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A B S T R A C T

Lung cancer remains a significant health concern worldwide, prompting ongoing research efforts to enhance
early detection and diagnosis. Prior studies have identified key challenges in existing approaches, including
limitations in feature extraction, interpretability, and computational efficiency. In response, this study introduces
a novel deep learning (DL) framework, termed the Improved CenterNet approach, tailored specifically for lung
cancer detection. The primary importance of this work lies in its innovative integration of ResNet-34 with an
attention mechanism within the CenterNet architecture, addressing critical limitations identified in previous
studies. By augmenting the base network with an attention mechanism, our framework offers improved feature
extraction capabilities, enabling the model to learn relevant patterns associated with lung cancer amidst complex
backgrounds and varying environmental conditions. This enhancement facilitates more accurate and interpret-
able predictions while reducing computational complexity and inference times. Through extensive experimental
evaluations conducted on standard datasets, our proposed approach demonstrates promising results, highlighting
its potential to advance the field of lung cancer detection and diagnosis. Specifically, we have acquired the
precision, recall, and F1-Score of 99.89 %, 99.82 %, and 99.85 % on the LUNA-16 dataset, and 98.33 %, 98.02 %,
and 98.17 % for the Kaggle data sample, respectively which is showing the efficacy of our approach. One lim-
itation of the work is that it cannot effectively locate the samples with intense light variations. Therefore, future
research work is focused on overcoming this challenge.

1. Introduction

Lung cancer is a severe category of cancer that is initiated by an
uncontrolled progression of cells in the lung tissues [1]. Lung cancer is
broadly divided into 2 groups: non-small cell lung cancer (NSCLC) and
small cell lung cancer (SCLC). NSCLC is a more prevalent type and
typically exhibits slower growth and spread compared to SCLC [2]. Lung
cancer ranks among the most widespread and lethal malignancies
globally. According to global cancer statistics from the World Health
Organization (WHO) and the International Agency for Research on
Cancer (IARC), lung cancer consistently ranks as one of the leading
causes of cancer-related deaths. In 2021, lung cancer ranked second
globally in new cancer cases, with 2.2 million diagnoses following breast
cancer, and of the 9.96 million cancer deaths, lung cancer was the major
reason, accounting for 1.8 million fatalities [3]. While in 2022, about 2.5

million people suffered from this deadly disease, with 1.8 million de-
mises [4]. These statistics emphasize the substantial impact of lung
cancer on both incidence and mortality, underscoring the urgent need
for effective prevention and treatment strategies. Motivated by the high
mortality rate and the critical challenges in diagnosis, this research fo-
cuses on developing an innovative approach to lung cancer classifica-
tion. By leveraging the cutting-edge DL model, this study aims to
contribute to more reliable diagnostic solutions and improved patient
outcomes. Lung nodules, small abnormal growths detected in lung im-
aging, often raise concerns due to their potential association with lung
cancer [5]. These nodules, visible on chest X-rays or computed tomog-
raphy (CT) scans, can be either benign or malignant. While benign
nodules may result from various non-cancerous conditions, malignant
nodules could be indicative of lung cancer, emphasizing the importance
of thorough evaluation and monitoring. Prompt detection and

* Corresponding author.
E-mail address: ali.javed@uettaxila.edu.pk (A. Javed).

Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed

https://doi.org/10.1016/j.compbiomed.2024.109613
Received 1 August 2024; Received in revised form 13 December 2024; Accepted 21 December 2024

Computers in Biology and Medicine 186 (2025) 109613 

Available online 2 January 2025 
0010-4825/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://orcid.org/0000-0003-2653-9541
https://orcid.org/0000-0003-0308-4361
https://orcid.org/0000-0001-8130-3721
https://orcid.org/0000-0002-1290-1477
https://orcid.org/0000-0003-2653-9541
https://orcid.org/0000-0003-0308-4361
https://orcid.org/0000-0001-8130-3721
https://orcid.org/0000-0002-1290-1477
mailto:ali.javed@uettaxila.edu.pk
www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2024.109613
https://doi.org/10.1016/j.compbiomed.2024.109613
https://doi.org/10.1016/j.compbiomed.2024.109613


characterization of lung nodules play a vital role in the overall man-
agement of lung cancer, allowing for timely intervention and improved
treatment outcomes. Regular screening and follow-up assessments are
essential components in the comprehensive approach to lung cancer
prevention and care [6].

Various imaging scans are employed for lung cancer detection, with
CT scans being particularly valuable. CT scans offer comprehensive
cross-sectional views of the chest, assisting in the identification and
characterization of lung cancer or other irregularities [7]. The
high-resolution images produced by CT scans aid in distinguishing be-
tween benign and malignant lesions, enabling healthcare professionals
to determine the nature and extent of lung abnormalities. CT scans are
useful for lung cancer detection due to their ability to capture detailed
three-dimensional images quickly, making them essential for early
diagnosis and staging [8]. Additionally, CT scans are crucial in guiding
further diagnostic procedures, such as biopsies, and are instrumental in
treatment planning and monitoring the progress of lung cancer patients.
The versatility and precision of CT scans contribute significantly to the
detection and management of lung cancer [9]. While the manual
interpretation of imaging scans, including CT scans for lung tumor
recognition, has been a cornerstone in medical diagnostics, it comes
with inherent limitations. The process of reviewing and analyzing
numerous images manually can be inefficient, labor-intensive, and
susceptible to human error. Radiologists may face challenges in
consistently identifying subtle abnormalities or variations in images,
and the subjective nature of manual interpretation introduces the pos-
sibility of inter-observer variability. Moreover, as the volume of medical
imaging data increases with advancements in technology, the burden on
healthcare professionals intensifies [10].

Existing research employs image scans of different modalities for
automated lung cancer detection. AI and machine learning (ML) tech-
niques have appeared as powerful tools in processing image-based data,
and researchers increasingly leverage them for medical image analysis
[11]. These technologies outperform in recalling complicated patterns
and irregularities within medical samples, increasing diagnostic accu-
racy and efficiency. For instance, AI algorithms applied to CT scans can
swiftly and systematically analyze large datasets, aiding radiologists in
identifying subtle abnormalities that exist in tumors or nodules for lung
cancer detection. The use of these advanced techniques not only expe-
dites the diagnostic process but also contributes to the ongoing efforts to
improve early detection and treatment outcomes in medical imaging,
showcasing the transformative potential of AI in healthcare [12].
Automation also facilitates consistency in interpretation across different
healthcare settings, reducing the impact of inter-observer variability.
Implementing automated systems not only streamlines the diagnostic
procedure but also assists medical specialists in making more informed
decisions for timely intervention and improved patient outcomes in lung
cancer recognition and management [13].

Initially, traditional ML techniques were employed in lung cancer
detection, leveraging algorithms to analyze features extracted from
medical imaging data [14]. Researchers used these techniques to iden-
tify patterns and correlations indicative of lung abnormalities in images
such as CT scans. Features like shape, texture, and intensity of lesions
were considered, and classifiers were trained to differentiate between
benign and malignant conditions. While ML showed promise, it faced
limitations in handling the complexity of medical imaging data and
capturing complex patterns effectively [15]. The limitations of tradi-
tional ML in lung cancer detection included the need for manual feature
engineering, which relied heavily on domain expertise andmissed subtle
and critical information. Additionally, traditional ML struggled with the
hierarchical and nonlinear nature of complex medical image data. As a
result, these methods were less adept at automatically learning sophis-
ticated representations from raw data, potentially limiting their ability
to achieve high accuracy in tasks like early lung cancer detection. The
introduction of deep learning marked a transformative shift in lung
cancer detection [16]. Deep learning (DL) techniques, particularly

convolutional neural networks (CNNs), demonstrated extraordinary
accomplishment in the automated computation of hierarchical features
directly from raw images [17]. This eliminated the need for manual
feature engineering and allowed the model to discern complex patterns
independently [18–20]. In lung cancer detection, DL frameworks have
shown superior performance in identifying subtle abnormalities, such as
nodules or tumors, in medical images. The end-to-end learning approach
in DL facilitated the development of models capable of handling the
inherent complexity of medical image data, contributing significantly to
the precise diagnosis of lung cancer [21–23].

