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ABSTRACT

Automatic Speaker Verification (ASV) systems are vulnerable to a variety of voice spoofing attacks, e.g.,
replays, speech synthesis, etc. The imposters/fraudsters often use different voice spoofing attacks to fool
the ASV systems to achieve certain objectives, i.e., bypass the security of someone’s home or stealing
money from a bank account, etc. To counter such fraudulent activities on the ASV systems, we propose
a robust voice spoofing detection system capable of effectively detecting multiple types of spoofing
attacks. For this purpose, we propose a novel feature descriptor Center Lop-Sided Local Binary Patterns
(CLS-LBP) for audio representation. CLS-LBP effectively analyzes the audios bidirectionally to better cap-
ture the artifacts of synthetic speech, microphone distortions of replay, and dynamic speech attributes of
the bonafide signal. The proposed CLS-LBP features are used to train the long short-term memory (LSTM)
network for detection of both the physical- (replay) and logical-access attacks (speech synthesis, voice
conversion). We employed the LSTM due to its effectiveness to better process and learn the internal rep-
resentation of sequential data. More specifically, we obtained an equal error rate (EER) value of 0.06% on
logical-acess (LA) while 0.58% on physical-access (PA) attacks. Additionally, the proposed system is also
capable of detecting the unseen voice spoofing attacks and also robust enough to classify among the clon-
ing algorithms used to synthesize the speech. Performance evaluation on the ASVspoof 2019 corpus sig-
nify the effectiveness of the proposed system in terms of detecting the physical- and logical-access
attacks over existing state-of-the-art voice spoofing detection systems.
© 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

based authentication is gaining importance due to the recent
COVID-19 situation where other biometrics verification like finger-

Automatic speaker verification (ASV) systems are commonly
used these days in a variety of devices, e.g., cellphones, intelligent
speakers (Amazon Alexa, Google Home), etc., to authenticate the
identity of any person for various application domains, i.e., bank-
ing, call centers, forensic laboratories, e-commerce systems, etc.
For instance, in an iPhone, a Siri or a Google Home gets voice-
based commands from its users to perform several actions, e.g.,
scheduling reminders, searching on internet, call or text someone,
unlock cellphone, weather check, etc., (Delfino, 2021). The ASV
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print scanning and password-based verification systems are dis-
couraged due to health concerns. Hence, voice biometrics
technology is becoming popular for user authentication. Apart
from the benefits of ASV for user authentication, ASV systems are
vulnerable to numerous voice spoofing attacks such as replays,
speech synthesis, voice conversion (VC), etc., that can be employed
to achieve certain tasks such as controlling the home or bank
account of someone, etc. In recent times, we have witnessed some
cases where intruders have employed different voice spoofing
attacks to spoof the ASV systems for potential frauds. Recently in
the US, a complaint was reported where robbers employed an arti-
ficial speech of the CEO of a company to deceive their employees to
transfer funds into a secret account (Harwell, 2021). In order to
deal with the potential limitations of ASV systems, the research
community is focusing to develop robust voice anti-spoofing sys-
tems to provide a protective layer for ASV systems against different
voice spoofing attacks.

1319-1578/© 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University.
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Spoofed voice samples can be produced by changing the origi-
nal audio signal using recording, manipulating, or mimicking.
Existing voice spoofing attacks can be classified into physical-
access attacks, i.e., replay (Alegre et al., 2014; Rosenberg, 1976),
or logical-access attacks, i.e., speech synthesis (Yamagishi et al.,
2009; Lindberg and Blomberg, 1999), VC (Evans et al., 2009; Zen
et al., 2009). In voice conversion, the voice spoken by the registered
speaker is synthetically generated to very similar sound of the
already enrolled speaker. Speech synthesis represents the machine
generated voice of the target speaker. In replay spoofing attack,
impersonator records the voice of enrolled speaker and play to
the ASV system for granting an access on behalf of a registered
speaker. We have mentioned two scenarios in Fig. 1, where intrud-
ers can employ the replay and speech synthesis/cloning attacks to
exploit the vulnerability of ASV against spoofing attacks and gain
access of someone’s home or organization. Shown in Fig. 1(a) is
the scenario of a replay attack, where devices such as air condi-
tioner (AC) in a home are remotely accessible via a mobile applica-
tion. These home devices are controllable through the smart
speakers, e.g., Google Home, etc., where we can send various com-
mands to the smart speaker via mobile application. Consider a case
where an intruder uses some covert device to record the voice
command of the genuine speaker and later playback the replay
audio in front of the Google Home device to control the AC system
of the home. Next, we present a scenario of a voice cloning attack
as shown in Fig. 1(b), where the staff of a healthcare company uses
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a clinical app in the clinic which is remotely accessible via a mobile
application. Clinical app is controllable through the smart speakers,
e.g., Sonos One, Apple HomePod, Amazon Echo & Alexa, etc., where
clinical staff can send various commands to the smart speaker
using a mobile application. The staff uses the clinical app to enter
large amount of data verbally and remotely to minimize the mis-
takes and omissions faced in manual data entry. Consider a spoof-
ing scenario where an intruder artificially generates the
synthesized voice sample against a bonafide speaker from text or
voice samples using the sophisticated cloning algorithms. Later,
the intruder plays the synthesized voice in front of Sonos One to
get access to the clinical app.

