
relevant set of sample features. The key cause for the effective results of 
the Inception-Swish-ResNet-v2 model is due to the non-monotonic 
characteristic of the employed activation approach. This nature of the 
swish method permits the output to decline even for the high input 
scores which eventually enhances the information storage ability of the 
introduced framework and authorizes it to compute a robust key point 
set of underlying visual samples in comparison to historic approaches. 
Further, we have performed the temporal sequence analysis as well to 
understand the changing behavior of visual samples with time which 
also assists in better analyzing the manipulation of videos. Finally, the 
addition of dense layers before the classification module facilitates the 
propagation of most related visual characteristics to execute the classi
fication task. Such overall architectural description of the presented 
work results in high recall, and explainability competence in comparison 
to other latest approaches and shows robust performance in recognizing 
the real and altered visual samples. One potential extension of our work 
is to further enhance the generalization capability of the proposed work 
and make it generic to other types of deepfakes as well. 

As the proposed work is concerned to utilize a pre-trained model and 
modifying it for the computation of dense features, however, the one 
drawback of using a pre-trained approach is that it performs resizing of 
frames before model training which results in losing the morphology of 
the samples. So, we are also motivated to design a more effective DL 
strategy as future work to overcome such limitations as well as to further 
enhance the classification performance. 

5. Conclusion 

This work has presented an end-2-end DL approach that is empow
ered to categorize a given video sample as being original, FS, or FR 
deepfakes. More descriptively, our approach is based on the assumption 
that the manipulated content not only produces frame-level artifacts but 
also exhibits extensive variations within frames. Therefore, we have 
used both spatial and temporal information by proposing a CNN-LSTM 
approach. More clearly, we have proposed a novel Inception-swish- 
Resnet-v2 CNN model to generate the dense key points from the input 
videos at the frame level. While the Bi-LSTM module is used to measure 

the temporal information. Moreover, we added three FC layers at the last 
of the network configuration to nominate the most significant features. 
Lastly, the results are determined based on both the frame level and 
temporal level information to categorize a video into three classes i.e., 
real, FS, and FR, respectively. A huge experimental evaluation is per
formed on the FaceForensic++ dataset to exhibit the robustness of our 
approach. Besides, cross-dataset evaluation is also utilized to show the 
generalization capability of our approach. Moreover, the model is 
capable of performing effectively in the occurrence of several adversa
rial operations like compressed, noisy, blurred, zoomed, rotated, and 
translated samples. Hence, it can be said that our framework is 
competent for visual manipulation classification and can help forensic 
investigators in better recognition of altered visual content. One po
tential limitation of our work is to further enhance the generalization 
capability of the proposed work and make it generic to other types of 
deepfakes as well. Further, we plan to evaluate our techniques for LIME, 
SHAP, and ELI5 models to better analyze the explainability power of our 
model. 
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