

Abstract

The rise of deepfake videos poses a serious threat to the

authenticity of visual media, as they have a potential to

manipulate public opinion, mislead individuals or groups,

harm reputation, etc. Traditional methods for detecting

deepfakes rely on deep learning models, which lack

transparency and interpretability. To gain the confidence

of forensic experts in AI-based deepfakes detector, we

present a novel DFP-Net for detecting deepfakes using

interpretable and explainable prototypes. Our method

makes use of the power of prototype-based learning to

generate a set of representative images that capture the

essential features of genuine and deepfake images. These

prototypes are then used to explain our model's decision-

making process and to provide insights into the features

most relevant for deepfake detection. We then use these

prototypes to train a classification model that can detect

deepfakes accurately and with high interpretability. To

further improve the interpretability of our method, we also

utilize the Grad-CAM technique to generate heatmaps that

highlight the regions of the image that contribute the most

towards the decision of the model. These heatmaps can be

used to explain the reasoning behind the model's decision

and provide insights into the visual cues that distinguish

deepfakes from real images. Experimental results on a

large-scale FaceForensics++, Celeb-DF and DFDC-P

datasets demonstrate that our method achieves state-of-

the-art performance in deepfakes detection. Moreover, the

interpretability and explainability of our method make it

more trustworthy to forensic experts by allowing them to

understand how the model works and makes predictions.

Keywords: Deepfakes detection, DFP-Net, Interpretable

prototypes, Explainable AI, FaceForensics++.

1. Introduction

In recent years, deepfake technology has gained

widespread attention due to its ability to generate highly

convincing fake media content, such as videos, images, and

audio. While this technology has various applications,

including entertainment and creative expression, it poses

significant risks to individuals, organizations, and society.

Deepfakes can be used to spread false information,

manipulate public opinion, and perpetrate fraud, among

other malicious activities. Therefore, the need for reliable

deepfake detection methods has become more critical than

ever. Traditional deepfake detection methods have relied

on handcrafted feature-based techniques as well as end-to-

end deep learning-based techniques that are trained on

large datasets of real and fake content. However, these

methods have limitations, such as being vulnerable to

adversarial attacks, lacking interpretability and

explainability, and having limited generalization ability.

Deep neural networks (DNNs) have proved successful

in many computer vision tasks, but their "black box" nature

makes it challenging to understand their decision-making

process. Recently, there has been a growing interest in

developing interpretable and explainable machine learning

models for deepfake detection to counter this limitation of

DNN. Machine learning models rely heavily on the

concepts of interpretability and explainability. The ability

to understand how a model works and how it makes

predictions is referred to as interpretability. It means that

the cause and effect can be determined, and the model can

take the inputs and produce the same outputs on a regular

basis [1]. Explainability, on the other hand, refers to a

model's ability to provide a human understandable

explanation of how it works and why it makes certain

predictions. As a broader concept, explainability includes

interpretability as well [2]. Like, in [3], Supervised

Contrastive Learning (SCL) for deepfake detection was

presented, which aims to improve the generalization and

explainability of deepfake detection models. This method

trains a deepfake detection model using a supervised

contrastive loss function to classify real and fake samples

and generates class activation maps, which highlight the

regions of the input that are most relevant to the

classification decision. However, this method requires

access to both real and fake videos of the same person

during training, which may not be feasible. In [4],

attention-based architecture was presented for deepfakes

detection. Also, an ensemble of different models was

employed to improve the detection performance and

DFP-Net: An explainable and trustworthy framework for detecting deepfakes

using interpretable prototypes

Fatima Khalid1, Ali Javed2*, Khalid Mahmood Malik3, Aun Irtaza1

1Department of Computer Science, University of Engineering and Technology-Taxila, Pakistan
2Department of Software Engineering, University of Engineering and Technology-Taxila, Pakistan

3Department of Computer Science and Engineering, Oakland University, Rochester, MI, USA
*ali.javed@uettaxila.edu.pk

generate focus attention maps using Grad-CAM

explanations. However, this approach requires significant

computational power during training. In [5], pairwise

learning and complementary information from various

color space representations were utilized to detect

deepfakes. A multi-channel XceptionNet was used to

classify real and fake images by analyzing pairs of facial

components. The method also incorporated t-SNE and

attention maps to explain how the decision-making process

works. However, this method is not generalizable to real-

world scenarios. In [6], a graph neural network is presented

for identifying deepfakes by dividing images into nodes

and creating a graph by connecting adjacent nodes based

on low-level features such as color and texture. The

resulting graph structure is used to gain insight into the

model's decision-making process. However, computing the

adjacency matrix can be time-consuming for large graphs,

which limits scalability when dealing with extensive

datasets. These techniques employ diverse methods of

explanation to achieve different levels of interpretability.