Existing voice spoofing countermeasures have been proposed to
address the physical-access (PA) and logical-access (LA) attacks. In
Witkowski et al. (2017), inverted mel-frequency cepstral coeffi-
cients (IMFCC), linear prediction cepstral coefficients (LPCC),
LPCCres features were employed to analyze the high-frequency
bands for audio representation. These three spectral features were
fed to the Gaussian mixture model (GMM) for classification of
bonafide and replay samples. Yang et al. (2018) explored the
extended Constant-Q cepstral coefficients (eCQCC) extracted from
the constant-Q transform and fixed re-sampling of octave power
spectrum to obtain the linear power spectrum. The coefficients of
both octave and linear spectrum were concatenated to obtain the
eCQCC features. Next, these features were employed with a deep
neural network (DNN) for classifying the bonafide and spoof
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Fig. 1. Example of voice replay and cloning attacks.
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samples. Malik (2019) employed the higher order spectral analysis
(HOSA) features to capture the discriminative attributes of bona-
fide and cloned voice samples. Linearity statistical tests and Gaus-
sianity were performed on the HOSA features to differentiate
between the bonafide and cloned samples. Chettri and Sturm
(2018) used a hybrid feature vector comprising of IMFCC,
Mel-frequency cepstral coefficients (MFCC), Linear filter cepstral
coefficients (LFCC), rectangular filter cepstral coefficients (RFCC),
spectral centroid magnitude coefficients (SCMC), and CQCC fea-
tures to classify the bonafide and spoof audios by employing the
GMM. This model delivers improved recognition performance on
development set as compared to the evaluation set of PA collection
of ASVspoof 2019 dataset. Moreover, this method (Chettri and
Sturm, 2018) is computationally complex due to increased features
computation cost. Recently, the researchers worked to detect the
voice replay (Kamble and Patil, 2020; Malik et al., 2020; Lin
et al., 2020; Kamble and Patil, 2021; Phapatanaburi et al., 2020)
and speech synthesis attacks (Elsaeidy et al., 2020; Gritsenko
et al., 2020; Krishna et al., 2020; Helali et al., 2020; Bird et al.,
2020; Raju et al.,, 2020). However, existing voice anti-spoofing
methods have certain limitations, i.e., speech samples lack inten-
tional speaker-oriented modifications, high features computation
cost, single spoofing type detectors, etc. In practice, the type of
attacks on ASV systems are mostly unknown. Unfortunately, gen-
eralized countermeasures that can cope with unknown voice
spoofing attacks have not been thoroughly explored yet. Therefore,
spoofing countermeasures need to be trained in most generalized
way to effectively capture distinct nature of characteristics for
numerous PA and LA attacks. Still, there is a need to develop a
robust spoofing countermeasure that can accurately detect a vari-
ety of PA and LA voice spoofing attacks.

In this paper, we introduce an effective voice spoofing detection
system to detect both the PA and LA attacks. For this, we propose a
novel features representation scheme Center Lop-Sided Local Bin-
ary Patterns (CLS-LBP) to better capture the characteristics of gen-
uine and spoofed audio samples. Later, we used our CLS-LBP
features to train the long-short term memory (LSTM) network for
classification. The significance of LSTM network for better analysis
of time-based series data has encouraged us to use it for classifica-
tion purpose. Moreover, the proposed system is able to accurately
classify the cloning algorithms used to synthesize the bonafide
samples. We evaluated the performance of the proposed technique
on both PA (bonafide and replay samples) and LA sets (bonafide,
speech synthesis, and voice conversion) of ASVspoof 2019 corpus.
The major contributions of our paper are as follows:

e We propose novel acoustic CLS-LBP features to reliably capture
the traits of bonafide as well as spoofed samples by extracting
the information bi-directionally from the audio signal.

e We propose a robust voice spoofing detection system that can
dependably be employed to detect both the physical- and
logical-access attacks.

e Our spoofing detection system is also capable of detecting the
unseen synthetic speech attacks.

e Our system has the capability of detecting the type of algorithm
used to synthesize the bonafide audio.

e We provide rigorous experimentation on ASVspoof 2019 corpus
to evaluate the significance of our spoofing detector over exist-
ing techniques.

The remaining paper is structured as follows. Section 2 provides
a detailed analysis on the existing voice spoofing detection sys-
tems. Section 3 presents the details of our method. Section 4 has
the details of experiments and discussion while the Section 5 pre-
sents the conclusion.
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2. Related work

The related work section presents a significant analysis and dis-
cussion of the existing methods for voice spoofing countermea-
sures. Existing spoofing countermeasures have employed either
the spectral or deep features for audio signal representation. More-
over, current methods have used either the traditional machine
learning or deep learning classifiers-based approaches. We have
discussed all these variants in this section.

2.1. Spectral features based methods

The ASV research community has proposed various voice spoof-
ing countermeasures (Kamble and Patil, 2020; Malik et al., 2020;
Lin et al., 2020; Kamble and Patil, 2021; Phapatanaburi et al.,
2020; Banaras et al., 2021) to address the PA attacks. Kamble and
Patil (2020) employed the variable length teager energy cepstral
coefficients with the GMM to detect the voice replay attacks.
Malik et al. (2020) introduced the acoustic ternary pattern-
gammatone cepstral coefficients (ATP-GTCC) features for replay
spoofing detection in voice controlled IoT devices. Error correcting
output codes model was employed for training the multi-class sup-
port vector machine (SVM) classifier on the ATP-GTCC features. Lin
et al. (2020) employed the Teager energy operator (TEO) to deter-
mine running approximation of sub-band energies and utilized
these features for training the GMM to classify bonafide and replay
signals. Kamble and Patil (2021) modified the conventional CQCCs
using linear prediction residual (LPR) signal instead of raw speech
signal. Linear prediction residual constant-Q cepstral coefficients
(LPR-CQCC) features were employed in combination of CQCCs fea-
tures for training the GMM to distinguish between the authentic
and fake audio. In (Alluri and Vuppala, 2019), three features such
as single frequency cepstral coefficients (SFCC), zero-time window-
ing cepstral coefficients, and instantaneous frequency cepstral
coefficients are employed to detect the synthetic speech attacks.
GMM was employed as a back-end classifier to classify the authen-
tic and spoof audio. In Alluri et al. (2017), single-frequency filtering
that provides spectral and high temporal resolution at each instant
was employed to detect the replay attacks. SFCCs were fed into
GMM to classify the authentic and spoof audio.

Existing countermeasures (Elsaeidy et al., 2020; Gritsenko et al.,
2020; Krishna et al., 2020; Helali et al., 2020; Bird et al., 2020; Raju
et al., 2020; Hassan and Javed, 2021; Qadir et al., 2022) have also
explored various spectral features for LA attacks detection.
Gritsenko et al. (2020) explored the energy difference between dif-
fusions of cloned and bonafide speech signal. Linguistic and pitch
features were fed to a deep neural network (DNN) for classification.
Krishna et al. (2020) explored the electroencephalography (EEG)
for speech synthesis and used the recurrent neural network
(RNN) regression model for classification. Helali et al. (2020) fused
the perceptual wavelet packet (PWP) and MFCCs to train the SVM
for classification of bonafide and synthetic speech. In De Leon et al.
(2012), modified group delay (MGD), relative phase shift (RPS) and
MFCC features were employed for training the GMM to detect the
synthetic speech.

