
 

 

 

Abstract 

 

The rise of deepfake videos poses a serious threat to the 

authenticity of visual media, as they have a potential to 

manipulate public opinion, mislead individuals or groups, 

harm reputation, etc. Traditional methods for detecting 

deepfakes rely on deep learning models, which lack 

transparency and interpretability. To gain the confidence 

of forensic experts in AI-based deepfakes detector, we 

present a novel DFP-Net for detecting deepfakes using 

interpretable and explainable prototypes. Our method 

makes use of the power of prototype-based learning to 

generate a set of representative images that capture the 

essential features of genuine and deepfake images. These 

prototypes are then used to explain our model's decision-

making process and to provide insights into the features 

most relevant for deepfake detection. We then use these 

prototypes to train a classification model that can detect 

deepfakes accurately and with high interpretability. To 

further improve the interpretability of our method, we also 

utilize the Grad-CAM technique to generate heatmaps that 

highlight the regions of the image that contribute the most 

towards the decision of the model. These heatmaps can be 

used to explain the reasoning behind the model's decision 

and provide insights into the visual cues that distinguish 

deepfakes from real images. Experimental results on a 

large-scale FaceForensics++, Celeb-DF and DFDC-P 

datasets demonstrate that our method achieves state-of-

the-art performance in deepfakes detection. Moreover, the 

interpretability and explainability of our method make it 

more trustworthy to forensic experts by allowing them to 

understand how the model works and makes predictions. 

Keywords: Deepfakes detection, DFP-Net, Interpretable 

prototypes, Explainable AI, FaceForensics++. 

1. Introduction 

In recent years, deepfake technology has gained 

widespread attention due to its ability to generate highly 

convincing fake media content, such as videos, images, and 

audio. While this technology has various applications, 

including entertainment and creative expression, it poses 

significant risks to individuals, organizations, and society. 

Deepfakes can be used to spread false information, 

manipulate public opinion, and perpetrate fraud, among 

other malicious activities. Therefore, the need for reliable 

deepfake detection methods has become more critical than 

ever. Traditional deepfake detection methods have relied 

on handcrafted feature-based techniques as well as end-to-

end deep learning-based techniques that are trained on 

large datasets of real and fake content. However, these 

methods have limitations, such as being vulnerable to 

adversarial attacks, lacking interpretability and 

explainability, and having limited generalization ability.  

Deep neural networks (DNNs) have proved successful 

in many computer vision tasks, but their "black box" nature 

makes it challenging to understand their decision-making 

process. Recently, there has been a growing interest in 

developing interpretable and explainable machine learning 

models for deepfake detection to counter this limitation of 

DNN. Machine learning models rely heavily on the 

concepts of interpretability and explainability. The ability 

to understand how a model works and how it makes 

predictions is referred to as interpretability. It means that 

the cause and effect can be determined, and the model can 

take the inputs and produce the same outputs on a regular 

basis [1]. Explainability, on the other hand, refers to a 

model's ability to provide a human understandable 

explanation of how it works and why it makes certain 

predictions. As a broader concept, explainability includes 

interpretability as well [2]. Like, in [3], Supervised 

Contrastive Learning (SCL) for deepfake detection was 

presented, which aims to improve the generalization and 

explainability of deepfake detection models. This method 

trains a deepfake detection model using a supervised 

contrastive loss function to classify real and fake samples 

and generates class activation maps, which highlight the 

regions of the input that are most relevant to the 

classification decision. However, this method requires 

access to both real and fake videos of the same person 

during training, which may not be feasible. In [4], 

attention-based architecture was presented for deepfakes 

detection. Also, an ensemble of different models was 

employed to improve the detection performance and 
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generate focus attention maps using Grad-CAM 

explanations. However, this approach requires significant 

computational power during training. In [5], pairwise 

learning and complementary information from various 

color space representations were utilized to detect 

deepfakes. A multi-channel XceptionNet was used to 

classify real and fake images by analyzing pairs of facial 

components. The method also incorporated t-SNE and 

attention maps to explain how the decision-making process 

works. However, this method is not generalizable to real-

world scenarios. In [6], a graph neural network is presented 

for identifying deepfakes by dividing images into nodes 

and creating a graph by connecting adjacent nodes based 

on low-level features such as color and texture. The 

resulting graph structure is used to gain insight into the 

model's decision-making process. However, computing the 

adjacency matrix can be time-consuming for large graphs, 

which limits scalability when dealing with extensive 

datasets. These techniques employ diverse methods of 

explanation to achieve different levels of interpretability. 