For instance, grad-cams are used to explain the inner

working of a model, activation maximization helps in

visualizing neurons, while deconvolution or up-

convolution can explain and visualize the layers of the

architecture. While these models have made significant

efforts in achieving accurate predictions, there remains

considerable scope for enhancing the interpretability and

explainability of these models.

One of the prominent approaches to explain DNNs is

posthoc analysis via gradient [3-6]. This approach provides

insights into the model's behavior but does not modify the

underlying architecture and building frameworks that are

interpretable by design with a built-in ability of self-

explanation. Instead, another line of research allows for

more intuitive and understandable explanations for non-

experts by representing interpretability as general concepts

rather than raw inputs. Chen et al. [7] presented a deep

learning model for image recognition that uses prototypes

obtained through a clustering algorithm on similar patches

from training images. This method is easily extendable to

new classes without retraining and requires no human

intervention. In [8], a hierarchical prototype-based method

was introduced for object classification within a predefined

taxonomy. This method selects the most similar prototype

at each level to make predictions, enabling the

classification of previously unseen classes. In [9], natural

language explanations of prototype representation for a

class were generated using gradient and optimization

techniques to improve interpretability. Nauta et al. [10]

presented a ProtoTree for fine-grained image recognition

that uses prototype learning and decision trees. However,

its effectiveness depends on the prototypes' ability to

represent the class well, and it may not always provide

accurate local explanations. Trinh et al. [11] employed

dynamic prototypes to distinguish real videos from

deepfakes by capturing their unique characteristics. A deep

neural network (DNN) based encoder was applied to

produce these dynamic prototypes, which were then

utilized to calculate similarity scores for the test videos.

However, the method requires large amount of training

data.

Current literature focuses on detecting deepfakes but

lacks attention to interpretability and trustworthiness.

These methods only label faces as real or fake or give the

probabilities, it would be more useful to explain how the

model arrived at its decision. An explainable and

interpretable deepfake detector is needed that not only

detects deepfakes but also provides understandable

explanations for humans to understand and trust the

system's decision-making process. To counter these issues,

we propose an explainable and interpretable prototype-

based network DFP-Net for the detection of deepfakes.

DFP-Net works by creating a set of prototypical

representations by analyzing the features of real and fake

samples and grouping the similar features together. After

creating these prototypical representations, the proposed

method uses them to make predictions about testing

samples. It compares the features of the testing sample to

the prototypical representations and identifies which

prototypical representations are most similar to the testing

sample. Finally, to make it easier for experts to understand

what the model has learned, the prototypes are projected

onto representative image patches from the training

dataset. This allows us to see what the prototypes look like

in a more tangible way and better understand the

differences between real and fake samples that the

proposed method has identified. The main contributions of

this work are:

• We propose a novel prototype based DFP-Net

method for the detection of deepfakes.

• We propose an interpretable and explainable

deep learning model for reliable deepfakes

detection.

• Rigorous experimentation was performed

including the cross corpora evaluation to show

the significance of our method.

2. Methodology

The following section provides an in-depth explanation

of the proposed DFP-Net for detecting deepfake videos.

The architecture of the proposed methodology is shown in

Figure 1.

2.1. Pre-processing

We utilized the Multi-task Cascaded Convolutional

Neural Networks (MTCNN) [12] face detector during pre-

processing stage to identify and extract the facial region of

224 × 224 from the input video. MTCNN is able to

recognize facial landmarks like eyes, nose, and mouth, in a

progressive manner from coarse to fine details. We opted

for the MTCNN as it accurately recognizes faces even in

the presence of occlusion and varying illumination

conditions, unlike other facial detectors [12].

2.2. DFP-Net architecture

The framework of the proposed architecture is shown in

Figure 1. Our DFP-Net model consists of three main

components: the backbone network 𝒇, the prototype-layer

𝒍𝒑 , and the fully connected layer 𝒍𝒉 . The network is

designed to take input in the form of the video frames. Let

𝑰 = {(𝒔𝒊, 𝒚𝒊)} be the video frames of the dataset, where 𝒔𝒊

represents the samples and 𝒚𝒊 as their corresponding

labels. The components are explained in the subsequent

sections.

Backbone network. DFP-Net utilizes the convolutional

layers of DenseNet-121, augmented by two extra 1 × 1

convolutional layers, as its backbone network. We have

employed the Swish activation function for the

convolutional layers, until the last, which used the sigmoid

function. We have chosen Swish due to its non-monotonic

nature, which can enhance the representational power of

the network. This property can aid in detecting complex

and subtle patterns in deepfakes, where small features play

a vital role in accurate classification. The convolutional

layers of the proposed method extract significant features

𝒇(𝒔) from the input image 𝒔 , which are utilized for

prediction. The convolutional output 𝒇(𝒔) has a spatial

dimension of 𝑯 = 𝑾 = 𝟕 , and the number of output

channels 𝑫 in the additional convolutional layers is chosen

from 128, 256, or 512 using cross-validation for our

dataset.