Despite notable successes, DL approaches employed for lung cancer
detection face challenges and limitations. One challenge is the potential
for false positives and false negatives, where the model may misclassify
non-cancerous structures or fail to detect actual tumors. Interpretability
remains a significant issue, as DL models, especially complex NNs, often
function as black boxes, hindering a clear understanding of how de-
cisions are reached. Another limitation is the requirement for substantial
computational resources, making the deployment of DL models chal-
lenging in real-time clinical settings. Moreover, DL models may struggle
with handling variations in imaging quality, protocols, and devices,
impacting their generalizability across diverse healthcare settings. The
major objective of our work is to overcome these challenges to enhance
model interpretability, optimize computational efficiency, and improve
robustness to diverse clinical conditions for the widespread and effective
implementation of DL in lung cancer detection. For this, an effort has
been made to overwhelm the issues of existing works by proposing a
novel DL framework called an improved CenterNet approach harmo-
nizing ResNet-34 with attention guidance. Descriptively, an enhanced
keypoints computation module ResNet-34, augmented with an attention
mechanism, is proposed as the backbone network of the CenterNet
model to recognize effective characteristics of lung cancer from input
samples. The adapted feature extractor network is designed to enhance
the model’s capacity to capture essential keypoints amidst complex
backgrounds and varying environmental conditions. Our approach fa-
cilitates concurrent identification and classification through an end-to-
end training strategy, showcasing robust results in a real-world envi-
ronment. The following are the main contributions of our work.

• The incorporation of an improved keypoints extraction module,
coupled with an attention mechanism, represents a significant
contribution. This enhancement allows the model to discern fine-
grained characteristics associated with lung cancer, making it more
adept at capturing subtle patterns even in complex backgrounds and
varying environmental settings.

• The use of a single-stage object detection approach enhances effi-
ciency by reducing the computational complexity associated with
multi-stage methods. This leads to faster inference times, making the
model more practical for real-time applications in clinical settings.

• Localization of the infected regions allows healthcare professionals
to locate the region of interest within lung images that contribute to
the model’s decision-making process. This transparency aids in
building trust and confidence in the model’s predictions, addressing
one of the key challenges in deep learning interpretability.

• The adoption of a single-stage object detection approach with the
enhanced feature extraction module contributes to improved accu-
racy by minimizing false positives and false negatives. This is crucial
in lung cancer detection, where misclassifications can have signifi-
cant consequences for patient outcomes.

• Extensive experimental testing of the proposed approach is accom-
plished by employing a standard dataset indicating the effectiveness
of our approach.

The remaining paper follows the given hierarchy: the existing works
related to lung cancer detection are discussed in Section 2, while the
proposed model details are provided in Section 3. The employed dataset,
metrics along with an in-depth discussion of attained results are
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presented in Section 4. Finally, the conclusion along with future work is
mentioned in Section 5.

2. Related work

In this section, a thorough review of historical studies attempted to
perform the classification of lung cancer has been investigated.

Some researchers have utilized the conventional ML approach for
lung cancer recognition. Venkatesan et al. [24] suggested a model for
effectively locating lung cancer. This study introduced a hybrid model to
locate lung cancer from the CT samples, integrating a Discrete Local
Binary Pattern (DLBP) and a Hybrid Wavelet Partial Hadamard Trans-
form (Hybrid WPHT). The model performed preprocessing with adap-
tive median filtering, followed by feature extraction using DLBP and
Hybrid WPHT. To optimize the feature selection process, an adaptive
Harris-Hawk optimization (AHHO) approach was employed, effectively
reducing feature dimensionality. The classification stage utilized the
optimal SVM (OSVM) along with the improved weight-based beetle
swarm (IW-BS) approach for parameter setting. The work [24] performs
well for lung cancer lesion recognition, however, the model needs
evaluation on a more complex and large data sample. Another frame-
work was proposed in Ref. [25] where initially, a geometric mean filter
was applied to advance the appearance of samples. Next, the K-mean
technique approach was used to identify the areas of interest. In the next
phase, the LDA algorithm was used to compute the sample features.
Finally, various classifiers were used to perform the classification task.
This work has reported the highest classification results with the ANN
classifier, however, results are reported for a small dataset. The
ML-based approaches show better results for this problem, however,
lack to tackle complex sample transformations.

The advancements in DL approaches have inspired researchers to
apply them in medical image analysis, like lung cancer recognition.
Wani et al. [1] applied a DL framework called DeepXplainer for the
recognition of lung cancer. The work utilized an interpretable hybrid
methodology that applied both CNN and XGBoost techniques for
locating lung cancer and offering transparent details for the predictions.
In this methodology, CNN automatically learns intricate features from
the input data through its numerous convolutional layers. Subsequently,
XGBoost was utilized for determining output labels based on the ac-
quired features. To enhance the interpretability of predictions, the work
integrated an explainable AI method called "SHAP" (SHapley Additive
exPlanations). The approach [1] enhances lung cancer classification
results, however, the model suffers from a high computing cost. Swain
et al. [26] employed both complex structures, such as the dense NNs like
VGG-16 and ResNet-50, and less complicated structures, represented by
the sparse NN Inception v3. DL models were used to learn keypoints
from CT images, facilitating the accurate classification of non-small cell
lung cancer. The evaluation involves 60 adenocarcinoma and squamous
cell carcinoma victims, respectively. The Inception v3 network demon-
strates impressive performance in comparison to the other two deep
nets, however, the work requires performance evaluation on a chal-
lenging and standard dataset. Naseer et al. [27] proposed an approach
for performing lung cancer classification. Initially, an improved ALexNet
approach was applied to the input samples to extract the related set of
sample information. In the next phase, the deep features were propa-
gated to the SVM predictor to execute the classification task. The
approach has reported a classification accuracy of 97.64 %, however,
the approach lacks generalization ability. Pandian et al. [28] suggested a
CNN approach in which the VGG-16 model along with the GoogleNet
framework in an end-to-end manner, was used to compute a dense set of
sample characteristics and accomplish the classification task. The
approach has reported a classification score of 98 %, however, it is not
effective in tackling the transformation alterations of samples. In
Ref. [29], a CNN approach was proposed to classify lung cancer from the
CT-Scan samples. The approach was evaluated on the Kaggle dataset and
reported an accuracy value of 96.43 %. This model presents a

lightweight approach for lung cancer classification, however, perfor-
mance needs further improvements.

Many researchers employed the concept of using the segmentation
approaches to locate the area of interest like in Ref. [30], a DL-oriented
lung nodule segmentation approach was proposed termed Wavelet
U-Net++. This approach integrated the U-Net++ framework with
wavelet pooling to commendably compute high- and low-level details of
the suspected sample, resulting in superior segmentation performance.
Specifically, the Haar wavelet transform was applied to minimize the
size of the feature keypoints in the encoder unit, facilitating the capture
of intricate details in the image, which was later segmented in the
decoder phase. The approach shows improved lung cancer nodule seg-
mentation results, however, results need further enhancements. Siddiqui
et al. [31] proposed a DL approach for recognizing lung cancer from the
CT-Scan images using a DL approach. Descriptively, the model
employed the Gabor filters in combination with an improved Deep Belief
Network (E-DBN) to extract the dense features from the input samples.
While performing the classification step, the SVM approach was adop-
ted. The model performs well in recognizing the healthy and cancer
samples of lung cancer images; however, performance results are
affected by huge variations in the nodule size. Tyagi et al. [32] also
presented a DL approach to classifying the lung cancer stages. First, an
augmentation step was applied to increase the versatility of the input
samples. After this, a Deep CNN approach was designed to extract the
visual characteristics of the samples and accomplish the classification
task. The work shows effective results in accomplishing lung cancer
recognition, however, with a high processing demand.