For instance, grad-cams are used to explain the inner 

working of a model, activation maximization helps in 

visualizing neurons, while deconvolution or up-

convolution can explain and visualize the layers of the 

architecture. While these models have made significant 

efforts in achieving accurate predictions, there remains 

considerable scope for enhancing the interpretability and 

explainability of these models.  

One of the prominent approaches to explain DNNs is 

posthoc analysis via gradient [3-6]. This approach provides 

insights into the model's behavior but does not modify the 

underlying architecture and building frameworks that are 

interpretable by design with a built-in ability of self-

explanation. Instead, another line of research allows for 

more intuitive and understandable explanations for non-

experts by representing interpretability as general concepts 

rather than raw inputs. Chen et al. [7] presented a deep 

learning model for image recognition that uses prototypes 

obtained through a clustering algorithm on similar patches 

from training images. This method is easily extendable to 

new classes without retraining and requires no human 

intervention. In [8], a hierarchical prototype-based method 

was introduced for object classification within a predefined 

taxonomy. This method selects the most similar prototype 

at each level to make predictions, enabling the 

classification of previously unseen classes. In [9], natural 

language explanations of prototype representation for a 

class were generated using gradient and optimization 

techniques to improve interpretability. Nauta et al. [10] 

presented a ProtoTree for fine-grained image recognition 

that uses prototype learning and decision trees. However, 

its effectiveness depends on the prototypes' ability to 

represent the class well, and it may not always provide 

accurate local explanations. Trinh et al. [11] employed 

dynamic prototypes to distinguish real videos from 

deepfakes by capturing their unique characteristics. A deep 

neural network (DNN) based encoder was applied to 

produce these dynamic prototypes, which were then 

utilized to calculate similarity scores for the test videos. 

However, the method requires large amount of training 

data. 

Current literature focuses on detecting deepfakes but 

lacks attention to interpretability and trustworthiness. 

These methods only label faces as real or fake or give the 

probabilities, it would be more useful to explain how the 

model arrived at its decision. An explainable and 

interpretable deepfake detector is needed that not only 

detects deepfakes but also provides understandable 

explanations for humans to understand and trust the 

system's decision-making process. To counter these issues, 

we propose an explainable and interpretable prototype-

based network DFP-Net for the detection of deepfakes. 

DFP-Net works by creating a set of prototypical 

representations by analyzing the features of real and fake 

samples and grouping the similar features together. After 

creating these prototypical representations, the proposed 

method uses them to make predictions about testing 

samples. It compares the features of the testing sample to 

the prototypical representations and identifies which 

prototypical representations are most similar to the testing 

sample. Finally, to make it easier for experts to understand 

what the model has learned, the prototypes are projected 

onto representative image patches from the training 

dataset. This allows us to see what the prototypes look like 

in a more tangible way and better understand the 

differences between real and fake samples that the 

proposed method has identified. The main contributions of 

this work are: 

• We propose a novel prototype based DFP-Net 

method for the detection of deepfakes. 

• We propose an interpretable and explainable 

deep learning model for reliable deepfakes 

detection. 

• Rigorous experimentation was performed 

including the cross corpora evaluation to show 

the significance of our method.  

2. Methodology 

The following section provides an in-depth explanation 

of the proposed DFP-Net for detecting deepfake videos. 

The architecture of the proposed methodology is shown in 

Figure 1. 

2.1. Pre-processing 

We utilized the Multi-task Cascaded Convolutional 

Neural Networks (MTCNN) [12] face detector during pre-

processing stage to identify and extract the facial region of 

224 × 224 from the input video. MTCNN is able to 

recognize facial landmarks like eyes, nose, and mouth, in a 



 

 

progressive manner from coarse to fine details. We opted 

for the MTCNN as it accurately recognizes faces even in 

the presence of occlusion and varying illumination 

conditions, unlike other facial detectors [12]. 

2.2. DFP-Net architecture 

The framework of the proposed architecture is shown in 

Figure 1. Our DFP-Net model consists of three main 

components: the backbone network 𝒇, the prototype-layer 

𝒍𝒑 , and the fully connected layer 𝒍𝒉 . The network is 

designed to take input in the form of the video frames. Let 

𝑰 = {(𝒔𝒊, 𝒚𝒊)} be the video frames of the dataset, where 𝒔𝒊 

represents the samples and 𝒚𝒊  as their corresponding 

labels. The components are explained in the subsequent 

sections.  