Prototype layer. The prototype layer is the main

component of our DFP-Net architecture. The prototype

layer is able to effectively learn a discriminative

representation of each class using only a few labeled

samples. DFP-Net utilizes 𝒏 prototype vectors

(𝒑𝟏, 𝒑𝟐, . . . , 𝒑𝒏) of shape (𝟏, 𝟏, 𝑫) in the latent space to

capture distinct activation patterns in the convolutional

feature maps. The prototype layer 𝒍𝒑 computes the squared

distance 𝒍𝟐 between each prototypical vector 𝒑𝒋 and every

spatial patch (𝟏, 𝟏, 𝑫) in the input feature map 𝒙, and then

inverts the distance to generate 𝒏 similarity maps for each

prototype. These maps indicate the presence of

prototypical parts in the image. The activation map of

similarity scores for each prototype unit is then globally

max-pooled to a single similarity score that represents the

strength of the prototypical part in some patch of the input

image. The prototype vectors' shape corresponds to the

smallest facial patch in 𝒙, and 𝒍𝒑 calculates 𝒏 similarity

scores as:

 𝑙𝑝𝑛
(𝑥) = max

𝑥′ ϵ 𝑝𝑎𝑡𝑐ℎ𝑒𝑠(𝑥)

1

1+‖𝑥′− 𝑙𝑝𝑛‖
 (1)

Where 𝒍𝒑𝒏
(𝒙) is the similarity score between the prototype

𝒑𝒏 and feature map 𝒙.

Fully connected layer. In this network, a fully connected

layer calculates the weighted sums of similarity scores as

𝒍𝒉 = 𝒘𝒍𝒑(𝒙), where the weights are denoted by

𝒘 𝛜 ℝ𝒌 × 𝒏, and 𝒌 = 𝟐 is the number of classes. The

resulting values are passed through a SoftMax function to

obtain the predicted probabilities as:

 𝑦̂′ =
𝑒𝑥𝑝(𝑎𝑖)

∑ 𝑒𝑥𝑝(𝑎𝑗)𝑘
𝑗=1

 (2)

To represent each class effectively, we allocate 𝒏𝒌

prototypes for every class 𝒌 in the range of {0,1} . This

means that the final model contains 𝒏𝒌 prototypes for each

class.

2.3. DFP-Net Training

Our goal with DFP-Net is to acquire a significant

representation of forgeries that guarantees the proximity of

Figure 1: Architecture of DFP-Net.

prototype vectors to input image patches, distinctness

between real and fake artifacts, and model interpretability.

We train DFP-Net by employing a loss function for all

layers except fully connected, prototype projections, and

optimization of the fully connected layer. These training

stages are repeated multiple times in a cycle.

Loss function. During the initial training phase, our

objective is to create a latent space where the image patches

are clustered around prototypes that represent similar

semantic classes. The clusters associated with prototypes

from both classes must be well-separated in terms of 𝒍𝟐

distance. To accomplish this goal, we use loss functions to

optimize the convolutional layer parameters as well as the

prototypes in the prototype layer. Let 𝑰 = {(𝒔𝒊, 𝒚𝒊)} be the

training dataset, where 𝑠𝑖 represent the image samples and

𝒚𝒊 are their labels. The objective function that we aim to

minimize involves hyperparameters 𝝁𝒄 , 𝝁𝒔 , and 𝝁𝒅 . It

includes four loss functions: cross entropy, clustering,

separation, and diversity. It is calculated as:

ℒ(𝐼, 𝜃) = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐼, 𝜃) + 𝜇𝑐𝑅𝑐𝑙𝑢𝑠(𝐼, 𝜃) +
𝜇𝑠𝑅𝑠𝑒𝑝(𝐼, θ) + 𝜇𝑑𝑅𝑑𝑖𝑣(𝐼, 𝜃) (3)

Where 𝑹𝒄𝒍𝒖𝒔 , 𝑹𝒔𝒆𝒑 , and 𝑹𝒅𝒊𝒗 represents the clustering,

separation, and diversity loss functions. 𝜽 represents the

training parameters of the backbone network 𝒇 and

prototype layer 𝒍𝒑. The cross-entropy function ensures

classification accuracy and is calculated as:

 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐼, 𝜃) =
1

𝑛
∑ −1[𝑦𝑖 = 𝑘]𝑛,𝑘

𝑖,𝑘=1 𝑙𝑜𝑔(𝑦̂′) (4)

On the other hand, the clustering loss 𝑹𝒄𝒍𝒖𝒔 minimizes

the squared distance 𝒍𝟐 between a latent patch from a

training sample and its closest prototypical vector of the

same class. The expressions for these loss functions are

given below:

 𝑅𝑐𝑙𝑢𝑠 = −
1

𝑛
∑ 𝑚𝑖𝑛

 𝑝𝑖𝜖𝑝𝑦𝑖
,𝑥∈𝑝𝑎𝑡𝑐ℎ𝑒𝑠(𝑠𝑖)