Existing spoofing detection methods have also been proposed to
address both the PA and LA attacks using either the spectral or
deep features. Long-range acoustic features derived from long term
constant-Q transform (CQT) were used in Das et al. (2019) for PA
and LA attacks detection. Spectral features, i.e., MFCC, LFCC, CQCC,
instantaneous Frequency cosine coefficient, and eCQCC were used
in Das et al. (2019) to train the GMM and DNN classifiers for detec-
tion of the PA and LA attacks. Fusion of these features show better
performance with DNN classifier. However, performance of the
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fusion of MFCC and LFCC degrades on the development set of ASV-
spoof 2019 LA corpus. Tak et al. (2004) used the CQCC and LFCC to
train the GMM for classification of spoof and bonafide samples. It
was concluded in Tak et al. (2004) that the performance on linearly
scaled CQCC and LFCC was worst for A17 spoofing algorithm of LA
set. Das et al. (2020) explored CQCC, eCQCC, and constant-Q
statistic-plus-principal information coefficients features to train
the DNN for detection of both the PA and LA attacks. This method
provides better performance on development set over the evalua-
tion set of the ASVspoof 2019 corpus.

2.2. Analysis of deep learning based methods

The significance of deep learning has also been utilized by the
ASV research community and proposed various deep learning-
based voice spoofing countermeasures to deal with both the PA
as well as LA attacks.

Existing countermeasures (Zhai and Vamvoudakis, 2020; Singh
and Pati, 2020; Huang and Pun, 2020; Adiban et al., 2019; von
Platen et al., 2002; Gong et al., 2020; Aravind et al., 2008; Wang
et al, 2019; Zhang et al., 2020; Saranya and Murthy, 2018;
Suthokumar et al., 2018; Chettri et al., 2018; Biatobrzeski et al.,
2019) have explored various deep learning methods to detect the
replay attacks. Tak et al. (Wang et al., 2019) employed the linear
frequency residual cepstral coefficients (LFRCC) with the CNN for
voice replay detection. LFRCC provides better detection perfor-
mance on the development set of PA, however, unable to perform
well on the evaluation set. Zhang et al. (2020) introduced channel
consistency DenseNeXt by integrating the ResNeXt and DenseNet
for voice replay attacks. MFCC, LFCC, CQCC features were employed
for training the DNN to classify the spoof and authentic audio.
Saranya and Murthy (2018) introduced mel filterbank slope
(MFS) and linear filterbank slope (LFS) features with the GMM to
detect the replay attacks. MFS captures low frequency while the
LFS captures high frequency information which corresponds to
low- and high-quality recording devices, respectively. In
Suthokumar et al. (2018), short-term spectral features and long-
term spectral average features were extracted from the modulation
spectrum to analyze the static and dynamic characteristics of the
signal. Long-term spectral average captures the static characteris-
tics of modulation spectrum of the speech signal. GMM was used
to classify the replay and bonafide signals. Chettri et al. (2018)
employed the instantaneous frequency cosine coefficients, discrete
cosine transforms, and residual mel frequency cepstral coefficients
to train the convolutional neural network for classification of bona-
fide and replay signal. Biatobrzeski et al. (2019) explored the Baye-
sian neural network (BNN) and light convolutional neural network
(LCNN) to detect the replay attacks. The performance of BNN was
better on small-scale dataset, however, unable to generalize well
on a large-scale dataset like ASVspoof 2019.

Research community has worked on various voice spoofing
detectors (Janyoi and Seresangtakul, 2020; Michelsanti et al.,
2004; Valle et al., 2005; Koriyama and Saruwatari, 2020; Zhou
et al., 2020) for LA attacks. Janyoi and Seresangtakul (2020) pre-
sented a fundamental frequency (Fo) model based on RNN and
combined their linguistic features to represent supra-segmental
characteristics of Fy contour. Valle et al. (2005) presented a gener-
ative network Flowtron for synthetic speech detection. This model
learns the inverse mapping of data that can be changed to control
different aspects of speech synthesis (i.e., tone, speech-rate, accent,
pitch, etc). Koriyama and Saruwatari (2020) introduced a deep
guassian process (DGP) model for audio sequence modeling. DGP
comprises of many layers known as Bayesian kernel regression.
Bayesian models can be trained with consideration of model com-
plexity. Simple recurrent unit was used to classify the bonafide and
spoof samples.
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The research community has also worked on numerous deep
learning techniques (Malik, 2019; Gomez-Alanis et al., 2019;
Lavrentyeva et al., 1904; Zeinali et al., 2019) to address both the
PA and LA attacks. In Malik (2019), LCNN based system was used
to detect both the PA and LA attacks. The potential benefit of LCNN
architecture is use of Max-Feature-Map-Activation function that
was used to reduce the computational cost of deep learning model.
Alanis et al. (2019) employed the light convolutional gated recur-
rent neural network (LC-GRNN) for deep features extraction that
were then employed to train the SVM, linear discriminant analysis,
and probabilistic Linear discriminative analysis for detection of
both the PA and LA attacks. Lavrentyeva et al. (1904) explored
the efficiency of using simple energy based speech activity detector
and LFCC features to train thGomez-Alanis ee LCNN for classifica-
tion. Zeinali et al. (2019) employed the mel-filter bank, MFCC, Con-
stant Q-transform, CQCC and power spectrogram with visual
geometry group for detection of genuine and replay/cloned voices.

3. Proposed methodology

This section provides a discussion on the proposed voice spoof-
ing countermeasure. The details of our novel feature extraction
scheme, i.e., CLS-LBP is also discussed in detail. We have designed
an LSTM network consisting of 10 LSTM layers, which is trained
using the proposed CLS-LBP features to categorize the bonafide
and spoof audio. The architecture of our method is shown in Fig. 2.

3.1. Motivation of proposed feature

To develop a robust method that can accurately detect a variety
of voice spoofing attacks such as PA (replays) and LA (voice conver-
sion, TTS synthesis) attacks, we need a feature descriptor that can
capture the dynamic properties of bonafide speaker vocals, gener-
ative algorithmic traits, and microphone fingerprints. For this pur-
pose, we propose a novel CLS-LBP feature descriptor that analyzes
the local variations of time-domain audio signals in both the for-
ward and backward directions. By analyzing only, the 8 neighbor-
ing samples of the central sample, our CLS-LBP features can
effectively extract even the minute details of vocal dynamic traits
of bonafide speech, microphone fingerprints, and generative algo-
rithm artifacts. Thus, makes it a reliable method for voice spoofing
detection.