Backbone network. DFP-Net utilizes the convolutional 

layers of DenseNet-121, augmented by two extra 1 × 1 

convolutional layers, as its backbone network. We have 

employed the Swish activation function for the 

convolutional layers, until the last, which used the sigmoid 

function. We have chosen Swish due to its non-monotonic 

nature, which can enhance the representational power of 

the network. This property can aid in detecting complex 

and subtle patterns in deepfakes, where small features play 

a vital role in accurate classification. The convolutional 

layers of the proposed method extract significant features 

𝒇(𝒔) from the input image 𝒔 , which are utilized for 

prediction. The convolutional output 𝒇(𝒔)  has a spatial 

dimension of 𝑯 =  𝑾 =  𝟕 , and the number of output 

channels 𝑫 in the additional convolutional layers is chosen 

from 128, 256, or 512 using cross-validation for our 

dataset.  

Prototype layer. The prototype layer is the main 

component of our DFP-Net architecture. The prototype 

layer is able to effectively learn a discriminative 

representation of each class using only a few labeled 

samples. DFP-Net utilizes 𝒏  prototype vectors 

(𝒑𝟏, 𝒑𝟐, . . . , 𝒑𝒏)  of shape (𝟏, 𝟏, 𝑫)  in the latent space to 

capture distinct activation patterns in the convolutional 

feature maps. The prototype layer 𝒍𝒑 computes the squared 

distance 𝒍𝟐 between each prototypical vector 𝒑𝒋 and every 

spatial patch (𝟏, 𝟏, 𝑫) in the input feature map 𝒙, and then 

inverts the distance to generate 𝒏 similarity maps for each 

prototype. These maps indicate the presence of 

prototypical parts in the image. The activation map of 

similarity scores for each prototype unit is then globally 

max-pooled to a single similarity score that represents the 

strength of the prototypical part in some patch of the input 

image. The prototype vectors' shape corresponds to the 

smallest facial patch in 𝒙, and 𝒍𝒑  calculates 𝒏  similarity 

scores as: 

                     𝑙𝑝𝑛
(𝑥) = max

𝑥′ ϵ 𝑝𝑎𝑡𝑐ℎ𝑒𝑠(𝑥)

1

1+‖𝑥′− 𝑙𝑝𝑛‖
                 (1) 

Where 𝒍𝒑𝒏
(𝒙) is the similarity score between the prototype 

𝒑𝒏 and feature map 𝒙. 

Fully connected layer. In this network, a fully connected 

layer calculates the weighted sums of similarity scores as 

𝒍𝒉  = 𝒘𝒍𝒑(𝒙),  where the weights are denoted by 

𝒘 𝛜 ℝ𝒌 × 𝒏,  and 𝒌 = 𝟐 is the number of classes. The 

resulting values are passed through a SoftMax function to 

obtain the predicted probabilities as:  

                                   𝑦̂′ =
𝑒𝑥𝑝(𝑎𝑖)

∑ 𝑒𝑥𝑝(𝑎𝑗)𝑘
𝑗=1

                               (2) 

To represent each class effectively, we allocate 𝒏𝒌 

prototypes for every class 𝒌  in the range of {0,1} . This 

means that the final model contains 𝒏𝒌 prototypes for each 

class. 

2.3. DFP-Net Training 

Our goal with DFP-Net is to acquire a significant 

representation of forgeries that guarantees the proximity of 

 

Figure 1: Architecture of DFP-Net. 



 

 

prototype vectors to input image patches, distinctness 

between real and fake artifacts, and model interpretability. 

We train DFP-Net by employing a loss function for all 

layers except fully connected, prototype projections, and 

optimization of the fully connected layer. These training 

stages are repeated multiple times in a cycle. 

Loss function. During the initial training phase, our 

objective is to create a latent space where the image patches 

are clustered around prototypes that represent similar 

semantic classes. The clusters associated with prototypes 

from both classes must be well-separated in terms of 𝒍𝟐 

distance. To accomplish this goal, we use loss functions to 

optimize the convolutional layer parameters as well as the 

prototypes in the prototype layer. Let 𝑰 = {(𝒔𝒊, 𝒚𝒊)}  be the 

training dataset, where 𝑠𝑖 represent the image samples and 

𝒚𝒊 are their labels. The objective function that we aim to 

minimize involves hyperparameters 𝝁𝒄 , 𝝁𝒔 , and 𝝁𝒅 . It 

includes four loss functions: cross entropy, clustering, 

separation, and diversity. It is calculated as: 

ℒ(𝐼, 𝜃) = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐼, 𝜃) + 𝜇𝑐𝑅𝑐𝑙𝑢𝑠(𝐼, 𝜃) +
𝜇𝑠𝑅𝑠𝑒𝑝(𝐼, θ) + 𝜇𝑑𝑅𝑑𝑖𝑣(𝐼, 𝜃)                                            (3) 