Various works explored the employment of hybrid DL models for
lung cancer detection. Gudur et al. [33] proposed a hybrid approach for
recognizing lung cancer from X-ray images. First, a preprocessing stage
was applied to advance the graphic appearance of the samples. After
this, the MobileNet-v2 model was utilized in combination with the ge-
netic algorithm (GA). The approach [33] shows improved lung cancer
detection results, with an increased computing cost. Devi et al. [34]
proposed a DL framework called the scalable attention mechanism
(SAM) to segment lung cancer from X-ray images and attained the
highest IoU of 0.90, however, the approach suffers from a high
computing burden. Another such DL approach was presented in
Ref. [35] where the contrast level of the input CT scan image was
elevated through histogram equalization (HE). Next, the adaptive
bilateral filter (ABF) was employed to enhance the CT scan images,
effectively reducing noise. Following the pre-processing steps, an
Ensemble Deep Convolutional Neural Network (EDNN) was utilized,
leveraging the Modified Mayfly Optimization and Modified Particle
Swarm Optimization (M2PSO) algorithm for the segmentation of lung
cancer within the pre-processed CT images. The model performs well for
noisy samples, however, it may not generalize well to real-world cases.
Mothkura et al. [36] suggested a model to recognize lung cancer from
the CT-Scan samples via utilizing various DL frameworks. First, a pre-
processing phase was utilized to enhance the visual representation of
samples. After this, three DL frameworks named vanilla 2D CNN,
SqueezeNet, and MobileNet were utilized in an end-to-end training
manner. The model attained the highest accuracy with the CNN model,
with a value of 89.21 %, however, classification results need improve-
ments. Lin et al. [37] proposed a DL approach called the fusion-based
convolutional fuzzy neural network (F-CFNN) for performing lung
cancer classification. The approach employed two convolutions and two
pooling layers for extracting the relevant information from input im-
ages, which were later classified into various categories of lung cancer.
The approach is effective in accomplishing the lung cancer classification
task, however, it is unable to tackle the image transformational changes.
In Ref. [38], the author has employed a 2DCNN approach using the idea
of ensemble learning for computing a set of dense features from the
input samples and performing the lung cancer classification task. The
approach has reported a classification score of 95 %, however, with a
computing burden.
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Now, various latest DL approaches like transformers-based tech-
niques are being heavily explored by researchers. In Ref. [39], the au-
thors employed the idea of using the swim-transformers for classifying
the lung cancer samples. For this purpose, the work employed the
pre-trained Swin-B approach and reported an accuracy rate of 82.26 %.
The approach performs well for recognizing lung cancer images from
healthy samples of CT-Scan images, however, classification performance
requires improvements. Another work was discussed in Ref. [40] where
the UNET++ was employed to segment various lung diseases. The
approach reported a segmentation accuracy of 98 %, however, with a
high computing burden. Pandit et al. [41] proposed an approach for
classifying lung cancers by using a DL framework. First, the samples
were preprocessed to minimize the sample resolution, and an

autoencoder model was utilized to learn the related group of charac-
teristics and accomplish the classification task. This approach performs
well in performing lung cancer classification, however, the work should
be evaluated on a big dataset. A detailed analysis of the work from the
past has been shown in Table 1. The conducted analysis shows that a
vast amount of work has been presented for the recognition of lung
cancers from samples, however, still a gap exists for performance
improvement.

3. Proposed method

In this work, an automated framework has been designed for the
early recognition of lung cancer samples from the CT-Scan images by

Table 1
Analysis of the existing works.

Reference Year Technique Dataset Result Limitation

[1] 2024 DeepXplainer a hybrid approach employing CNN
with the XGBoost approach

Survey Lung Cancer Accuracy = 97.43 % Computationally inefficient

[24] 2024 DLBP, Hybrid WPHT along with OSVM LUNA-16-I
LUNA-16-II

Accuracy = 99.35 %
(LUNA-16-I)
Accuracy = 99.55 %
(LUNA-16-I)

The model needs testing on a large image
dataset

[26] 2024 Inception v3 Custom dataset Accuracy = 98.92 % The approach requires testing on a standard
dataset

[30] 2024 U-Net++ framework with wavelet LIDC-IDRI mean IoU = 0.878 The model performance needs improvements
[33] 2024 MobileNet-v2 model along with GA Custom dataset AUC = 96.66 % The model is computationally inefficient
[34] 2024 SAM Kaggle X-ray dataset IOU = 0.90 The approach suffers from a high computing

burden
[35] 2024 HE along with the EDNN model SHFSU dice score = 9520 % The approach may not generalize well to real-

world cases
[31] 2023 Gabor filters along with the E-DBN LIDC-IDRI

LUNA-16
Accuracy = 98.97 %
(LIDC-IDRI)
Accuracy = 96.89 %
(LUNA-16)

performance results are affected by huge
variations in the nodule size.

[32] 2023 Deep CNN Lung-PET-CT-Dx Accuracy = 97 % The model is computationally inefficient
[36] 2023 CNN LIDC-IDRI Accuracy = 89.21 % The classification values need enhancement
[39] 2023 Swin Transformer LUNA-16 Accuracy = 82.26 % The classification score requires enhancement
[40] 2023 UNET++ Montgomery County

X-ray set
Accuracy = 98 % The model is computationally inefficient

[41] 2023 autoencoder CGAD Accuray = 99.71 % The approach requires the evaluation on a larger
data sample

[37] 2023 FCNN SPIE-AAPM Accuracy = 93.26 % The model is unable to tackle the image
transformations

[38] 2023 2DCNN LUNA-16 Accuracy = 95 % The approach is computationally inefficient
[27] 2023 AlexNet along with SVM LUNA-16 Accuracy = 97.64 % The model lacks generalization power
[28] 2022 GoogleNet along with vgg-16 Custom dataset Accuracy = 98 % The model is unable to tackle the image

transformations
[25] 2022 K-mean, LDA along with the ANN classifier Custom dataset Sensitivity = 98 % Results are reported for a small dataset.
[29] 2022 CNN Kaggle dataset Accuracy = 96.43 % Performance needs further improvements

Fig. 1. Workflow representation of the suggested framework for lung cancer recognition.
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proposing an improved DL approach. Descriptively, an enhanced key-
points computation module ResNet-34, augmented with an attention
mechanism, is proposed as the base network of the CenterNet approach
to recognize effective characteristics of lung cancer from input samples.
This automated framework follows two steps to accomplish the desig-
nated task, which are recognized as the transfer learning and recognition
steps, respectively. Fig. 1 displays the entire pipeline of the proposed
work. Firstly, data sample preparation is performed in which sample
annotations are created to determine the position of the diseased sam-
ples, which are later employed for model training. Next, we applied
CenterNet approach with an attention mechanism (AM)- based ResNet-
34 module as a feature extractor. The improved feature computation
module accepts two inputs (processed image along with its annotation).
The ResNet-34 computes a dense set of sample characteristics on which
the AM strategy assists in focusing on the more relevant set of features.
The computed features are passed to the recognition module of the
CenterNet approach to localize and classify the diseased areas. In the
last, model performance is computed by using the standard evaluation
measures utilized in computer vision. A thorough elaboration of the
introduced approach is provided in Algorithm 1.
Algorithm 1: Steps taken by the presented strategy for lung cancer recognition.

INPUT:
TS, AN
OUTPUT:
Localized Regions, ModifiedCenM, Classified samples
TS- samples used for model training.
AN – Position of diseased areas in the lung samples.
Localized Regions – Recognized lung cancer areas in investigated images.
ModifiedCenM –ResNet-34 with AM-based CenterNet model.
Classified samples – Output label for each identified diseased region.
Sample_Size ← [p q]
RoI Computation
₴₴ ← RoIComputation(TS, AN)
Modified Model
ModifiedCenM ← ResNet-34_With_AM_based_CenterNet (Sample_Size, ₴₴)
[Tr Tt] ← Distribution of data sample into train and test sets
Training Part
For sample s from Tr
Compute AM-oriented- ResNet-34 feature →ARf
End For
Trained ModifiedCenM using ARf, and compute framework train time as t_res
η_ res ← PredictDiseasedLoc(ARf)
Ap_ res ← Validate_AP (AM-oriented- ResNet-34, η_ res)
Test Part
For sample S from Tt
i) Compute features with tuned model €→βR
ii) [RoI, mAP, class] ←Predict (βR)
iii) Output image with RoI, mAP, and class
End For

3.1. Annotations

To begin our research, we carefully made detailed annotations that
are crucial for training the proposed model. The annotation process
involved the systematic identification and labeling of key areas within
medical imaging datasets, specifically tailored for lung cancer recogni-
tion in our case. This sophisticated annotation scheme was designed to
capture diverse instances of lung abnormalities, ensuring a robust and
representative training dataset. The annotations, serving as the ground
truth for the model, were crafted with precision to encompass the
complex variations in lung cancer appearances. This crucial step in
dataset preparation establishes a solid groundwork, facilitating the
subsequent training of the AM-based ResNet34-oriented CenterNet
model for accurate and context-aware lung cancer recognition. To
achieve this, we employed the LabelImg [26] software to construct
sample annotations. These annotations were generated and stored in an
XML file, capturing essential information such as the output label for
each affected region and the bbox scores necessary for outlining a

rectangular box around the infected region. Subsequently, the XML file
was used to create the training file, a pivotal component employed in
training our model. This step ensures that the model learns from the
annotated data, ultimately enhancing its ability to recognize and classify
lung cancer accurately.