3.2. Feature extraction

For a robust voice anti-spoofing system, we need to develop an
effective feature descriptor capable of capturing the distortions of
replay signals, cloning algorithm artifacts in synthesized/cloned
signals and dynamic attributes of human speaker vocal tract in
genuine audio. To accomplish this objective, we propose a novel
CLS-LBP descriptor for audio representation. CLS-LBP features
extract the distinctive information bidirectionally from the audios
to better capture the distortions of replays, artifacts of synthetic
speech and dynamic speech variations of the bonafide signals.
Fig. 3 depicts the framework of the proposed CLS-LBP algorithm.

An input audio signal Y[n] with N samples is partitioned into i =
{1,2,.. .k} non-overlapping windows W with length [ = 9. In each
window W, p represents the central sample in a frame and have

four right neighbors q(y,, and four left neighbors g, where i rep-

resents the index of neighboring samples. CLS-LBP features are

computed by encoding each window W of an audio signal Y[n].
To compute the CLS-LBP pattern, we compare the right and left

neighboring samples with the central sample p and set it to 1 or 0

depending on the values of left neighbor qfé}t and right neighbor
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qi?g,n around p using the threshold value t. We used a linear search-

ing approach to determine the value of t. For this purpose, we ini-
tialize the value of t to zero and optimize it to find the convergence
point between 0 and 1. More precisely, we obtained the value of
t = 0.00001 as optimal results were obtained on this threshold
value. If the magnitude of both the g}, and g}y, is greater than
(p + t) or the magnitude of both qi;, and q{, is smaller than
(p + t), then value of the sample is set to 1. Next, if the magnitude
of qg}t is greater than (p + t) and the magnitude of qg}!h[ is smaller
than (p + t), then we set the value of sample to 0. Similarly, if the
magnitude of qf;}t is smaller than (p + t) and the magnitude of

qﬁ;h[ is greater than (p + t), then we also set it to 0. By following this
process, we generate a binary code of four bits against each win-
dow of the audio signal.

Fig. 3(a) illustrates the computation of CLS-LBP features for one
window Wof the audio signal. We compute the CLS-LBP codes
against each window W in four steps. In the first step, we com-
pare the magnitude of gj,) and ql;,, with (p + t). As the magnitude
of g and q'5),, is greater than (p + t), so we assign the binary code
of 1, shown as Wy in Fig. 3. In the second step, we compare the

magnitude of g, and q(;),, with (p + t), where we can observe that

7304

the magnitude of g, is smaller and magnitude of g, is greater
than (p + t), therefore, we assign the code of 0 to W, (Fig. 3a). In
the third step, we compare the magnitude of g, and g, against
(p + t), and as the magnitude of both neighbors is smaller than
(p +t), so we assign the code of 1 to W3 (Fig. 3a). Finally, in the last
step, we compare q}ff)[ and g}, with (p + t). As the magnitude of q}ff{
is greater and the magnitude of qﬁ}g)m is smaller than (p + t), so we

assign the code of 0 to W14 (Fig. 3a). This process is repeated for all
windows of the audio to compute the CLS-LBP features for the
entire acoustic signal. The two-valued function of proposed CLS-
LBP algorithm is computed as follows:

1,ifqyy, > p + tandqyy, > p+t
or
Qi < D+ tandqlyy,, < p+t
0.ifqyy, < p+tandqyy, >p+t
or
Qe > P+ tandqy,, <p+t

S<ql(;}t7 qi%hp D, t> =

where S (g}, gy P, t) represents the acoustic signal using two-
valued center lop-sided local binary pattern. Next, we compute
and encode the patterns in their decimal values as
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Fig. 3. Acoustic Center Lop-sided Local Binary Pattern (CLS-LBP) Computation.

3 s
T = "S(qi,p,t) x 2/,

i=0

)

where the T' represents the uniform CLS-LBP codes in decimal form.
Finally, we compute the histogram of T" and assign one histogram
bin for each uniform pattern and include all non-uniform patterns
into single bin as the uniform patterns contains maximum informa-
tion of the signal (Malik et al., 2020). We compute the histogram as
follows:

M
h(x) = > 0(T. %), 3)
m=1
where X denotes the histogram bins corresponding to uniform
acoustic CLS-LBP codes and 4(.) is the Kronecker delta function.
We performed different experiments to determine that the first
16 uniform patterns are enough to capture maximum characteris-
tics of the bonafide and spoof signals. Therefore, we selected the
histogram of these uniform patterns to create a 16-dimension
CLS-LBP features descriptor as illustrated in Fig. 3(b).

3.3. Classification

3.3.1. Long Short-Term memory networks (LSTM)

The RNN has achieved remarkable performance in sequential
modeling tasks. To process the random sequences of different
inputs, RNN uses internal memory which allows the information
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to remember as the information is stored in all memory cells.
Moreover, LSTM can memorize the information for a long period
and is designed to prevent the long-term dependencies among ele-
ments within the input sequence. Thus, it is better able to analyze
the information about the input sequences. We used the LSTM in
the proposed work for the classification task. The architecture is
composed of a memory part of the LSTM unit (cell) and three dif-
ferent regulators or gates, i.e., input gate, output gate and a forget
gate.

Fig. 4 demonstrates the stream of the information at time step s
involving the gates to update, forget, and output the cell and hid-
den states. The learning weights of the layer are the input weights
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]
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Fig. 4. LSTM cell (Hochreiter and Schmidhuber, 1997).
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Fig. 5. LSTM Architecture.

Z, the recurrent weights R, and the bias b. Following three matrices
Z,R, and b are concatenation of Z, R, and b of every module. Z, R, and
b are concatenated as (Hochreiter and Schmidhuber, 1997):

Zi Ri bi

_ |z _ | Rf _ | bf

Z= 7g .R= Rg b= bg | (4)
Zo Ro bo

wherei,f, g, and o represent an input gate, forget gate, cell candidate,
and the output gate, respectively. Cell in the state at some time step s
is given by ¢ = f;oc; — 1 + i;0gs, where © represents the element-
wise multiplication of vectors (Hadamard product). The hidden state
at some time step s is given by hy= 0,00 (¢s), where o, represents the
state activation function.