Where 𝑹𝒄𝒍𝒖𝒔 , 𝑹𝒔𝒆𝒑 , and 𝑹𝒅𝒊𝒗  represents the clustering, 

separation, and diversity loss functions. 𝜽 represents the 

training parameters of the backbone network 𝒇  and 

prototype layer 𝒍𝒑.  The cross-entropy function ensures 

classification accuracy and is calculated as: 

  𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐼, 𝜃) =  
1

𝑛
∑ −1[𝑦𝑖 = 𝑘]𝑛,𝑘

𝑖,𝑘=1 𝑙𝑜𝑔(𝑦̂′)  (4) 

On the other hand, the clustering loss 𝑹𝒄𝒍𝒖𝒔 minimizes 

the squared distance 𝒍𝟐 between a latent patch from a 

training sample and its closest prototypical vector of the 

same class. The expressions for these loss functions are 

given below: 

         𝑅𝑐𝑙𝑢𝑠 = −
1

𝑛
∑ 𝑚𝑖𝑛

 𝑝𝑖𝜖𝑝𝑦𝑖
,𝑥∈𝑝𝑎𝑡𝑐ℎ𝑒𝑠(𝑠𝑖)

‖𝑥 − 𝑝𝑗‖
2

2𝑛
𝑖=1         (5) 

𝒑𝒚𝒊
 refers to the collection of prototypical vectors 

assigned to class 𝒚𝒊 . The 𝑹𝒔𝒆𝒑  separation-loss promotes 

the distance between each patch of an altered training video 

and the genuine prototypes, and vice versa. It is calculated 

as: 

             𝑅𝑠𝑒𝑝 = −
1

𝑛
∑ 𝑚𝑖𝑛

 𝑝𝑖∉𝑝𝑦𝑖
,𝑥∈𝑝𝑎𝑡𝑐ℎ𝑒𝑠(𝑠𝑖)

‖𝑥 − 𝑝𝑗‖
2

2𝑛
𝑖=1       (6) 

𝑹𝒅𝒊𝒗 enables the penalization of similarity between 

prototypes up to a certain threshold, which results in 

representations that are more expressive and diverse and is 

expressed as follows: 

   𝑅𝑑𝑖𝑣 = ∑ 𝑚𝑎𝑥
 

(0, 𝑐𝑜𝑠(𝑝𝑖 , 𝑝𝑗) −𝐾
𝑘=1,𝑖≠𝑗

 
→𝑝𝑖,𝑝𝑗∈ 𝑝𝑘

𝑠𝑚𝑎𝑥  (7) 

Prototype Projection. During the training process, we 

visualize the prototypes by periodically performing a 

projection step. This involves projecting prototype vectors 

to real image patches from the training set, specifically for 

all prototype vectors of a given class. The projection step 

finds the closest latent representation of a manipulated or 

genuine image patch within the same class. By doing this, 

test predictions are based on the similarities between the 

test sample and the learned prototypes. The prototype 

projection has the same temporal complexity as a 

convolutional layer feedforward computation followed by 

global average pooling. This is due to the fact that the 

projection step takes the shortest distance across all 

prototype-sized patches, whereas global average pooling 

takes the average of dot products across all filter-sized 

patches. As a result, the prototype projection adds no 

additional time complexity to the network training process. 

Optimization function. During the training, we apply 

optimization 𝝁  to the weighted matrix 𝒘𝒉  of the fully 

connected layer 𝒍𝒉 , to achieve sparsity in the proposed 

methodology. This sparsity property reduces reliance on 

negative reasoning processes. The optimization problem is 

solved as: 

𝑚𝑖𝑛
𝑤ℎ

1

𝑁
∑ 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑙ℎ ∘ 𝑙𝑝 ∘ 𝑓(𝑠𝑖), 𝑦𝑖) +𝑁

𝑖=1

𝜇 ∑ |𝑤ℎ
𝑘,𝑗|𝐾

𝑘=1,𝑗: 𝑝𝑗∉ 𝑝𝑘
                                                      (8) 

As we maintain all parameters constant in the 

convolutional and prototype layers, the optimization is 

convex. During this process, we apply 𝝁 to the weights of 

the fully connected layer 𝒍𝒉  to encourage sparsity. 

Specifically, 𝝁  is a sum of the absolute values of the 

weights that connect to prototypes that are not associated 

with the current input sample. It encourages the network to 

use only a small subset of the prototypes for each input 

sample, which reduces the reliance on negative reasoning 

processes and can improve accuracy. It only impacts the 

weights of the fully connected layer 𝒍𝒉, without altering the 

prototypes or the learned latent space. Therefore, the 

prototypes and the learned latent space remain fixed 

throughout the optimization process, and the improvement 

in accuracy is achieved purely through the sparsity-

inducing 𝝁 without changing the prototypes. 