3.2. CenterNet

In the context of lung cancer recognition, obtaining precise and
discriminative features is crucial for effective categorization. However,
determining an optimal set of feature vectors poses challenges, as the
model may face overfitting with large-sized keypoints vectors or miss
important object behaviors with a small keypoints-set. Employing
handcrafted feature calculation for models can result in reduced
robustness, especially when dealing with extensive variations in
magnitude, structure, shade, and location of lung abnormalities. To
address these challenges, we have chosen the CenterNet model, a deep
learning-based framework known for its capability to automatically
compute dense and reliable features directly from input samples. The
convolution filters within CenterNet analyze the structural aspects of
suspected samples, providing a means to extract discriminative and
robust features essential for accurate lung cancer identification and
recognition.

The decision to adopt CenterNet over traditional approaches like
RCNN [42], Fast-RCNN [43], and Faster-RCNN [44] for lung cancer
recognition is driven by considerations of efficiency, simplicity, and
adaptability. While R-CNN and its variants have demonstrated effec-
tiveness, they suffer from a two-stage process involving region proposal
and subsequent classification, introducing computational complexities
and potential speed limitations. Fast R-CNN improved on this by
combining region proposal and classification, yet Faster R-CNN further
introduced the region proposal network. These additional steps can
contribute to increased computational overhead, especially when
dealing with large medical imaging datasets. Moreover, the reliance on
anchor boxes in Faster R-CNN introduces challenges in handling diverse
scales of lung abnormalities. The motivation to opt for CenterNet is
rooted in its single-stage architecture, which streamlines the detection
process, making it computationally efficient and suitable for nuanced
tasks like lung cancer recognition.

In the context of lung cancer recognition, identifying key points of
interest poses challenges due to several factors, including the precise
localization of affected regions amid intense light and color variations,
as well as discerning the category of each detected abnormality. Cen-
terNet emerges as a solution with distinctive advantages for our task. By
leveraging its heat maps and adopting a one-stage recognition algo-
rithm, CenterNet excels in accurately identifying and categorizing
affected lung regions across diverse categories. The incorporation of the
Heat-map module, centered around the key points, enhances recogni-
tion performance, contributing to minimized extraction time for key-
points in our model. This strategic utilization of CenterNet addresses the
complexities associated with lung cancer recognition, ensuring effective
localization and categorization of abnormalities in medical imaging
datasets.

3.3. Modified CenterNet

The conventional CenterNet approach, employing HourGlass-104,
DLA-34, and ResNet-101 as feature extractors, possesses certain limi-
tations that underscore the need for a custom approach. HourGlass-104,
while effective in capturing multi-scale features, suffers from compu-
tational inefficiency and high memory requirements, hindering its
scalability to larger datasets. Similarly, DLA-34, although renowned for
its hierarchical feature extraction, lacks the depth necessary to recognize
sophisticated patterns in complex medical imaging data, potentially
compromising detection accuracy. Additionally, while ResNet-101 is
widely utilized for its depth and robustness, its fixed architecture limits
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its adaptability to the effective characteristics of lung abnormalities,
potentially leading to suboptimal performance in certain scenarios.
These limitations highlight the necessity of a custom CenterNet
approach tailored to address the specific requirements and challenges of
lung cancer recognition, offering improved efficiency, accuracy, and
adaptability in medical imaging tasks.

To overcome the limitations of the conventional feature extractors in
CenterNet, we have incorporated ResNet-34 with a Convolutional Block
Attention Module (CBAM). This modification aims to enhance feature
extraction by integrating attention mechanisms directly into the con-
volutional blocks of ResNet-34. The CBAM selectively emphasizes
informative features while suppressing irrelevant ones, thereby
improving the model’s power to learn meaningful patterns in lung
cancer images. By leveraging ResNet-34’s depth and the attention
mechanism’s adaptability, our custom CenterNet approach offers a
refined feature extraction process, leading to enhanced accuracy and
robustness in lung cancer recognition tasks. In addition, our custom
CenterNet approach also emphasizes a lightweight architecture to
optimize computational efficiency without sacrificing performance. This
lightweight design prioritizes resource-efficient operations, enabling
faster inference times and reduced memory footprint, which is partic-
ularly advantageous for real-time applications and deployment on
resource-constrained devices. By leveraging streamlined architectures
and efficient operations, our custom CenterNet model offers a balance
between computational efficiency and accuracy, making it well-suited
for practical use cases in lung cancer recognition and medical imaging
tasks.

The entire approach comprises 2 main steps to perform the detection
and classification of lung cancer samples which are recognized as
extracting relevant sample features and accomplishing the recognition
task. The details are defined in the subsequent sections.

3.3.1. Keypoints computation: CBAM-based ResNet-34 approach
In our approach, we focus on utilizing a backbone network, typically

a CNN, to extract keypoints maps that offer semantic and effective
representations of input lung cancer images. These keypoint maps play a
critical role in detecting target areas and facilitating classification tasks
within object detection algorithms. The choice of backbone network
greatly influences the detection performance, with more robust feature
extraction leading to improved accuracy. To enhance feature extraction
in our CenterNet approach, we adopted ResNet-34 [45] along with
CBAM [46]. ResNet-34 is a state-of-the-art CNN model renowned for its
use of identity shortcut links and residual mapping across layers, which
contribute to its high accuracy. Unlike traditional deep networks,
ResNet addresses the issue of gradient vanishing by introducing skip
connections that bypass certain layers, allowing for better accuracy and
more manageable training [47]. A comprehensive explanation of the
feature extractor is mentioned in Table 2. The ResNet-34 model consists
of 33 convolutional layers assembled into five units, each comprising
several residual blocks. These residual blocks incorporate shortcut
connections to reuse keypoint maps from previous layers, enhancing
accuracy and facilitating training. The visual representation of the re-
sidual block is given in Fig. 2. Within the residual block, the layered

components execute residual mapping through the establishment of
shortcut links, which serve to locate mapping (j). These connections
combine the outcomes with the residual function F(x) of the stacked
layers’ output, yielding the resultant value of the residual block as
follows:

T= F(j) + j (1)

In equation (1), j indicates the input, F and T show the residual method
and the outcome.

In our model, we have tailored the ResNet-34 architecture by
incorporating a CBAM-based attention block at the beginning of the
model. This modification is motivated by the desire to enhance feature
representation through the utilization of an attention strategy. The in-
clusion of the attention block enables the model to prioritize affected
areas while overwhelming unrelated background details, thereby
refining recognition results even in complex scenarios such as variations
in shades, luminance, and intensity. The CBAM unit enhances keypoints
derived from the CNN by incorporating spatial and channel-wise
attention, thereby augmenting the performance of the deep NN
(DNN). Notably, the lightweight architecture of the CBAM block in-
troduces minimal computational overhead, allowing for end-to-end
training alongside base CNNs. The structural design of the custom
network, featuring the attention block, is detailed in Table 2. Addi-
tionally, we have replaced the early 7x7 convolution and max-pooling
layer with three stacked 3x3 convolution layers to eliminate the
downsampling phase in the initial convolutional layer [48]. Further, to
reduce the computing burden, the channel size for the newly added
convolutional layers has been marked to 64.

3.3.2. Functional heads computation
The proposed approach computes several heads like heatmap, di-

mensions, and offset heads. These heads are computed to perform
essential tasks for accurate object detection and recognition in the
CenterNet approach, including classifying objects into different cate-
gories, precisely localizing objects within images, refining bounding box

Table 2
Architecture details of ResNet-34 original and modified.

Model Layer Actual Custom

Con_1 7 × 7, 64, 3 × 3 max pool [3 × 3,64] × 3, 7 × 7 Attention
Con_2_x

[
3× 3,64
3× 3,64

]

× 3
[
3× 3,64
3× 3,64

]

× 3

Con_3_x
[
3× 3,64
3× 3,64

]

× 4
[
3× 3,64
3× 3,64

]

× 4

Con_4_x
[
3× 3,64
3× 3,64

]

× 6
[
3× 3,64
3× 3,64

]

× 6

Con_5_x
[
3× 3,64
3× 3,64

]

× 3
[
3× 3,64
3× 3,64

]

× 3
Fig. 2. A visual representation of the residual block.
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predictions, providing supplementary information about object size and
shape, facilitating tasks such as pose estimation or object manipulation,
enabling detailed segmentation of objects from the background, and
enhancing overall performance by prioritizing informative features
while suppressing irrelevant or noisy information.