The time-series data has more complexity of sequence depen-
dence among the input variables as compared to the regression
modeling. Since audio is a time-series signal, therefore, there exists
a need to effectively analyze the sequence of unique patterns in the
audio. LSTM is appropriate to analyze the time-series data due to
the ability to learn both the short- and long-term sequential
dependencies of the audio signal. LSTM employ various gates to
boost the capability to capture the nonlinear relationships and
feedback connections to better analyze the sequential patterns of
input data. The recurrent state in LSTM helps to learn order depen-
dencies of time-series audio signal by retaining the previous infor-
mation in the signal. Consequently, in this work, we used the LSTM
network for the classification purpose. We used our proposed CLS-
LBP features-set to train the LSTM network for LA, PA, known and
unseen attacks detection. In the proposed system, we employed
the LSTM network comprising of 10 LSTM layers with 100 hidden
units in each layer, fully connected layer followed by a SoftMax
layer and a classification layer. We have added a SoftMax layer at
the end of the network for the classification of bonafide and spoof
audio. SoftMax is an activation function that is used to normalize
the outputs by converting the weighted sum values into probabil-
ities (machinelearningmastery.com, 2020). The softMax function
yields the actual probability scores for both the classes, i.e., spoof
and bonafide in our work. If the probability score of the bonafide
class is greater than the spoof one, the SoftMax layer predicts the
sample as bonafide, whereas, predicts the sample as spoof in case
probability score of the spoof class is greater than the bonafide

7306

class. Moreover, we set the maximum epochs to 20, mini batch size
to 64 at each iteration, gradient threshold to 1, and trained the
model using an Adam optimizer as we obtained best results on
these hyperparameters settings. The details of our LSTM architec-
ture are provided in Fig. 5.

4. Experimental setup and results

This section presents the details of the experiments performed
for evaluating the performance of the proposed voice spoofing
detection system. We evaluated the performance of proposed sys-
tem on the PA and LA sets of ASVspoof 2019 dataset using equal
error rate (EER), min-tDCF, accuracy, precision, and recall.

We have used the MATLAB 2019 for implementation purposes.
Moreover, we used a computing machine with these specifications:
Core i5 7th generation, 12 GB RAM.

4.1. Dataset

ASVspoof challenge was started with the development of ASV-
spoof 2015 corpus (Wu et al., 2015) which was developed to eval-
uate the speech synthesis/cloning detection systems. Two years
later, ASVspoof 2017 corpus (Kinnunen et al., 2017) was released
to evaluate the replay detection systems. In 2019, ASVspoof chal-
lenge came up with the development of a large and diverse public
dataset ASVspoof 2019 (Wang et al., 2019) to counter both the
physical and logical access attacks. ASVspoof 2019 corpus (Wang
et al., 2019) consists of two sets, i.e., LA and PA. The LA set of ASV-
spoof 2019 contains voice conversion and speech synthesis sam-
ples along-with the bonafide audio samples, whereas, the PA set
of ASVspoof 2019 corpus (Wang et al., 2019) includes the bonafide
and replay samples. Moreover, both the PA and LA sets are further
partitioned into three subsets, i.e., training set, development (dev)
set, and evaluation (eval) set.

LA dataset consists of spoofed and bonafide speech data created
by 17 distinct TTS and VC systems. The data, which is utilized to
train the VC and TTS systems is derived from the voice cloning
toolkit VCTK database (Veaux et al., 2020). Six spoofing systems
are labelled as well-known attacks and remaining 11 as anonymous
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Table 1

Details of Cloning Algorithms used for ASVspoof 2019 LA Dataset.

Logical Training Development Spoof Algorithm Type Input Input Conversion Speaker Outputs Waveform

access samples samples System processor Represent Generator

Total samples 22,800 22,296 - - - - - - - -

A01 3,800 3,716 TTS Neural waveform model Text NLP AR RNN* VAE* MCC, FO WaveNet*

A02 3,800 3,716 TTS Vocoder Text NLP AR RNN* VAE* MCC, FO, BAP WORLD

A03 3,800 3,716 TTS Vocoder Text NLP FF* One hot embed MCC, FO, BAP WORLD

A04 3,800 3,716 TTS Waveform concatenation Text NLP CART - MCC, FO Waveformconcat.

A05 3,800 3,716 VC Vocoder Speech (human) WORLD VAE* One hot embed MCC, FO, BAP WORLD

A06 3,800 3,716 vC spectral filtering Speech (human) LPCC/MFCC GMM-UBM - LPC Spectral filtering + OLA
Table 2
Statistics of ASVspoof 2019 PA Dataset.

PA samples Total Environment Labels Attack Definition Labels Replay Device OB minF LNRL

Samples Definition Quality
a b c A B C
Training 54,000 - - -
Dev 29,700 S: Room size (m?) 2-5 5-10 10-20 Da: Attacker-to-talker 10-50 50-100 >100 Perfect inf 0 inf
R: T60ms 50-200 200-600 600-1000 distance (cm) High >10 <600 >100
Eval 1,34,730 Ds: Talker-to 10-50 50-100 100-150 Q: Replay device perfect high low quality Low <10 >600 <100

ASV distance (cm)

‘ID 32 UDSSDH *f “Wa3DS 'S ‘PooMD( 'H
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Table 3
Statistics of ASVspoof 2019 LA Dataset.
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LA samples - Spoof Systems Input and Input Processor Waveform Generator

Training 25,380 - - -

Dev 24,844 AO01, A02, A03, A04, AO5, AO6, A07, A0S, A09, Text, Speech (human), Speech (TTS), NLP, WaveNet*, WORLD,
A10, A11, A12, A13, A14, A15, A16, A17, A18, WORLD, LPCC/MFCC, CNN + bi + RNN*,  Waveform concat, Spectral filtering
A19 ASR*

Eval 71,237 +OLA, Vocaine, STRAIGHT.

attacks. The training and dev set comprises of well-known attacks,
whereas the eval set consists of 2 known and 11 anonymous
attacks. LA set includes 4 TTS and 2 VC systems. VC systems use
neural network based and spectral filtering-based approaches
(Matrouf et al., 2006), whereas, the TTS systems use either wave-
form concatenation or neural network-based speech through tradi-
tional source-filter vocoder (Morise et al., 2016) or WaveNet based
vocoder (Oord et al., 2016). The 11 anonymous spoofing systems
containing 6 TTS, 3 hybrid VC-TTS and 2 VC systems employed
numerous waveform generation techniques that are conventional
vocoding, GriffinLim (Griffin and Lim, 1984), generative adversarial
networks (Tanaka et al., 2018), neural waveform models (Oord
etal, 2016; Wang et al., 2019), waveform concatenation, waveform
filtering (Kobayashi et al.,, 2014), spectral filtering, and their
combination.