 

 

2.4. Visualization of the prototypes 

To determine the corresponding patch of 𝒔  that 

corresponds to the given prototype 𝒑𝒏, DFP-Net uses the 

latent patch of 𝒔  as 𝒑𝒏 during prototype projection in 

training. This identifies the image patch that is strongly 

activated by 𝒑𝒏 and uses it as the representation of 𝒑𝒏. This 

is because the patch of 𝒔  that corresponds to 𝒑𝒏 should 

have the highest activation from 𝒑𝒏. To locate this patch, 

we feed 𝒔  through a DFP-Net that has been trained and up 

sampled the activation map generated by the prototype unit 

𝒍𝒑𝒏
(prior to maxpooling) to the same size as 𝒔 as shown in 

Prototype layer in Figure 1. The region of high activation 

in the upsampled activation map indicates the most 

strongly activated patch of 𝒔 by 𝒑𝒏. To visualize 𝒑𝒏, we 

identify the region of the input image 𝒔 that corresponds to 

the prototype by using the smallest rectangular patch. This 

patch contains the pixels with the highest activation values 

in the upsampled activation map generated by the 

prototype unit 𝒍𝒑𝒏
. This rectangular patch corresponds to 

the latent patch of 𝒔 that is used as 𝒑𝒏  during prototype 

projection in training. The purpose of this process is to 

locate the specific region of the input image that is most 

strongly activated by the prototype unit  𝒍𝒑𝒏
, and use it as 

the representation of the prototype 𝒑𝒏 . The rectangular 

patch that is identified contains the most relevant pixels for 

the prototype and can be visualized to better understand the 

features that the prototype is representing. 

3. Experimental setup 

3.1. Dataset 

We evaluated our proposed methodology's performance 

by utilizing three distinct datasets: FaceForensics (FF)++ 

[13], Celeb-DF [14] and Deepfake Detection Challenge- 

Preview (DFDC-P) [15]. The FaceForensics++ dataset 

comprises over 1,000 videos, both original and 

manipulated, along with corresponding ground truth masks 

that indicate the manipulated frames. The manipulated 

videos were produced using four different techniques: 

Deepfakes, Face2Face, FaceSwap, and NeuralTextures. 

The videos have diverse individuals wearing glasses and 

having various illumination levels, making it challenging 

to differentiate between genuine and fake samples. The 

FaceForensics++ dataset has become a standard 

benchmark for evaluating deepfakes detection algorithms. 

 Celeb-DF dataset consists of more than 600,000 videos 

along with corresponding ground truth labels indicating 

whether each video is a deepfake or genuine. The genuine 

videos were extracted from YouTube and contain 

interviews of celebrities from various ethnicities, genders, 

and age groups. The fake videos were generated using a 

variety of deepfake generation techniques like face 

swapping and facial re-enactment. The dataset features a 

diverse range of subjects, including politicians, celebrities, 

and individuals from the general population, making it one 

of the most challenging and extensive datasets for deepfake 

detection. 

DFDC-P dataset contains more than 5000 videos from 

paid actors, which were synthesized using deep learning 

techniques to create both real and manipulated faces in a 

variety of lighting, angles, and expressions. The dataset 

features a diverse range of different scenarios and subjects, 

including news footage, political speeches, and social 

media posts. 

3.2. Performance evaluation of proposed method 

Our proposed DFP-Net was evaluated on real and fake 

samples from FF++, Celeb-DF, and DFDC-P datasets 

through a two-stage experiment to assess its efficacy for 

the detection of deepfakes. In the first stage, we used our 

DFP-Net model to differentiate real and fake samples from 

each subset of the FF++ dataset. We compared real 

samples against fake samples from Deepfakes (DF), 

FaceSwap (FS), Face2Face (F2F), NeuralTextures (NT), 

and FaceShifter (SH) sets of FF++. The results are shown 

Figure 2: The explainability (reasoning process) of the DFP-Net for real (A) and fake (B) class. 

(A) (B) 



 

 

in Table 1, where the FaceSwap set obtained the highest 

accuracy of 98.2%, and the FaceShifter set had the lowest 

accuracy of 89.1% compared to other sets. Our DFP-Net 

model demonstrated excellent results on all subsets of 

FaceForensics++ dataset, indicating its capability of 

detecting identity (FaceSwap, Deepfakes, FaceShifter) and 

expression (Face2Face and NeuralTextures) swap 

generated faces. 

Table 1 Performance evaluation on the FaceForensics++ dataset. 