3.3.2.1. HeatMAP HEAD. The heatmap head in the CenterNet approach
is responsible for generating heatmaps that highlight the presence and
location of objects within an image. These heatmaps provide a visual
representation of where objects are located and their spatial extent. Each
heatmap corresponds to a specific class or category of objects that the
model is trained to detect. During training, the heatmap head learns to
produce high-intensity values at the pixels corresponding to the center
of objects, while assigning lower values to surrounding pixels. This
process enables the model to accurately localize objects within the
image. Heatmaps serve as an intermediate representation that guides
subsequent stages of object detection, such as bounding box regression
and classification. Overall, the heatmap head plays a crucial role in
facilitating precise object localization and recognition in the CenterNet
approach. The mathematical interpretation of the heatmap is provided
as:

Q̂s,t ,n = exp

(

−
(s − ês)2 + (t − êt )2

2σ2p
(2)

In Equation 2, s and t are denoting the dimensions of the original
candidate point, and êi and êj show estimated down-sampled candidate
points. σ and p represents the object size-adaptive standard deviation.
Total outputs are denoted by n and the Q̂s,t ,n indicates the center against
a detected feature with a score of 1, else, marked as background.

3.3.2.2. Dimension head. The Dimension Head in the CenterNet
approach is responsible for predicting additional properties of detected
objects, such as width, height, and depth. Unlike traditional object
detection methods that focus solely on bounding box coordinates, the
Dimension Head enriches the object representation by providing sup-
plementary information about the size and shape of objects. By pre-
dicting dimensional attributes, the Dimension Head enables a more
comprehensive understanding and characterization of detected objects.
This additional information can be particularly useful in scenarios where
precise object dimensions are crucial, such as in 3D object detection
tasks or when dealing with objects of varying shapes and sizes. The
estimation of the rectangular box containing a key object b with output
label l having dimensions (i1, i2, j1, j2) is computed by using the L1
norm.

3.3.2.3. Offset head. The Offset Head in the CenterNet approach plays a
crucial role in refining the initial bounding box predictions generated by
the model. Its primary function is to predict the offsets or displacements
required to align the estimated bounding boxes more accurately with the
ground truth annotations of objects within the image. This refinement
process helps to mitigate errors and inconsistencies in the initial
bounding box predictions, resulting in more precise object localization.
By adjusting the position and size of bounding boxes based on predicted
offsets, the Offset Head boosts the model’s aptitude to accurately
delineate the boundaries of detected objects. This fine-tuning of
bounding boxes contributes to improved object detection performance,
particularly in scenarios where objects exhibit varying scales, orienta-
tions, or aspect ratios.

3.3.3. MULTI-LOSS function
The multi-loss function, also known as the multi-task loss function, is

a key component in training neural network models, particularly in the
context of multi-task learning where the network is skilled to execute
numerous associated tasks simultaneously. In the context of the

CenterNet approach, which involves multiple heads responsible for
various tasks such as object detection, classification, and dimension
prediction, the multi-loss function calculates the overall loss by aggre-
gating individual losses from each task. The goal of the multi-loss
function is to jointly optimize the model parameters across all tasks,
ensuring that the model learns representations that are effective for all
tasks simultaneously. By incorporating information from multiple tasks
into a single loss function, the multi-loss function encourages the model
to acquire collective representations that share common underlying
patterns across tasks, assisting in enhanced generalization and
performance.

The proposed approach uses the following multi-loss M over each
mentioned head above as follows:

MCNet =Hloss + cdimDloss + coffOloss (3)

In Equation (2), MCNet is the collective multi-loss computed by the
CenterNet approach, while Hloss, Dloss, and Oloss are the loss values
computed over the Heatmap, Dimension, and Offset heads, respectively.
While, cdim and coff are constants having scores of 0.1 and 1, respectively.

The Hloss is calculated as:

Hloss =
− 1
t
∑

s.t,n,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
1 − p̂s,t,n

)α log
(
p̂s,t,n

)
.

if p̂s,t,n = 1

otherwise
(
1 − ps,t,n

)β( p̂s,t,n
)α

log
(
1 − p̂s,t,n

)

(4)

In Equation (4), t designates total key features, ps,t,n shows the real center
value of a key feature, and p̂s,t,n the estimated center value of the
candidate point. Further, α and β are the hyperparameters with scores of
2 and 4 for all our experiments, respectively.

The Dloss is computed as:

Dloss =
1
t
∑t

a=1
|ĉa − ca| (5)

In Equation (5), ĉa shows the estimated value of a rectangular box, and
ca indicates the actual dimensions. While Oloss is estimated as:

Oloss =
1
t
∑

p

⃒
⃒
⃒
⃒V̂ k̂ −

(
k
R
− k̂
)⃒
⃒
⃒
⃒ (6)

Here, V̂ shows the computed score of offset, while k and k̂ indicating the
original and down-sampled key features.

3.3.4. Detection procedure
CenterNet represents a deep learning-based methodology that di-

verges from conventional approaches like selective search and proposal
generation. In our work, the CenterNet framework operates on input
images along with corresponding annotations generated for suspected
lung cancer regions. Within this framework, CenterNet computes crucial
parameters including the center points of lung abnormalities, offsets to
the x and y coordinates, and the dimensions of bounding boxes, along-
side identifying the target class associated with each anomaly. This
approach streamlines the object detection process by directly inferring
these parameters from the input data, thereby enhancing efficiency and
accuracy in identifying lung cancer regions within medical imaging
datasets.

Overall, our research offers significant societal benefits by improving
the early detection and diagnosis of lung cancer which is critical for
increasing survival rates. The proposed framework enhances diagnostic
accuracy through advanced feature extraction and attention mecha-
nisms, reducing false positives and negatives, thereby minimizing mis-
diagnoses. Its efficient single-stage detection approach ensures faster
processing, making it suitable for real-time clinical applications and
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reducing the burden on healthcare professionals. Additionally, the
lightweight design of the framework promotes accessibility in
resourced-limited medical facilities, enabling widespread adoption and
improving outcomes for a larger population.

4. Result

Lung cancer detection poses several challenges, including the
complexity of lung nodule structures, variations in size, shape, and
texture of cancerous regions, and the influence of environmental noise
in CT images. Traditional approaches often rely on multi-stage object
detection frameworks that are computationally intensive and prone to
inaccuracies. Key issues include inefficient feature extraction, limited
interpretability of predictions, and susceptibility to false positives and
negatives, which can lead to delayed or incorrect diagnoses. The results
section highlights how the proposed framework addresses critical
challenges in lung cancer detection, including complex nodule struc-
tures, environmental noise, and inefficiencies in traditional methods. By
integrating ResNet-34 with a CBAM within the CenterNet architecture,
the framework enhances feature extraction and focuses on relevant re-
gions while suppressing background noise. This single-stage detection
model offers faster inference and improved accuracy compared to multi-
stage approaches like Faster R-CNN, with robust performance in noisy
environments. The effective localization ability of the model provides
interpretable predictions, enabling clinicians to identify key areas of
interest, which fosters trust in its application. Experimental results on
the two publicly available data samples, named the LUNA-16 and Kaggle
lung cancer datasets, demonstrate superior performance compared to
state-of-the-art methods. These contributions underline the framework’s
potential for early and accurate lung cancer detection, aiding timely
clinical interventions and improving patient outcomes.

In short, this section holds the description of the employed data
samples for network learning and testing along with the parameters
employed for model results assessment. Further, we have provided a
detailed results section indicating the effectiveness of the approach
under diverse experimental scenarios.

4.1. Dataset

For model training and testing, we have employed two publicly
available data samples named the LUNA-16 and Kaggle lung cancer
datasets. The LUNA-16 dataset, a subset of the publicly available lung
nodule dataset LIDC-IDRI, short for the Lung Nodule Analysis 2016
challenge data sample, is a widely used benchmark dataset for lung
nodule detection and classification tasks [49]. It comprises computed
tomography (CT) scans of the chest from various patients, annotated by
radiologists to identify and characterize pulmonary nodules. The
LUNA16 dataset encompasses images derived from 888 chest CT scans
along with corresponding information regarding the locations of lung
nodules. Notably, samples having a thickness of more than 2.5 mm in the
LIDC-IDRI database were omitted from the LUNA16 dataset. Each image
in the LUNA16 dataset was meticulously annotated by four domain
experts, who confirmed the existence or nonappearance of nodules. For
this study, a total of 1186 CT images were curated by processing the
actual dataset. LUNA-16 provides detailed annotations for each nodule,
including its location within the lung volume, size, shape, and density
characteristics. With over a thousand annotated CT scans, the LUNA-16
dataset serves as a valuable resource for developing and evaluating al-
gorithms aimed at improving the detection, diagnosis, and treatment of
lung cancer. For the second dataset, we have collected normal and lung
cancer-affected samples from two sources of Kaggle as provided in Refs.
[50,51], respectively. This dataset accompanies a total of 1000 lung
nodule images collected from Ref. [50] and 250 normal samples
collected from Ref. [51]. Both datasets contain a diverse range of lung
nodules, including both malignant and benign cases, captured across
different imaging modalities and settings.