‖𝑥 − 𝑝𝑗‖
2

2𝑛
𝑖=1 (5)

𝒑𝒚𝒊
 refers to the collection of prototypical vectors

assigned to class 𝒚𝒊 . The 𝑹𝒔𝒆𝒑 separation-loss promotes

the distance between each patch of an altered training video

and the genuine prototypes, and vice versa. It is calculated

as:

 𝑅𝑠𝑒𝑝 = −
1

𝑛
∑ 𝑚𝑖𝑛

 𝑝𝑖∉𝑝𝑦𝑖
,𝑥∈𝑝𝑎𝑡𝑐ℎ𝑒𝑠(𝑠𝑖)

‖𝑥 − 𝑝𝑗‖
2

2𝑛
𝑖=1 (6)

𝑹𝒅𝒊𝒗 enables the penalization of similarity between

prototypes up to a certain threshold, which results in

representations that are more expressive and diverse and is

expressed as follows:

 𝑅𝑑𝑖𝑣 = ∑ 𝑚𝑎𝑥

(0, 𝑐𝑜𝑠(𝑝𝑖 , 𝑝𝑗) −𝐾
𝑘=1,𝑖≠𝑗

→𝑝𝑖,𝑝𝑗∈ 𝑝𝑘

𝑠𝑚𝑎𝑥 (7)

Prototype Projection. During the training process, we

visualize the prototypes by periodically performing a

projection step. This involves projecting prototype vectors

to real image patches from the training set, specifically for

all prototype vectors of a given class. The projection step

finds the closest latent representation of a manipulated or

genuine image patch within the same class. By doing this,

test predictions are based on the similarities between the

test sample and the learned prototypes. The prototype

projection has the same temporal complexity as a

convolutional layer feedforward computation followed by

global average pooling. This is due to the fact that the

projection step takes the shortest distance across all

prototype-sized patches, whereas global average pooling

takes the average of dot products across all filter-sized

patches. As a result, the prototype projection adds no

additional time complexity to the network training process.

Optimization function. During the training, we apply

optimization 𝝁 to the weighted matrix 𝒘𝒉 of the fully

connected layer 𝒍𝒉 , to achieve sparsity in the proposed

methodology. This sparsity property reduces reliance on

negative reasoning processes. The optimization problem is

solved as:

𝑚𝑖𝑛
𝑤ℎ

1

𝑁
∑ 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑙ℎ ∘ 𝑙𝑝 ∘ 𝑓(𝑠𝑖), 𝑦𝑖) +𝑁

𝑖=1

𝜇 ∑ |𝑤ℎ
𝑘,𝑗|𝐾

𝑘=1,𝑗: 𝑝𝑗∉ 𝑝𝑘
 (8)

As we maintain all parameters constant in the

convolutional and prototype layers, the optimization is

convex. During this process, we apply 𝝁 to the weights of

the fully connected layer 𝒍𝒉 to encourage sparsity.

Specifically, 𝝁 is a sum of the absolute values of the

weights that connect to prototypes that are not associated

with the current input sample. It encourages the network to

use only a small subset of the prototypes for each input

sample, which reduces the reliance on negative reasoning

processes and can improve accuracy. It only impacts the

weights of the fully connected layer 𝒍𝒉, without altering the

prototypes or the learned latent space. Therefore, the

prototypes and the learned latent space remain fixed

throughout the optimization process, and the improvement

in accuracy is achieved purely through the sparsity-

inducing 𝝁 without changing the prototypes.

2.4. Visualization of the prototypes

To determine the corresponding patch of 𝒔 that

corresponds to the given prototype 𝒑𝒏, DFP-Net uses the

latent patch of 𝒔 as 𝒑𝒏 during prototype projection in

training. This identifies the image patch that is strongly

activated by 𝒑𝒏 and uses it as the representation of 𝒑𝒏. This

is because the patch of 𝒔 that corresponds to 𝒑𝒏 should

have the highest activation from 𝒑𝒏. To locate this patch,

we feed 𝒔 through a DFP-Net that has been trained and up

sampled the activation map generated by the prototype unit

𝒍𝒑𝒏
(prior to maxpooling) to the same size as 𝒔 as shown in

Prototype layer in Figure 1. The region of high activation

in the upsampled activation map indicates the most

strongly activated patch of 𝒔 by 𝒑𝒏. To visualize 𝒑𝒏, we

identify the region of the input image 𝒔 that corresponds to

the prototype by using the smallest rectangular patch. This

patch contains the pixels with the highest activation values

in the upsampled activation map generated by the

prototype unit 𝒍𝒑𝒏
. This rectangular patch corresponds to

the latent patch of 𝒔 that is used as 𝒑𝒏 during prototype

projection in training. The purpose of this process is to

locate the specific region of the input image that is most

strongly activated by the prototype unit 𝒍𝒑𝒏
, and use it as

the representation of the prototype 𝒑𝒏 . The rectangular

patch that is identified contains the most relevant pixels for

the prototype and can be visualized to better understand the

features that the prototype is representing.