 DF FS F2F NT SH 

Accuracy 98.2% 98.4% 92.3% 91.1% 89.1% 

AUC 0.97 0.98 0.93 0.87 0.84 

 

Secondly, for the Celeb-DF and DFDC-P dataset, we 

also tested the real samples against fake samples, and the 

results are displayed in Table 2. The high accuracy of 

96.05% achieved on the real and fake samples of the Celeb-

DF dataset indicates that the DFP-Net model can 

accurately distinguish highly realistic face swapped 

samples with minimal color discrepancy and temporal 

flickering. This is an important achievement since highly 

realistic face swaps are the most challenging types of 

deepfakes to detect due to their high quality and minimal 

artifacts. Moreover, DFP-Net achieved the accuracy of 

92.53% indicating that the model can differentiate between 

low illumination and side pose angled samples. These 

types of samples are difficult to classify accurately because 

they contain less discriminative features and pose 

challenges for most deepfake detection models. The high 

accuracy achieved on these samples shows that the DFP-

Net model has learned to extract meaningful features and 

can classify even the most challenging samples with high 

accuracy.  

Table 2 Performance evaluation on Celeb-DF and DFDC-P 

datasets. 

 Celeb-DF DFDC-P 

Accuracy 96.05% 92.53% 

AUC 0.95 0.93 

Overall, the high accuracy and AUC scores achieved on 

FaceForensics++, Celeb-DF and DFDC-P datasets 

demonstrate the robustness and generalizability of the 

proposed DFP-Net model. The model can accurately detect 

deepfakes across different datasets, each with their unique 

traits and generative algorithms. This highlights the 

potential of the DFP-Net model to be used in real-world 

applications for deepfake detection. 

3.3. Cross dataset evaluation 

We conducted a cross-dataset experiment on FF++, 

Celeb-DF and DFDC-P datasets to assess the 

transferability and generalizability of our proposed 

method. This experiment consists of following scenarios: 

(i) training on the entire FF++ dataset and testing on Celeb-

DF, DFDC-P, and vice versa, (ii) training on Celeb-DF and 

testing on DFDC-P, and (iii) training on DFDC-P and 

testing on Celeb-DF. The results of this experiment are 

shown in Table 3. It can be seen that FF++ trained model 

has shown higher accuracy on the test sets of Celeb-DF and 

DFDC-P as compared to other datasets. FF++ dataset is a 

diverse and standardized dataset comprising videos with 

varying lighting conditions, backgrounds, age, gender, and 

diverse ethnicities, featuring both expression and identity 

swap techniques. The DFDC-P trained model has shown 

lower accuracies as compared to both datasets, it may be 

due to the presence of very low illumination and side posed 

angles. Each dataset possesses unique traits and generative 

algorithms, making it important to test the transferability 

and generalizability of our proposed method across 

multiple datasets. The results of our cross-dataset 

experiment demonstrate the effectiveness of our method in 

achieving convincing accuracies across different datasets. 

Table 3 Performance evaluation on cross-datasets. 

 Test Dataset 

Train Dataset FF++ Celeb-DF DFDC-P 

FF++ 97.9% 81.26% 78.6% 

Celeb-DF 74.71% 96.05% 70.04% 

DFDC-P 71.97% 67.2% 92.53% 

3.4. Explainability analysis of the testing image 

We presented an analysis to show the explainability 

power and decision-making process of our DFP-Net. To 

achieve this, we examined how DFP-Net classifies a real 

sample test image using its learned prototypes. Figure 2 

illustrates the decision-making process of the model, where 

the latent features 𝒇(𝒔)  of the test image 𝒔 (Figure 2a) are 

compared with the learned prototypes (Figure 2b) to find 

evidence for its belonging to a certain class 𝒌. The latent 

patches representation of 𝒔  is compared with each 

prototype 𝒑𝒏  of class 𝒌  to obtain similarity scores, as 

depicted in Figure 2e. These scores are then used to 

generate an activation map, which highlights the regions of 

the image that are activated by each prototype (Figure 2d). 

In the original sample column (Figure 2a), a bounding box 

represents the most activated image patch of the given 

image for each prototype (Figure 2b). For instance, the first 

prototype of the real class strongly activates the lower 

facial area of the testing image, while the second prototype 

most strongly activates the right side of the nose and lips. 

The similarity scores between image patches and 

prototypical features are then weighted and averaged to 

obtain an overall score for the sample belonging to a 

specific class. This process is repeated for each class until 

the network correctly recognizes the testing image as a real 

sample. Our findings indicate that DFP-Net focuses on 

specific facial features, such as nose and lips, to accurately 



 

 

detect the real and fake samples. By providing insights into 

the decision-making process of DFP-Net, our study 

improves the transparency and interpretability of our 

model. 