4.2. Parameters

To analyze the identification, and classification results of the pro-
posed framework, several evaluators like precision value, recall mea-
sure, accuracy metric, F1-measure, and mean Average Precision (mAP)
are used. The numeric elaboration of the accuracy metric is provided in
Equation # 7.

Accuracy=
TrP + TrN

TrP + FaP + TrN + FaN
(7)

Further, the formula to compute the mAP is discussed in Equation #
8, where s and S designate the analyzed test sample and a total number
of images, respectively.

mAP : =
∑S

j=1
AP
(
sj
) /

S (8)

The pictorial representation of the precision and recall is given in
Fig. 3.

4.3. Model evaluation

In this part, we have discussed the results of our method attained on
both datasets namely LUNA-16, and Kaggle data samples with the help
of various performance measuring indicators metrics like precision,
recall, F1-Score, and accuracy.

First, we have reported our results on both data samples in the aspect
of precision, recall, and F1-Score as it provides a comprehensive
assessment of the robustness and generalization capability of our pro-
posed approach. By analyzing performance metrics across different
datasets, we gain an understanding of the framework’s power to pre-
cisely detect lung cancer across diverse patient populations and imaging
conditions. Precision estimates the amount of accurately recognized
positive cases among total estimated positive cases, showing the
network accuracy in locating lung cancer cases. Recall evaluates the
network’s aptitude to estimate all positive cases, thus indicating its
sensitivity to detecting lung cancer. The F1-score, which takes both
precision and recall, provides a stable estimation of the suggested
framework’s overall behavior. By presenting results using these metrics
across both datasets, we demonstrate the reliability and effectiveness of
our approach in lung cancer detection, facilitating its adoption in clin-
ical practice and research settings. The attained values are provided in
Fig. 4 from where it is quite visible that our approach shows significant
values across all evaluation measures for both datasets. Descriptively,
for the LUNA-16 dataset, we have acquired the precision, recall, and F1-
Score of 99.89 %, 99.82 %, and 99.85 %, which are 98.33 %, 98.02 %,
and 98.17 % for the other dataset, clearly depicting the effectiveness of
our approach.

Next, we have reported the classification results on both datasets in
the form of an accuracy measure as it is crucial for assessing the overall
performance and generalization ability of our proposed approach. Ac-
curacy measures the amount of appropriately classified test images
among all samples in the test set, providing a comprehensive evaluation
of the model’s predictive power. By presenting accuracy values on
multiple datasets, we can evaluate how well our model performs across
different patient populations, imaging protocols, and data distributions.
This allows us to assess the efficacy and reliability of our approach in
practical situations and ensures that the model’s performance is not
biased towards specific datasets. The attained accuracy scores are pro-
vided in Fig. 5 which clarifies that our model shows high classification
results on both datasets with scores of 99.63 % and 98.21 % on the
LUNA-16 and Kaggle datasets, respectively.

Next, we have discussed the results in terms of the confusion matrix
for both datasets. In the context of lung cancer detection, confusion
matrices are instrumental in evaluating the performance of machine
learning models tasked with classifying CT images such as benign and
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malignant nodules. These matrices provide a thorough analysis of the
model’s forecasts, including true positives, false positives, true nega-
tives, and false negatives. By examining the confusion matrix, domain
experts and researchers can assess the model’s accuracy in correctly
identifying cancerous and non-cancerous nodules, as well as the prev-
alence of misclassifications. This information is crucial for optimizing
model parameters, refining feature extraction techniques, and identi-
fying areas for improvement in lung cancer detection algorithms.
Moreover, confusion matrices enable the identification of specific types
of errors, such as false negatives, which are particularly critical in the
context of medical diagnosis as they may lead to missed cancer di-
agnoses and delayed treatments. The attained confusion matrixes for the
LUNA-16 and Kaggle data samples are provided in Fig. 6 from where it
can be visualized that our approach performs well for both datasets and
shows minimum false positive rates.

Finally, we have presented the localized results for lung nodule
recognition on the employed data samples. Localized results for lung
nodules are essential as they offer visual confirmation of the model’s
predictions by overlaying bounding boxes or segmentation masks onto
CT images. This visual feedback allows clinicians to verify the accuracy
of the model’s detections, instilling confidence in its diagnostic capa-
bilities. Moreover, localized results enhance interpretability by
providing insights into the features driving the model’s decisions, aiding
clinicians in understanding and trusting the underlying algorithm. The
attained results are shown in Fig. 7, which clearly indicates that our
approach can locate the lung cancer-affected areas with a high recog-
nition rate. Descriptively, we have attained the mAP score of 0.9221 for
the LUNA-16 dataset, which is 0.9140 for the Kaggle data sample,
clearly proving the effectiveness of our approach.

4.4. Comparison with base models

In this part, we have compared our results with other object detec-
tion approaches like Faster-RCNN [52], YOLOv3 [53], YOLOv3
+BBO/EE [54], YOLO v3+Adams [54], YOLOv6+ Advanced PSO [55],
and UNet + RandomForest [56]. Comparing our results with other ob-
ject detection approaches provides a crucial benchmark for evaluating
the effectiveness and competitiveness of our proposed method. We have
compared the results with other approaches in terms of accuracy metric,
and the attained evaluation is provided in Table 3. The values in Table 3
prove the effectiveness of our approach as we acquired the highest ac-
curacy results. The Faster-RCNN with adaptive anchor box has attained
comparable results with an accuracy rate of 95.66 %. The YOLOv3

Fig. 3. Pictorial illustration of (a) Precision, (b) Recall, and (c) IOU evaluators.

Fig. 4. Performance comparison of the introduced work in the form of preci-
sion, recall, and F1-Score across both datasets.

Fig. 5. Accuracy scores attained by our approach on both data samples.

Fig. 6. Confusion matrix (a) LUNA-16 dataset, (b) Kaggle dataset, attained by our approach.
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+BBO/EE also shows better results with an accuracy value of 91.20 %.
The UNet approach with the RF classifier shows the lowest classification
results with an accuracy value of 74 %. In comparison, the proposed
approach outperforms other approaches with a performance gain of
13.83 %. Faster R-CNN, UNet + RF, and YOLO models face various
challenges in the context of lung cancer detection. The main issue of the
Faster-RCNN approach is its complexity in implementation and training.
The multi-stage architecture, which includes separate components for
region proposal and object detection, requires intricate optimization and
tuning of hyperparameters. This complexity can lead to challenges in
deployment and scalability, especially in resource-constrained envi-
ronments or when dealing with large-scale datasets. Additionally, the
training process for Faster-RCNN typically requires a substantial amount
of computational resources and time, making it less practical for
real-time applications or scenarios with limited computing capabilities.
While UNet + RF struggles with accurately capturing fine details and
boundaries of lung nodules. YOLO family, on the other hand, encounters
difficulties in precisely localizing small and overlapping nodules. In
contrast, our AM-based ResNet-34 with CenterNet approach addresses
these issues effectively. By incorporating an attention mechanism into
ResNet-34, we enhance the model’s ability to focus on more represen-
tative features indicative of lung cancer, thereby improving detection
accuracy. Additionally, CenterNet’s one-stage detection architecture
streamlines the inference process, resulting in faster and more efficient
performance compared to Faster R-CNN. Furthermore, the attention
mechanism assists in capturing fine details and complex boundaries of
lung nodules, overcoming the limitations of UNet + RF. Moreover, our
approach’s robust feature extraction capabilities enable precise locali-
zation of small and overlapping nodules, enhancing detection perfor-
mance relative to YOLO. Overall, our AM-based ResNet-34 with
CenterNet approach offers a comprehensive solution that addresses the

challenges faced by existing models in lung cancer detection, leading to
improved accuracy and efficiency.