3. Experimental setup

3.1. Dataset

We evaluated our proposed methodology's performance

by utilizing three distinct datasets: FaceForensics (FF)++

[13], Celeb-DF [14] and Deepfake Detection Challenge-

Preview (DFDC-P) [15]. The FaceForensics++ dataset

comprises over 1,000 videos, both original and

manipulated, along with corresponding ground truth masks

that indicate the manipulated frames. The manipulated

videos were produced using four different techniques:

Deepfakes, Face2Face, FaceSwap, and NeuralTextures.

The videos have diverse individuals wearing glasses and

having various illumination levels, making it challenging

to differentiate between genuine and fake samples. The

FaceForensics++ dataset has become a standard

benchmark for evaluating deepfakes detection algorithms.

 Celeb-DF dataset consists of more than 600,000 videos

along with corresponding ground truth labels indicating

whether each video is a deepfake or genuine. The genuine

videos were extracted from YouTube and contain

interviews of celebrities from various ethnicities, genders,

and age groups. The fake videos were generated using a

variety of deepfake generation techniques like face

swapping and facial re-enactment. The dataset features a

diverse range of subjects, including politicians, celebrities,

and individuals from the general population, making it one

of the most challenging and extensive datasets for deepfake

detection.

DFDC-P dataset contains more than 5000 videos from

paid actors, which were synthesized using deep learning

techniques to create both real and manipulated faces in a

variety of lighting, angles, and expressions. The dataset

features a diverse range of different scenarios and subjects,

including news footage, political speeches, and social

media posts.

3.2. Performance evaluation of proposed method

Our proposed DFP-Net was evaluated on real and fake

samples from FF++, Celeb-DF, and DFDC-P datasets

through a two-stage experiment to assess its efficacy for

the detection of deepfakes. In the first stage, we used our

DFP-Net model to differentiate real and fake samples from

each subset of the FF++ dataset. We compared real

samples against fake samples from Deepfakes (DF),

FaceSwap (FS), Face2Face (F2F), NeuralTextures (NT),

and FaceShifter (SH) sets of FF++. The results are shown

Figure 2: The explainability (reasoning process) of the DFP-Net for real (A) and fake (B) class.

(A) (B)

in Table 1, where the FaceSwap set obtained the highest

accuracy of 98.2%, and the FaceShifter set had the lowest

accuracy of 89.1% compared to other sets. Our DFP-Net

model demonstrated excellent results on all subsets of

FaceForensics++ dataset, indicating its capability of

detecting identity (FaceSwap, Deepfakes, FaceShifter) and

expression (Face2Face and NeuralTextures) swap

generated faces.

Table 1 Performance evaluation on the FaceForensics++ dataset.

 DF FS F2F NT SH

Accuracy 98.2% 98.4% 92.3% 91.1% 89.1%

AUC 0.97 0.98 0.93 0.87 0.84

Secondly, for the Celeb-DF and DFDC-P dataset, we

also tested the real samples against fake samples, and the

results are displayed in Table 2. The high accuracy of

96.05% achieved on the real and fake samples of the Celeb-

DF dataset indicates that the DFP-Net model can

accurately distinguish highly realistic face swapped

samples with minimal color discrepancy and temporal

flickering. This is an important achievement since highly

realistic face swaps are the most challenging types of

deepfakes to detect due to their high quality and minimal

artifacts. Moreover, DFP-Net achieved the accuracy of

92.53% indicating that the model can differentiate between

low illumination and side pose angled samples. These

types of samples are difficult to classify accurately because

they contain less discriminative features and pose

challenges for most deepfake detection models. The high

accuracy achieved on these samples shows that the DFP-

Net model has learned to extract meaningful features and

can classify even the most challenging samples with high

accuracy.

Table 2 Performance evaluation on Celeb-DF and DFDC-P

datasets.

 Celeb-DF DFDC-P

Accuracy 96.05% 92.53%

AUC 0.95 0.93

Overall, the high accuracy and AUC scores achieved on

FaceForensics++, Celeb-DF and DFDC-P datasets

demonstrate the robustness and generalizability of the

proposed DFP-Net model. The model can accurately detect

deepfakes across different datasets, each with their unique

traits and generative algorithms. This highlights the

potential of the DFP-Net model to be used in real-world

applications for deepfake detection.