3.5. Comparative analysis with the state-of-the-

art methods 

To evaluate the effectiveness of the proposed DFP-Net 

for deepfake detection, we compared it with contemporary 

methods. In this comparative analysis, we focused solely 

on those methods that emphasize the interpretability of 

deepfake detection. Specifically, we compared the 

performance of DFP-Net with [3, 5, 6] on FaceForensics++ 

dataset, and with [4, 6] on Celeb-DF, and DFDC-P 

datasets. The results, presented in Table 4, show that DFP-

Net outperforms or matches the performance of existing 

methods. Notably, DFP-Net achieves the highest accuracy 

on subsets based on expression swapping, namely 

Face2Face and NeuralTextures, with accuracy gains of 

27.7% and 35.6%, respectively, compared to [3]. These 

subsets are particularly challenging to detect due to subtle 

semantic changes, but our model demonstrates superior 

capability in distinguishing them compared to 

contemporary methods. In contrast, [3] using contrastive 

learning shows the lowest accuracy on all subsets of FF++ 

due to sensitivity to negative sample selection and requires 

a more complex model that demands greater computational 

resources. Our DFP-Net has shown relatively lower 

accuracy on FaceShifter set, which is attributed to the 

difficulty of detecting faces generated by this algorithm 

with minimal semantic changes. 

When our DFP-Net is compared with methods [4,6] 

evaluated on Celeb-DF and DFDC-P, it achieved the 

highest accuracy for both the datasets as shown in Table 4. 

Compared to [4], DFP-Net achieved a higher accuracy of 

2.65% on Celeb-DF, while on DFDC-P, it outperformed 

[6] with an accuracy gain of 0.53%. It is worth noting that 

in [4], an ensemble of weakly supervised models was used 

for the detection of deepfakes involving training using 

limited labeled data and unlimited unlabeled data. This 

model achieved the accuracy of 93.64% and 92.4% on 

Celeb-DF and DFDC-P, respectively. However, DFP-Net 

achieved higher accuracy than [4] on both datasets. 

DFP-Net has achieved the highest accuracy among most 

state-of-the-art methods on FaceForensics++, Celeb-DF, 

and DFDC-P datasets. The superior performance indicates 

that the DFP-Net can adapt well to different types of 

manipulations. The deepfake techniques used to create 

manipulated images can vary in terms of the level of detail, 

complexity, and type of manipulation applied. For 

instance, some deepfake techniques may involve subtle 

changes in facial expressions, while others may involve 

more drastic changes, such as replacing an entire face with 

another person's face. DFP-Net's ability to detect these 

manipulations with high accuracy demonstrates its 

versatility and robustness in detecting various deepfake 

techniques.  

Table 4 Comparative analysis with the state-of-the-art methods. 
Paper DF FS F2F NT SH FF++ Celeb-

DF 
DFDC-
P 

[3] 83.9 49.7 64.6 55.5 - - - - 

[6] 98.9 98.0 62.4 75.0 97.7 97.1 93.9 92.0 

[4] - - - - - - 93.64 92.4 

[11] - - - - - 98.2 - - 

DFP 98.2 98.4 92.3 91.1 89.1 97.9 96.05 92.53 

4. Ablation study 

An ablation study was carried out on the 

FaceForensics++ dataset to showcase the efficacy of 

different convolution neural network backbone 

architectures, the impact of various activation functions on 

backbone network, and prototype layer for the detection of 

deepfakes. 

4.1. Choosing backbone architecture 

This experiment was designed to assess the accuracy of 

various convolutional neural networks (CNNs) in detecting 

deepfakes. The experiment was performed on the 

FaceSwap and Deepfakes set of FaceForensics++, where 

real samples were compared with fake samples to analyze 

the effectiveness of the model. A range of pre-existing 

neural networks including VGG-16, ResNet-101, ResNet-

152, DenseNet-121 and DenseNet-201 with their 

corresponding frameworks (ReLu activation function) 

were employed in the backbone architecture, and the 

findings are presented in Table 5. Compared to VGG-16, 

which achieved a moderate accuracy of 73.4% and 73.98% 

on FaceSwap and Deepfakes subsets respectively, ResNet-

152 demonstrated better performance with accuracy of 

80.15% and 82.83% on the same subsets. Similarly, 

ResNet-101 exhibited an accuracy of 79.33% and 80.61% 

on the FaceSwap and Deepfakes subsets, respectively. 