4.5. Comparison with DL models

In this section, the results of our approach are analyzed with several
DL models. Comparing our results against other established methods is
crucial for validating the efficacy and innovation of our approach. This
comparative analysis serves as a means to benchmark the performance
of our method against existing state-of-the-art DL in the field like the
EfficientNet family [57], NASNetMobile [58], DenseNet121 [59], and
MobileNetV2 [60], and MobileNet [61] as mentioned in Ref. [62]. By
assessing how our results fare against those obtained by other ap-
proaches, we gain valuable insights into the relative strengths and
weaknesses of our methodology. The attained comparison is given in
Table 4, which indicates that our approach attains the highest results in
comparison to the latest DL works with precision, recall, F1-score, and
accuracy scores of 99.89 %, 99.82 %, 99.85 %, and 99.63 %. The
second-highest classification scores are attained by the EfficientNetB2
with precision, recall, F1-score, and accuracy values of 95.50 %, 94.60
%, 95.10 %, and 95.40 %. The EfficientNetB3 also shows comparable
results with precision, recall, F1-score, and accuracy values of 95.30 %,
94.60 %, 94.70 %, and 95.40 %. While, the NASNetMobile model ach-
ieves the lowest results with precision, recall, F1-score, and accuracy
values of 88.25 %, 86.65 %, 87.65 %, and 87.45 %. Whereas, our work
shows the highest classification scores in the aspect of all evaluation
metrics. The main cause for the improved performance of the proposed
approach in recognizing the healthy and cancerous affected samples of

Fig. 7. Localized samples by the proposed work.

Table 3
Analysis of the proposed work with the base works.

Model Accuracy (%)

Faster-RCNN with adaptive anchor box 95.66
YOLOv3 80.60
YOLOv3 +BBO/EE 91.20
YOLO v3 +Adams 90.55
YOLOv6 + Advanced PSO 82.79
UNet + RandomForest 74
Proposed 99.63

Table 4
Comparison with DL models.

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%)

EfficientNetB0 95.60 93.50 95 95.30
EfficientNetB1 95.70 94.40 94.90 95.20
EfficientNetB2 95.50 94.60 95.10 95.40
EfficientNetB3 95.30 94.60 94.70 95.40
EfficientNetV2B0 95.55 94.45 94.85 95.25
EfficientNetV2B1 95.65 94.35 94.75 95.15
EfficientNetV2B2 95.45 94.55 95.35 94.95
NASNetMobile 88.25 86.65 87.65 87.45
DenseNet121 86.80 89.10 88.50 87.50
MobileNetV2 87.30 88.80 87.90 89.00
MobileNet 87.90 88.50 87.40 88.80
Proposed 99.89 99.82 99.85 99.63
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lung CT scans is the enhanced feature computation capability of the
proposed approach. The EfficientNet family models are adept at learning
hierarchical representations from images, including features at different
levels of abstraction, and are unable to fully capture the complex char-
acteristics of lung nodules relevant for accurate diagnosis. Lung nodules
exhibit diverse morphological and textural variations, and discerning
between benign andmalignant nodules often relies on subtle visual cues,
which is a challenging task. Moreover, NASNetMobile, DenseNet121,
MobileNetV2, and MobileNet exhibit specific limitations when applied
to lung cancer classification tasks. NASNetMobile, characterized by its
compact architecture, struggles with learning effective structural vari-
ations within lung nodules due to its limited capacity for capturing
fine-grained features and spatial relationships. DenseNet121, despite its
efficient feature reuse, faces challenges in accurately characterizing the
diverse texture differences present in lung nodules, potentially
compromising its discriminative power for precise cancer classification.
MobileNetV2’s lightweight design, while advantageous for computa-
tional efficiency, hinders its ability to capture the dense details and
spatial context crucial for distinguishing between benign and malignant
nodules, resulting in reduced classification results. Similarly, Mobile-
Net’s simplified network architecture, though efficient, does not
adequately capture the complex visual patterns inherent in lung nod-
ules, limiting its effectiveness in accurately classifying lung cancer from
medical images. Our approach overcomes the limitations of existing DL
approaches for lung cancer recognition by employing a combination of
innovative techniques. We enhance feature extraction using an
improved keypoints computation module based on ResNet-34
augmented with an attention mechanism, allowing for more effective
extraction of cancer-indicative characteristics from input samples. By
integrating the CenterNet approach, our framework enables accurate
localization and classification of diseased areas within lung scans,
overcoming challenges associated with variations and complex patterns
in lung nodules. Through comprehensive evaluation using standardized
measures, we validate the effectiveness and reliability of our approach,
ensuring its superiority in accurately detecting lung cancer from
CT-Scan images and advancing the state-of-the-art in medical image
analysis.

4.6. Analysis with state-of-the-arts

In this study, we benchmark our proposed method against state-of-
the-art approaches in the domain of lung cancer detection. By
comparing our results with established benchmarks, we validate the
efficacy and innovation of our approach. This comparison serves to
highlight the advancements made by our method and its potential to
contribute meaningfully to the field. To perform this, we have nomi-
nated several new works [31,62–65] that performed lung cancer
detection on the LUNA-16 dataset and compared our results against
them. The analysis given in Table 5 shows that the suggested approach
attains the highest results in contrast to the new framework in the aspect
of all performance measuring metrics.

Rehman et al. [62] introduced a CNN equipped with a dual attention
mechanism tailored for analyzing lung nodule images. The CNN
extracted informative features, while the attention module selectively
emphasized significant elements using both channel and spatial atten-
tion mechanisms. Following the attention module, global average
pooling was employed to consolidate spatial information. The approach
attains an accuracy of 95.40 %. The work in Ref. [63] introduced an
effective DL approach for classifying pulmonary nodules from CT im-
ages. It began with various pre-processing techniques to prepare the
data, followed by segmentation of lung nodules using a TNet-based deep
learning algorithm. Next, a CenterNet-based approach learned patterns
and intensity characteristics from the segmented images. Finally, a
NASNet-oriented predictor categorized the nodules as cancerous or
non-cancerous based on the collected attributes. This approach attains
an accuracy value of 99.29 %. Naseer et al. [64] suggested an approach
named LungNet-SVM based on a modified AlexNet approach with dense
keypoints computation. Next, the computed features were employed to
train the SVM classifier to categorize the normal and cancerous areas.
This approach attains an accuracy value of 97.64 %. Siddiqui et al. [31]
presented a study for classifying lung cancer that utilized Gabor filters in
conjunction with an enhanced Deep Belief Network (E-DBN) incorpo-
rating multiple classification techniques. The E-DBN comprised two
cascaded Restricted Boltzmann Machines (RBMs). Among the applied
methods, the SVM demonstrates optimal performance parameters with
an accuracy rate of 99.161 %. The work in Ref. [65] employed a com-
bination of DL techniques, including VGG-19 and long short-term
memory networks (LSTMs), which were customized and integrated for
lung cancer detection and classification. Additionally, image segmen-
tation techniques were applied as part of a computer-aided diagnosis
(CAD) system. Experimental results conducted in MATLAB demonstrate
that the combined use of these tools achieves an accuracy of over 99.42
%. While our approach reports the top classification scores with an ac-
curacy score of 99.63 % and provides a performance gain of 1.45 % in
comparison to other approaches. Similarly, for the precision and recall
scores, the nominative methods have attained average scores of 98.29 %
and 97.62 %, which are 99.89 % and 99.82 % for our work, so we have
provided performance gains of 1.6 % and 2.20 % for the mentioned
metrics, respectively. Finally, for the F1-Score measure, the comparative
approaches have attained an average score of 98.09 %, which is 99.85 %
for our scenario, so we have provided a performance gain of 1.76 %,
which indicates the effective recognition power of our approach. The
major cause for this effective classification capability is that the
comparative approaches [31,62–65] cannot learn the deep character-
istics of the investigated samples and are unable to tackle the intense
variations in the mass of the lung nodules. Further, these methods are
unable to locate the exact region of interest. Comparatively, the modi-
fied CenterNet approach employs a more powerful feature extractor
named CBAM-based ResNet-34, which directly utilizes the attention
mechanism into the convolutional blocks of the feature extractor. The
inclusion of the attention strategy empowers the model to rank affected
areas while overwhelming unrelated background details, thereby
upgrading recall power even in complex cases containing alterations in
mass, color, light, and intensity of the samples, which in turn improves
the recognition capability of the suggested approach.

4.7. Discussion

This research addresses the critical challenge of early lung cancer
detection, a major issue that continues to impact global health. Lung
cancer, being one of the most prevalent and deadly cancers, often pre-
sents at advanced stages, where treatment options are limited. Early
detection, typically through medical imaging such as CT scans, is crucial
for improving patient survival rates. However, the complexity of med-
ical imaging, the presence of subtle nodules, and variations in imaging
conditions pose significant challenges for automated detection systems.
Previous methods like Faster-RCNN, YOLO, and UNet-based approaches,

Table 5
Comparison with latest approaches.