3.3. Cross dataset evaluation

We conducted a cross-dataset experiment on FF++,

Celeb-DF and DFDC-P datasets to assess the

transferability and generalizability of our proposed

method. This experiment consists of following scenarios:

(i) training on the entire FF++ dataset and testing on Celeb-

DF, DFDC-P, and vice versa, (ii) training on Celeb-DF and

testing on DFDC-P, and (iii) training on DFDC-P and

testing on Celeb-DF. The results of this experiment are

shown in Table 3. It can be seen that FF++ trained model

has shown higher accuracy on the test sets of Celeb-DF and

DFDC-P as compared to other datasets. FF++ dataset is a

diverse and standardized dataset comprising videos with

varying lighting conditions, backgrounds, age, gender, and

diverse ethnicities, featuring both expression and identity

swap techniques. The DFDC-P trained model has shown

lower accuracies as compared to both datasets, it may be

due to the presence of very low illumination and side posed

angles. Each dataset possesses unique traits and generative

algorithms, making it important to test the transferability

and generalizability of our proposed method across

multiple datasets. The results of our cross-dataset

experiment demonstrate the effectiveness of our method in

achieving convincing accuracies across different datasets.

Table 3 Performance evaluation on cross-datasets.

 Test Dataset

Train Dataset FF++ Celeb-DF DFDC-P

FF++ 97.9% 81.26% 78.6%

Celeb-DF 74.71% 96.05% 70.04%

DFDC-P 71.97% 67.2% 92.53%

3.4. Explainability analysis of the testing image

We presented an analysis to show the explainability

power and decision-making process of our DFP-Net. To

achieve this, we examined how DFP-Net classifies a real

sample test image using its learned prototypes. Figure 2

illustrates the decision-making process of the model, where

the latent features 𝒇(𝒔) of the test image 𝒔 (Figure 2a) are

compared with the learned prototypes (Figure 2b) to find

evidence for its belonging to a certain class 𝒌. The latent

patches representation of 𝒔 is compared with each

prototype 𝒑𝒏 of class 𝒌 to obtain similarity scores, as

depicted in Figure 2e. These scores are then used to

generate an activation map, which highlights the regions of

the image that are activated by each prototype (Figure 2d).

In the original sample column (Figure 2a), a bounding box

represents the most activated image patch of the given

image for each prototype (Figure 2b). For instance, the first

prototype of the real class strongly activates the lower

facial area of the testing image, while the second prototype

most strongly activates the right side of the nose and lips.

The similarity scores between image patches and

prototypical features are then weighted and averaged to

obtain an overall score for the sample belonging to a

specific class. This process is repeated for each class until

the network correctly recognizes the testing image as a real

sample. Our findings indicate that DFP-Net focuses on

specific facial features, such as nose and lips, to accurately

detect the real and fake samples. By providing insights into

the decision-making process of DFP-Net, our study

improves the transparency and interpretability of our

model.

3.5. Comparative analysis with the state-of-the-

art methods

To evaluate the effectiveness of the proposed DFP-Net

for deepfake detection, we compared it with contemporary

methods. In this comparative analysis, we focused solely

on those methods that emphasize the interpretability of

deepfake detection. Specifically, we compared the

performance of DFP-Net with [3, 5, 6] on FaceForensics++

dataset, and with [4, 6] on Celeb-DF, and DFDC-P

datasets. The results, presented in Table 4, show that DFP-

Net outperforms or matches the performance of existing

methods. Notably, DFP-Net achieves the highest accuracy

on subsets based on expression swapping, namely

Face2Face and NeuralTextures, with accuracy gains of

27.7% and 35.6%, respectively, compared to [3]. These

subsets are particularly challenging to detect due to subtle

semantic changes, but our model demonstrates superior

capability in distinguishing them compared to

contemporary methods. In contrast, [3] using contrastive

learning shows the lowest accuracy on all subsets of FF++

due to sensitivity to negative sample selection and requires

a more complex model that demands greater computational

resources. Our DFP-Net has shown relatively lower

accuracy on FaceShifter set, which is attributed to the

difficulty of detecting faces generated by this algorithm

with minimal semantic changes.

When our DFP-Net is compared with methods [4,6]

evaluated on Celeb-DF and DFDC-P, it achieved the

highest accuracy for both the datasets as shown in Table 4.

Compared to [4], DFP-Net achieved a higher accuracy of

2.65% on Celeb-DF, while on DFDC-P, it outperformed

[6] with an accuracy gain of 0.53%. It is worth noting that

in [4], an ensemble of weakly supervised models was used

for the detection of deepfakes involving training using

limited labeled data and unlimited unlabeled data. This

model achieved the accuracy of 93.64% and 92.4% on

Celeb-DF and DFDC-P, respectively. However, DFP-Net

achieved higher accuracy than [4] on both datasets.

DFP-Net has achieved the highest accuracy among most

state-of-the-art methods on FaceForensics++, Celeb-DF,

and DFDC-P datasets. The superior performance indicates

that the DFP-Net can adapt well to different types of

manipulations. The deepfake techniques used to create

manipulated images can vary in terms of the level of detail,

complexity, and type of manipulation applied. For

instance, some deepfake techniques may involve subtle

changes in facial expressions, while others may involve

more drastic changes, such as replacing an entire face with

another person's face. DFP-Net's ability to detect these

manipulations with high accuracy demonstrates its

versatility and robustness in detecting various deepfake

techniques.