ASVspoof 2017 (Kinnunen et al., 2017) dataset consists of real
replay recordings, whereas ASVspoof 2019 (Wang et al., 2019) con-
sists of simulated (Janicki et al., 2016; Campbell et al., 2005; Novak
et al., 2015) replay recording in reverberant acoustic environment
in order to enhance ASV reliability in reverberant conditions (Ko
et al,, 2017; Roomsimove, 2020). Training and dev sets are gener-
ated according to 27 acoustic and 9 replay configurations. The
room sizes are classified into three intervals, i.e., small rooms,
medium rooms, and large rooms. There are 3 groups of talker to
ASV distance (Ds), i.e., short distance, medium distance, and large
distance. Each physical space exhibit reverberation variability
among spaces, i.e., ceiling, floor wall, and position in the room.
Level of reverberation is mentioned in terms of T60 reverberation
time with three different categories, i.e., short, medium, and high.
Recordings are made in three different zones (A, B, C), each repre-
sents different distance (Da) from the talker. The recordings which
are captured in Zone A is believed to be of better quality compared
to those in zones B and C. The eval set is also created in the same
way as dev and training datasets. The statistics of cloning algo-
rithms are provided in Table 1 and the statistics of the PA and LA
sets of ASVspoof 2019 corpus (Wang et al., 2019) are provided in
Table 2 and Table 3, respectively.

4.1.1. Experimental protocols

In this section, we present details of the experimental protocol
used during the experiments. For evaluation on the PA dataset, we
used the training set having 54,000 samples (5400 bonafide and
48,600 spoof) to train the model. Whereas we tested our model
on both the dev and eval sets. The dev set consists of 29,700 sam-
ples (5,400 bonafide and 24,300 spoof) and eval set consists of
1,34,730 samples (18,090 bonafide and 116,640 spoof). For evalu-
ation on the LA dataset, we used the training set comprising of

25,380 samples (2,580 bonafide and 22,800 spoof) to train the
model. We tested our model on both the dev and eval set. The eval
set of LA dataset contains 71,237 samples (63,882 bonafide and
7,355 spoof), whereas, the dev set contains 24,844 samples (2548
bonafide and 22,296 spoof).

For evaluation of the cloning algorithms classification, we used
spoofed samples of the entire training set (22800) to train our
model and spoofed samples of entire dev set (22296) for testing
the model.

4.2. Results and discussion

4.2.1. Performance evaluation on physical access attacks

The major goal of this experiment is to check the performance
of our spoofing detector for PA attacks detection. For this purpose,
we represented the audio samples of PA set using the proposed
CLS-LBP features to train the LSTM model for classification of bona-
fide and replay samples. We obtained an EER of 0.58% and 2.91%,
and min-tDCF of 0.016 and 0.072 on the eval and dev sets, respec-
tively as shown in Table 4. From the results, we can examine that
our spoofing detector achieved remarkable performance specifi-
cally on the eval set. Our spoofing detection system achieved better
classification performance over the CQCC-GMM baseline model
(Todisco et al., 2017). Particularly, we obtained an EER of 10.46%
smaller than the EER obtained on eval set using the CQCC-GMM
baseline model. These experimental findings signify that our spoof-
ing detector is better to detect the physical access attacks on a
diverse and large-scale ASVspoof 2019 corpus (Wang et al,
2019). We can conclude from this experiment that our CLS-LBP fea-
tures are capable of effectively capturing the microphone distor-
tions and fingerprint information available in the replay samples.

4.2.2. Performance evaluation on logical access attacks

The major goal of this experiment is to evaluate the perfor-
mance of our spoofing detector on LA attacks. For experimentation
on LA dataset, we utilized the proposed CLS-LBP features and train
the LSTM to categorize bonafide and spoof samples (i.e., speech
synthesis, voice conversion, etc.). The results obtained on ASVspoof
2019 LA dataset is provided in Table 5. We achieved an EER and
min-tDCF of 0.06% and 0.0017 on eval set, and 0.35% and 0.0079
on dev set, as shown in Table 5. From the results, we can perceive
that the proposed spoofing detector also achieved remarkable
detection performance specifically on the eval set. Our system
achieved better classification performance over the CQCC-GMM
baseline model (Todisco et al, 2017). More specifically, we
achieved an EER of 9.51% smaller than the EER obtained on the
CQCC-GMM baseline model. The experimental findings signify

Table 4

Results on ASVspoof 2019 PA Dataset.
Corpus EER% min-tDCF Accuracy% Precision% Recall%
Eval set 0.58 0.0160 99.42 99.97 99.33
Dev set 2.91 0.0720 96.18 99.89 95.49
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Table 5

Results on ASVspoof 2019 LA Dataset.
Corpus EER min-tDCF Accuracy Precision Recall

% % % %

Eval set 0.06 0.0017 99.81 99.97 99.95
Dev set 0.35 0.0079 99.65 99.75 99.85

Table 6

Results on Cloning Algorithms of ASVspoof 2019.
Algo Accuracy% Precision% Recall%
AO01 98.5 98.54 98.57
A02 99.6 99.64 91.25
AO3 96.2 92.97 99.43
A04 95.0 94.96 100
A05 97.6 96.79 98.38
A06 95.4 95.35 98.30

the significance of our spoofing detector to better detect the LA
attacks on a diverse and large-scale ASVspoof 2019 corpus. We
can conclude from this experiment that our CLS-LBP features effec-
tively capture the dynamic speech variations of the bonafide sam-
ples along-with the artifacts available in the synthesized samples.

4.2.3. Performance evaluation of voice cloning algorithms detection

The objective of this experiment is to determine the algorithm
type used to synthesize the bonafide samples of ASVspoof 2019
LA corpus. The LA set contains both the synthesized and voice con-
version samples. Six different cloning algorithms are used for
speech synthesis in the ASVspoof 2019 LA corpus (i.e., AO1 TTS
neural waveform model, A02 TTS vocoder, A03 TTS vocoder, A0O4
TTS waveform concatenation, AO5 VC vocoder and A06 VC spectral
filtering). For this experiment, we used the training set of LA collec-
tion (22,800 samples) to train our model and used the dev set of LA
collection (22,296 samples) for model testing. We obtained an EER
of 0.7% for A01, 2.26% for A02, 2.01% for A03, 1.32% for A04, 1.21%
for AO5 and 1.62% for AO6 algorithm. The detailed results in terms
of EER, min-tDCF, accuracy, precision, and recall are shown in
Table 6.