Approaches Year Precision
(%)

Recall
(%)

F1-Score
(%)

Accuracy
(%)

Rehman et al.
[62]

2024 95.80 94.69 95.24 95.40

Thangavel et al.
[63]

2024 99.19 99.22 99.20 99.29

Naseer et al.
[64]

2023 – 96.37 – 97.64

Siddiqui et al.
[31]

2023 – 98.048 – 99.161

Alsheikhy et al.
[65]

2023 99.88 99.76 99.82 99.42

Proposed 2024 99.89 99.82 99.85 99.63
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while achieving varying degrees of success, still face limitations in terms
of accuracy, efficiency, and interpretability. This work proposes an
enhanced deep learning framework that combines the CenterNet
approach with a ResNet-34 backbone network and an attention mech-
anism (CBAM), aiming to overcome these challenges and improve lung
cancer detection. The novelty of the proposed approach lies in the
integration of the CBAM attention mechanismwith the ResNet-34 model
within the CenterNet architecture. By incorporating this attention
mechanism, the model can better focus on key features in the CT images,
improving feature extraction and ensuring more accurate predictions,
especially in the presence of complex backgrounds. The model’s single-
stage detection approach, compared to the multi-stage methods used by
other architectures, reduces computational complexity and enhances
efficiency, making it suitable for real-time applications in clinical en-
vironments. The extensive experimental results, obtained from both the
LUNA16 and Kaggle datasets, show that the proposed model out-
performs existing models in terms of both detection accuracy and
inference speed. These results highlight the potential of the proposed
approach to enhance the diagnostic capabilities of healthcare pro-
fessionals, providing them with more reliable tools for detecting lung
cancer at early stages.

In terms of contributions, the work introduces several significant
advancements in lung cancer detection using deep learning. The incor-
poration of the attention mechanism improves the model’s ability to
identify subtle patterns in images, increasing both the accuracy and
interpretability of predictions. The use of CenterNet’s single-stage
detection approach streamlines the process and offers significant
computational benefits, making it a practical solution for real-time
medical applications. The localization capability, allowing the model
to highlight the regions of interest in the images, adds an element of
transparency to the decision-making process, which is essential in clin-
ical environments. This approach not only improves the detection rate
but also aids clinicians in understanding the model’s reasoning, which is
crucial for establishing trust in AI-based tools. However, despite the
promising results, this study also acknowledges several limitations. One
of the key challenges is the model’s reliance on the LUNA16 and Kaggle
datasets, which, although widely used, may not fully represent the di-
versity and complexity of real-world clinical data. The narrow scope of
these datasets may limit the generalizability of the model to a broader
patient population, especially in terms of varying CT scan qualities,
demographic diversity, and disease stages. Furthermore, while the
proposed model achieves good computational efficiency, the depth of
the ResNet-34 network may still lead to high training times and signif-
icant computational costs, especially when dealing with large-scale
datasets. Although the use of a single-stage detection method helps
mitigate some of these challenges, further optimization of the model
architecture, such as reducing the number of parameters or using more
lightweight networks, could improve performance. Additionally,
incorporating multi-modal data, such as patient history or genetic in-
formation, could further enhance the model’s accuracy, allowing for a
more comprehensive approach to lung cancer detection. Looking ahead,
future research directions could focus on expanding the dataset used for
training, incorporating more diverse and comprehensive lung cancer
imaging data from various sources. This would help improve the
generalization ability of the model and make it more applicable to
different populations. Moreover, exploring the integration of multi-
modal data, such as combining CT images with patient demographic
information, genetic data, and medical history, could significantly
enhance the robustness and accuracy of the model. Future work could
also focus on reducing the computational complexity of the model,
perhaps through further model compression techniques, pruning, or
using more efficient networks like EfficientNet or MobileNet. Another
promising avenue is the exploration of federated learning to allow for
privacy-preserving, multi-institutional collaboration, where data from
multiple hospitals could be used to improve the model without the need
to share sensitive patient data.

In conclusion, the proposed enhanced CenterNet approach repre-
sents a significant step forward in the field of automated lung cancer
detection. By combining state-of-the-art deep learning architectures
with innovative attention mechanisms, the model improves both the
accuracy and efficiency of lung cancer detection. Despite some limita-
tions, such as the reliance on specific datasets and computational costs,
this study provides a foundation for future advancements in the field.
With continued research and development, including addressing the
identified limitations, this approach has the potential to become a
valuable tool in the early detection of lung cancer, ultimately contrib-
uting to better patient outcomes.

5. Policy suggestions

The findings of this study can inform healthcare policies aimed at
improving early lung cancer detection and diagnosis. Implementing the
proposed automated framework in clinical settings could enhance
diagnostic accuracy, reduce the reliance on subjective interpretations,
and optimize the use of resources in radiology departments. Policy-
makers could prioritize the integration of such AI-based tools into
standard diagnostic protocols, ensuring accessibility and affordability
for healthcare providers. Additionally, investing in training programs
for radiologists and clinicians to effectively use these technologies can
facilitate their adoption and maximize their potential impact. Finally,
establishing collaborative networks between AI researchers, medical
professionals, and regulatory bodies can ensure ethical use, data pri-
vacy, and consistent performance of the system across diverse
populations.

6. Conclusion

Lung cancer detection poses several challenges, including the
complexity of lung nodule structures, variations in size, shape, and
texture of cancerous regions, and the influence of environmental noise
in CT images. Traditional approaches often rely on multi-stage object
detection frameworks that are computationally intensive and prone to
inaccuracies. Key issues include inefficient feature extraction, limited
interpretability of predictions, and susceptibility to false positives and
negatives, which can lead to delayed or incorrect diagnoses. This study
has introduced an Improved CenterNet approach, a novel DL framework
tailored for overcoming the challenges associated with lung cancer
detection. By integrating ResNet-34 with an attentionmechanismwithin
the CenterNet architecture, our approach offers enhanced feature
extraction capabilities, improving the model’s ability to discern subtle
patterns associated with lung cancer. Through extensive experimental
evaluations on a standard dataset, our proposed approach demonstrates
significant improvements in accuracy, interpretability, and computa-
tional efficiency compared to existing methods. The presented frame-
work provides transparent and interpretable predictions, facilitating
better understanding and trust in the model’s decisions. The model is
tested on the two publicly available data samples named the LUNA-16
and Kaggle lung cancer datasets to evaluate the robustness of the
approach. The suggested work shows high classification results on both
datasets, with scores of 99.63 % and 98.21 % on the LUNA-16 and
Kaggle datasets, respectively.

While this study offers significant contributions to lung cancer
detection through the improved CenterNet approach, it is important to
acknowledge several limitations that impacted the overall performance
and generalizability of the model. Firstly, the model’s reliance on two
specific datasets LUNA16 and a Kaggle dataset introduced challenges in
terms of dataset diversity. Despite pre-processing techniques to
normalize the data and enhance consistency, both datasets exhibited
limitations in terms of variation in scanning protocols, resolution, and
image quality. These factors potentially hindered the model’s ability to
generalize effectively across diverse clinical environments. Secondly,
while the attention mechanism incorporated into the ResNet-34
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backbone enhanced feature extraction, there are still challenges in dis-
tinguishing subtle nodules from complex backgrounds, particularly in
low-contrast images. Finally, the computational complexity associated
with training the model, especially when working with large datasets,
remains a concern. Although we employed techniques such as transfer
learning and efficient backbone networks like ResNet-34, the training
process could still be time-consuming.

The future scope of this research involves enhancing the proposed
model’s ability to detect and classify lung cancer with even greater ac-
curacy and robustness. Future studies could focus on expanding the
dataset to include a wider variety of CT scans from different patient
populations and institutions, ensuring that the model generalizes well
across various clinical environments. Additionally, integrating multi-
modality data, such as combining CT scans with patient demographics
and other medical data, could help improve the model’s decision-
making process. One of the limitations faced during the study was the
dependency on the LUNA16 and Kaggle datasets, which limited the di-
versity of the data, as both datasets are specific to certain types of CT
scans. To address this, future work could include data augmentation
techniques or transfer learning from broader, more diverse datasets.
Another limitation was the computational cost associated with training
the model on large datasets. Future research can focus on optimizing the
architecture to improve training efficiency, such as applying pruning
techniques or using more efficient backbone networks. By overcoming
these limitations, the model could be made more suitable for deploy-
ment in real-world clinical applications, making a meaningful contri-
bution to the early detection of lung cancer. Overall, the Improved
CenterNet approach holds promise for advancing the area of lung cancer
recognition and assisting in improving patient outcomes in clinical
practice.
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