Table 4 Comparative analysis with the state-of-the-art methods.
Paper DF FS F2F NT SH FF++ Celeb-

DF
DFDC-
P

[3] 83.9 49.7 64.6 55.5 - - - -

[6] 98.9 98.0 62.4 75.0 97.7 97.1 93.9 92.0

[4] - - - - - - 93.64 92.4

[11] - - - - - 98.2 - -

DFP 98.2 98.4 92.3 91.1 89.1 97.9 96.05 92.53

4. Ablation study

An ablation study was carried out on the

FaceForensics++ dataset to showcase the efficacy of

different convolution neural network backbone

architectures, the impact of various activation functions on

backbone network, and prototype layer for the detection of

deepfakes.

4.1. Choosing backbone architecture

This experiment was designed to assess the accuracy of

various convolutional neural networks (CNNs) in detecting

deepfakes. The experiment was performed on the

FaceSwap and Deepfakes set of FaceForensics++, where

real samples were compared with fake samples to analyze

the effectiveness of the model. A range of pre-existing

neural networks including VGG-16, ResNet-101, ResNet-

152, DenseNet-121 and DenseNet-201 with their

corresponding frameworks (ReLu activation function)

were employed in the backbone architecture, and the

findings are presented in Table 5. Compared to VGG-16,

which achieved a moderate accuracy of 73.4% and 73.98%

on FaceSwap and Deepfakes subsets respectively, ResNet-

152 demonstrated better performance with accuracy of

80.15% and 82.83% on the same subsets. Similarly,

ResNet-101 exhibited an accuracy of 79.33% and 80.61%

on the FaceSwap and Deepfakes subsets, respectively.

However, DenseNet-121 outperformed all other models,

achieving the highest accuracy of 84.1% and 86.97% on

FaceSwap and Deepfakes subsets. DenseNet-201 also

showed promising results with an accuracy of 84.26% and

87.08% on the respective subsets.

The exceptional performance of DenseNet-121 and

DenseNet-201 may be due to the feature reuse property,

which connects each layer to every other layer in a

feedforward manner. This aids in the efficient propagation

of information across the network, allowing the model to

achieve faster convergence and learn more discriminative

features for deepfake detection. In contrast, VGG-16,

ResNet-101 and ResNet-152 are not as efficient in

propagating information across the network, which can

limit their ability to capture subtle patterns in the data.

Furthermore, the parameter efficiency of DenseNet-121

and DenseNet-201 contributes to improved generalization

performance and reduced risk of overfitting. These results

validate our choice of DenseNet-121 as the backbone

network in our proposed network and suggest that

DenseNet-201 shows potential for deepfake detection.

Table 5 Performance evaluation on various backbone

architectures.

Network FaceSwap Deepfakes

VGG-16 73.4% 73.98%

ResNet-152 80.15% 82.83%

DenseNet-121 84.1% 86.97%

ResNet-101 79.33% 80.61%

DenseNet-201 84.26% 87.08%

4.2. Choosing activation function for backbone

architecture

This experiment was aimed to analyze the impact of

various activation functions on the backbone network. We

considered three commonly used activation functions;

ReLu, GeLu and Swish. These functions were considered

due to their prevalence in the literature and their ability to

improve the network’s performance. The real and fake

samples of FaceSwap and Deepfakes set were compared

with each other to evaluate the performance of the

activation function on the backbone architecture

(DenseNet-121). It can be seen from the results in Table 6

that the Swish activation function outperformed the other

functions in terms of accuracy. Swish has a smoother curve

than ReLu and GeLu, making it easier to optimize and

avoid the dying ReLu problem, resulting in faster

convergence during training. Furthermore, Swish's non-

monotonic behavior assists the model in learning more

complex patterns in the data, which contributes to its

superior performance when compared to ReLu and GeLu.

Table 6 Performance evaluation on various activation function

for backbone network.

Activation Function FaceSwap Deepfakes

ReLu 84.1% 86.97%

GeLu 90.13% 94.3%

Swish 98.4% 98.2%

4.3. Choosing activation function for prototype

layer

This experiment was carried out to analyze the impact of

various activation functions on prototype layer of

DenseNet-121 having Swish function. The performance of

the Logarithmic and Linear activation function was

evaluated using the real and fake samples of FaceSwap and

Deepfakes set of FF++. These activation functions were

considered because they are commonly used and have

different characteristics that can affect the performance of

the prototype layer. The results shown in Table 7 indicate

that the Logarithmic function outperformed the Linear

function. This is due to the Logarithmic function's ability

to compress a wide range of input values into a narrow

range of output values, which is especially useful for

prototypes aiming to represent input data with a small

number of prototype vectors. The prototype layer plays a

vital role in learning a condensed and informative

representation of the input data, where the Logarithmic

activation function can capture significant patterns and

features while keeping the output values manageable. The

Linear activation function, on the other hand, lacks

nonlinearity, making it difficult to capture intricate

relationships between input and output, resulting in a less

effective representation of input data in the prototype layer.