However, DenseNet-121 outperformed all other models, 

achieving the highest accuracy of 84.1% and 86.97% on 

FaceSwap and Deepfakes subsets. DenseNet-201 also 

showed promising results with an accuracy of 84.26% and 

87.08% on the respective subsets. 

The exceptional performance of DenseNet-121 and 

DenseNet-201 may be due to the feature reuse property, 

which connects each layer to every other layer in a 

feedforward manner. This aids in the efficient propagation 

of information across the network, allowing the model to 

achieve faster convergence and learn more discriminative 

features for deepfake detection. In contrast, VGG-16, 

ResNet-101 and ResNet-152 are not as efficient in 

propagating information across the network, which can 

limit their ability to capture subtle patterns in the data. 

Furthermore, the parameter efficiency of DenseNet-121 



 

 

and DenseNet-201 contributes to improved generalization 

performance and reduced risk of overfitting. These results 

validate our choice of DenseNet-121 as the backbone 

network in our proposed network and suggest that 

DenseNet-201 shows potential for deepfake detection. 

Table 5 Performance evaluation on various backbone 

architectures. 

Network FaceSwap Deepfakes 

VGG-16 73.4% 73.98% 

ResNet-152 80.15% 82.83% 

DenseNet-121 84.1% 86.97% 

ResNet-101 79.33% 80.61% 

DenseNet-201 84.26% 87.08% 

4.2. Choosing activation function for backbone 

architecture 

This experiment was aimed to analyze the impact of 

various activation functions on the backbone network. We 

considered three commonly used activation functions; 

ReLu, GeLu and Swish. These functions were considered 

due to their prevalence in the literature and their ability to 

improve the network’s performance. The real and fake 

samples of FaceSwap and Deepfakes set were compared 

with each other to evaluate the performance of the 

activation function on the backbone architecture 

(DenseNet-121). It can be seen from the results in Table 6 

that the Swish activation function outperformed the other 

functions in terms of accuracy. Swish has a smoother curve 

than ReLu and GeLu, making it easier to optimize and 

avoid the dying ReLu problem, resulting in faster 

convergence during training. Furthermore, Swish's non-

monotonic behavior assists the model in learning more 

complex patterns in the data, which contributes to its 

superior performance when compared to ReLu and GeLu. 

Table 6 Performance evaluation on various activation function 

for backbone network. 

Activation Function FaceSwap Deepfakes 

ReLu 84.1% 86.97% 

GeLu 90.13% 94.3% 

Swish 98.4% 98.2% 

4.3. Choosing activation function for prototype 

layer 

This experiment was carried out to analyze the impact of 

various activation functions on prototype layer of 

DenseNet-121 having Swish function. The performance of 

the Logarithmic and Linear activation function was 

evaluated using the real and fake samples of FaceSwap and 

Deepfakes set of FF++. These activation functions were 

considered because they are commonly used and have 

different characteristics that can affect the performance of 

the prototype layer. The results shown in Table 7 indicate 

that the Logarithmic function outperformed the Linear 

function. This is due to the Logarithmic function's ability 

to compress a wide range of input values into a narrow 

range of output values, which is especially useful for 

prototypes aiming to represent input data with a small 

number of prototype vectors. The prototype layer plays a 

vital role in learning a condensed and informative 

representation of the input data, where the Logarithmic 

activation function can capture significant patterns and 

features while keeping the output values manageable. The 

Linear activation function, on the other hand, lacks 

nonlinearity, making it difficult to capture intricate 

relationships between input and output, resulting in a less 

effective representation of input data in the prototype layer. 

Hence, Logarithmic activation function is a viable option 

for compressing input values and capturing intricate 

relationships between input and output, resulting in a more 

effective representation of input data in the prototype layer. 

Table 7 Performance evaluation on various activation function 

for prototype layer. 

Activation Function FaceSwap Deepfakes 

Logarithmic 98.4% 98.2% 

Linear 91.99% 90.36% 

5. Conclusion 

In this paper, we have presented a novel DFP-Net that 

uses prototype-based learning to generate an interpretable 

and explainable deepfake detection method. We developed 

a deepfakes detection system by leveraging the power of 

the prototype-based learning technique, which provides 

insights into the model's decision-making process, making 

it more transparent and trustworthy. Our experimental 

findings on FaceForensics++, Celeb-DF and DFDC-P 

datasets, including cross-dataset experiments, show that 

our method outperforms traditional black-box machine 

learning models in deepfake detection. Our research results 

emphasize the significance of developing transparent and 

interpretable deepfake detection methods to ensure the 

authenticity and trustworthiness of video content in the 

digital age. In the future, we intend to investigate more 

interpretability techniques and the application of our 

method for the detection of unified audio-visual deepfakes. 
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