From Table 6, we can observe that the proposed system per-
formed best on A02 algorithm and achieved the lowest accuracy
among all on A04 and AO6 algorithms. As AO2 is vocoder that uses
WORLD waveform generator for speech synthesis, therefore, we
can conclude from these results that our spoofing detector better
captures those cloning artifacts introduced by WORLD waveform
generator. On the other hand, A04 is waveform concatenation
model that uses Waveformconcat waveform generator for speech
synthesis while A06 is spectral filtering model that uses Spectral
filtering + OLA waveform generator for speech synthesis. So, these
results show that our system is slightly less effective to capture the
cloning artifacts of Waveformconcat and Spectral filtering + OLA
waveform generators over other synthetic models. Overall, we
obtained excellent results for classification of the cloning algo-
rithms. Thus, we conclude from this experiment that the cloning
algorithms add their algo-specific artifacts in the synthesized audio

Table 7
Results on synthetic speech and voice conversion.
Spoofing category ~ EER min-tDCF  Accuracy  Precision  Recall
% % % %
TTS 064 0.0166 99.90 99.88 99.33
VvC 2031 04137 79.70 98.76 7717
Overall LA 0.06  0.0017 99.81 99.97 99.95
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Table 8

Results on unseen LA attacks.
Attacks EER % min-tDCF Accuracy% Precision% Recall%
A07 0.37 0.0086 99.6 99.38 99.67
A08 0.38 0.0089 99.4 99.36 99.67
A09 9.47 0.2409 90.5 76.65 99.57
A10 0.37 0.0086 99.6 99.38 99.67
Al1 0.37 0.0086 99.6 99.38 99.67
A12 0.38 0.0089 99.6 99.36 99.67
A13 0.37 0.0086 99.6 99.38 99.67
Al4 0.39 0.0091 99.6 99.34 99.67
A15 0.43 0.0098 99.6 99.24 99.67
A16 0.41 0.0094 99.6 99.28 99.67
A17 39.31 0.4706 60.7 21.57 86.88
A18 40.18 0.4808 59.8 99.80 0.00
A19 40.18 0.4808 59.8 99.80 0.00

samples that can be captured well using our robust CLS-LBP fea-
tures. This capability of not only detecting the spoofing type but
also the cloning algorithms used to generate the spoofed audio
makes our spoofing detection system more effective and useful
for audio forensics applications.

4.2.4. Performance evaluation of synthetic speech and voice
conversion

The main aim of this experiment is to investigate the perfor-
mance of our spoofing detector on TTS and VC. For this purpose,
we employed 16-dim CLS-LBP features to train the model to cate-
gorize the bonafide and spoof samples of TTS and VC separately.
There are four TTS spoofing systems, i.e., AO1, A02, A03, and A04
and two VC spoofing systems, i.e., AO5 and A06 that are used to
produce the spoof samples of training set of the LA dataset. For
the evaluation set of LA dataset, there are 13 spoofing systems that
consists of 7 TTS, i.e.,, A0O7, A08, A09, A10, Al1, A12, A16, 3 VC
spoofing systems i.e., A17, A18, A19 and 3 VC-TTS spoofing sys-
tems, i,e, A13, A14, and A15 that are used to create the spoof sam-
ples. We conducted a multi-stage experiment to separately
evaluate the effectiveness of our method for TTS and VC spoofing
detection.

In the first stage of this experiment, we used the bonafide and
spoof samples (TTS) of training set of LA dataset to train the model
and used the bonafide and spoof samples of evaluation set of LA
dataset (TTS) to evaluate the model. The results are reported in
Table 7. We achieved an EER of 0.64% and min-tDCF of 0.0166. In
the second stage of this experiment, we used the bonafide and
spoof samples (VC) of the training set of LA dataset to train the
model and used the bonafide and spoof samples (VC) of eval set
of LA dataset to evaluate the model. We achieved an EER of
20.31% and min-tDCF of 0.4137. The detailed results of VC spoofing
detection are given in Table 7. It can be observed from these results
that the proposed system performs better on the TTS spoofing
detection as compared to the VC detection. The proposed system
better captures the artifacts generated by neural waveform, griffin
lim, and Vocoder TTS. We believe that this might be due to the rea-
son that VC spoofing systems use the original voices as a source
preserving the periodic characteristics of the speaker, which is
not available in the TTS samples. Overall, the proposed system per-
forms well on LA dataset and achieved an EER of 0.06% that shows
the effectiveness of our system.

4.2.5. Performance evaluation of unseen attacks detection

This experiment is designed to evaluate the performance of the
proposed system on unseen LA attacks, i.e., AO7, A08, A09, A10,
Al11, A12, A13, A14, A15, A16, A17, A18, and A19. These spoofing
systems are used to synthesize the samples of evaluation set of
LA dataset and there are 63,895 samples of unseen attacks in the
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Table 9

Performance Comparison against existing Voice Spoofing Detection Systems.
System LA Eval Set PA Eval Set

EER (%) min-tDCF EER (%) min-tDCF

Baseline: CQCC + GMM (Todisco et al., 2017) 9.57 0.2366 11.04 0.2454
Baseline: LFCC + GMM (Todisco et al., 2017) 8.09 0.2116 13.54 03017
CQT + SE-Res2Net50 + CE (Li, et al., 2010) 2.502 0.0743 0.459 0.0116
Spec + LCGRNN + GKDE-Softmax(Gomez-Alanis et al., 2020) 3.77 0.0842 1.06 0.0222
Spec + LCGRNN + GKDE-Triplet (Gomez-Alanis et al., 2020) 3.30 0.0776 0.92 0.0198
sm-ALTP-Asymmetric Bagging (Aljasem et al., 2021) 5.22 0.132 1.1 0.0335
Ours: CLS-LBP + LSTM 0.06 0.0017 0.58 0.0160