Hence, Logarithmic activation function is a viable option

for compressing input values and capturing intricate

relationships between input and output, resulting in a more

effective representation of input data in the prototype layer.

Table 7 Performance evaluation on various activation function

for prototype layer.

Activation Function FaceSwap Deepfakes

Logarithmic 98.4% 98.2%

Linear 91.99% 90.36%

5. Conclusion

In this paper, we have presented a novel DFP-Net that

uses prototype-based learning to generate an interpretable

and explainable deepfake detection method. We developed

a deepfakes detection system by leveraging the power of

the prototype-based learning technique, which provides

insights into the model's decision-making process, making

it more transparent and trustworthy. Our experimental

findings on FaceForensics++, Celeb-DF and DFDC-P

datasets, including cross-dataset experiments, show that

our method outperforms traditional black-box machine

learning models in deepfake detection. Our research results

emphasize the significance of developing transparent and

interpretable deepfake detection methods to ensure the

authenticity and trustworthiness of video content in the

digital age. In the future, we intend to investigate more

interpretability techniques and the application of our

method for the detection of unified audio-visual deepfakes.

Acknowledgment This work is supported by the grant

of Punjab Higher Education Commission (PHEC) Pakistan

via Award No. (PHEC/ARA/PIRCA/20527/21), National

Science Foundation (NSF) via Award No. 2231619 and

Michigan Transnational Research and Commercialization

(MTRAC), Advanced Computing Technologies (ACT) via

Award No. 292883.

References

[1] Jonathan Johnson, Interpretability vs Explainability: The

Black Box of Machine Learning, accessed on April 11,

2023, Available at https://www.bmc.com/blogs/machine-

learning-interpretability-vs-explainability/

[2] A. Erasmus, T. D. Brunet, and E. Fisher. What is

interpretability? Philosophy & Technology, 34(4): 833-862,

2021.

[3] Y. Xu, K. Raja, and M. Pedersen. Supervised contrastive

learning for generalizable and explainable deepfakes

detection. In Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision, 379-389,

2022.

[4] S. H. Silva, M. Bethany, A. M. Votto, I. H. Scarff, N. Beebe,

and P. Najafirad. Deepfake forensics analysis: An

explainable hierarchical ensemble of weakly supervised

models. Forensic Science International: Synergy, 4:100217,

2022.

[5] Y. Xu, K. Raja, L. Verdoliva, and M. Pedersen. Learning

Pairwise Interaction for Generalizable DeepFake Detection.

In Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision, 672-682, 2023.

[6] F. Khalid, A. Javed, H. Ilyas, and A. Irtaza. DFGNN: An

Interpretable and Generalized graph neural network for

deepfakes detection. Expert Systems with Applications,

222:119843, 2023.

[7] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su.

This looks like that: deep learning for interpretable image

recognition. Advances in neural information processing

systems, 32, 2019.

[8] P. Hase, C. Chen, O. Li, and C. Rudin. Interpretable image

recognition with hierarchical prototypes. In Proceedings of

the AAAI Conference on Human Computation and

Crowdsourcing, 7:32-40, 2019.

[9] M. Nauta, A. Jutte, J. Provoost, and C. Seifert. This looks

like that, because... explaining prototypes for interpretable

image recognition. In Machine Learning and Principles and

Practice of Knowledge Discovery in Databases:

International Workshops of ECML PKDD 2021, Virtual

Event, 441-456,2022.

[10] M. Nauta, R. Van Bree, and C. Seifert. Neural prototype

trees for interpretable fine-grained image recognition.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 14933-14943, 2021.

[11] L. Trinh, M. Tsang, S. Rambhatla, and Y. Liu. Interpretable

and trustworthy deepfake detection via dynamic prototypes.

In Proceedings of the IEEE/CVF winter conference on

applications of computer vision, 1973-1983, 2021.

[12] J. Xiang, and G. Zhu. Joint face detection and facial

expression recognition with MTCNN. In 2017 4th

international conference on information science and control

engineering (ICISCE), IEEE, 424-427, 2017.

[13] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies,

and M. Nießner. Faceforensics++: Learning to detect

manipulated facial images. In Proceedings of the IEEE/CVF

international conference on computer vision, 1-11, 2019.

[14] Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu. Celeb-df: A large-

scale challenging dataset for deepfake forensics.

In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, 3207-3216, 2020.

[15] B. Dolhansky, R. Howes, B. Pflaum, N. Baram, and C. C.

Ferrer. The deepfake detection challenge (dfdc) preview

dataset. arXiv preprint arXiv:1910.08854, 2019.