Table 10

Results of Existing features on LSTM.
Features LA Eval Set PA Eval Set

EER (%) min-tDCF EER (%) min-tDCF

CQT 15.92 0.3590 7.28 0.1620
CQT-ICQT 49.37 0.5823 6.57 0.1510
ICQT 23.28 0.1178 1.56 0.0397
LFCC 76.99 0.7423 49.86 0.5829
LFCC + CQT 17.44 0.3927 39.84 0.3829
CQcCC 1.18 0.0520 115 0.2457
Ours: CLS-LBP 0.06 0.0017 0.58 0.0160

evaluation set. We used the bonafide and spoof samples of LA
training set for training the model and used the bonafide of evalu-
ation set and spoof samples of specific unknown attacks for the
evaluation purpose. The results are given in Table 8. These results
show that our method performed well on A07, A10, A11, and A13
and achieved an EER of 0.37%, min-tDCF of 0.0086, precision of
99.38%, recall of 99.67%, and an accuracy of 99.6%. Moreover, our
method obtained the worst results on A17, A18 and A19 by achiev-
ing an EER of 39.31% for A17, 40.18% for A18 and A19, and
min-tDCF of 0.4706 for A17, 0.4808 for A18 and A19. These results
illustrate that TTS-base synthetic speech is easier to detect than
VC-based synthetic speech. Comparison of the waveform genera-
tion methods proves that synthetic speech generated by waveform
filtering based techniques (A17, 18, and A19 attacks used VC wave-
form filtering, VC Vocoder and spectral filtering) are the most dif-
ficult to detect than the other types of attacks. Although, our
method struggled to better capture the artifacts produced by VC
attacks, however, performed well on the overall LA attacks.

4.2.6. Robustness of the proposed system

To demonstrate the robustness of the proposed system, we
tested our system on the diverse and largescale ASVspoof 2019
dataset. It is important to mention that this corpus contains the
voice samples of 87 unseen speakers used for evaluation purposes
as compared to the voice samples of 20 speakers, which were used
for training. Similarly, spoofed samples used for the training pur-
poses were cloned using only 6 algorithms, whereas the spoofed
samples used for evaluation purposes were generated through 19
voice cloning algorithms including the 13 new cloning algorithms.
More specifically, we have performed experiments to detect the
unseen voice spoofing attacks that are generated by using powerful
spoofing algorithms such as A07, A08, A09, A10, Al1, Al12, A13,
A14, A15, A16, A17, A18, and A19. The experimental results pre-
sented in Table 8 show the robustness of our method for unseen
attacks detection. It is also important to mention that the ASVspoof
training and evaluation sets contain the speech samples of differ-
ent speakers, different algorithms for logical access attacks (voice
conversions and text-to-speech synthesis), different microphones,
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background environments, etc., for physical access attacks. Thus,
the evaluation sets of both the PA and LA collections contain much
more diversity and challenging conditions as compared to the
training sets. The experimental results in Tables 4, 5, and 6 indicate
the robustness of our method for unseen speakers, microphones,
background environments, and cloning algorithms. By testing our
method on the evaluation set that contains the unseen speakers,
unknown attacks, different microphones and background environ-
ments and still getting such excellent results indicate the robust-
ness of the proposed method for reliable voice spoofing
detection. Moreover, our method is robust to variations in spoofing
attacks and able to reliably detect all types of physical and logical
access attacks, i.e., text-to-speech, voice conversion, and voice
replay attacks.

4.2.7. Performance comparison with existing methods

This experiment is performed to compare our spoofing detector
against the existing techniques for voice spoofing detection. To jus-
tify the effectiveness of the proposed CLS-LBP features for better
detection of the distortions in replay samples, artifacts in the clon-
ing algorithms, and vocal tracts based dynamic speech characteris-
tics of the bonafide samples, we performed a comparative analysis
of our method with the models listed in Table 8. The results in
terms of an EER and min-tCDF of the proposed and existing meth-
ods on the ASVspoof 2019 PA and LA corpus are provided in Table 9.
On the PA-Eval set, (Li et al., 2010) performs best and achieved
0.459% EER and min-tDCF of 0.0116, whereas, our method per-
forms second-best and achieved 0.58% EER and min-tDCF of
0.0160, whereas, the CQCC-GMM baseline performs the worst by
achieving an.

EER of 11.04% and min-tDCF of 0.2454. On the LA-Eval set, our
method achieves the best results (0.06% EER and min-tDCF of
0.0017) and CQCC-GMM baseline is the worst (9.57% EER and
min-tDCF of 0.2366). From this comparative analysis, we can con-
clude that the proposed system outperforms the existing contem-
porary voice spoofing detectors and able to reliably detect a variety
of voice spoofing attacks along-with the cloning algorithms used to
synthesize the samples of LA dataset.
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4.2.8. Performance comparison with existing features

The objective of this experiment is to evaluate the performance
of our CLS-LBP features over the existing baseline features on the
same classifier. For this purpose, we have compared our CLS-LBP
features with the CQCC, LFCC, CQT, ICQT, CQT + ICQT, LFCC + CQT
features using the same LSTM classifier. Results on both PA and
LA dataset are given in Table 10. We achieved the best results on
LA dataset for our features CLS-LBP (min-tDCF of 0.0017 and an
EER and of 0.06%) and worst for LFCC (min-tDCF of 0.7423 and
an EET of 76.99%). On the other hand, for the PA dataset our CLS-
LBP features performed best (min-tDCF of 0.016 and an EER of
0.58) and LFCC was the worst (min-tDCF of 0.5829 and an EER of
49.86) when used with the LSTM classifier.

5. Conclusion

This paper has presented a robust voice spoofing detection sys-
tem using the novel CLS-LBP features and LSTM to counter various
LA and PA spoofing attacks. We proposed a novel features represen-
tation scheme CLS-LBP to effectively capture the attributes of bona-
fide speech dynamics, cloning algorithm artifacts, and microphone
distortions of the replay signals. Experimental results on a large-
scale and diverse ASVspoof 2019 corpus illustrate that the proposed
system can reliably be used to detect various types of voice spoofing
attacks. More specifically, our method achieved an EER of 0.06% and
0.58% on LA and PA attacks, respectively. Additionally, our system
also detects the cloning algorithms used to generate the synthetic
voices. Our comparative analysis reveals that our voice spoofing
detection system provides better detection performance over
state-of-the-art voice spoofing detectors. It is important to mention
that the evaluation set of ASVspoof corpus includes the data of
unseen speakers. We obtained remarkable results on the evaluation
set of ASVspoof 2019 corpus that signify the effectiveness of our
method for cross dataset evaluation. Our future work aims to inves-
tigate the performance of our method on cross dataset scenario
using two different voice spoofing datasets entirely.
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