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Abstract

The rise of deepfake videos poses a serious threat to the
authenticity of visual media, as they have a potential to
manipulate public opinion, mislead individuals or groups,
harm reputation, etc. Traditional methods for detecting
deepfakes rely on deep learning models, which lack
transparency and interpretability. To gain the confidence
of forensic experts in Al-based deepfakes detector, we
present a novel DFP-Net for detecting deepfakes using
interpretable and explainable prototypes. Our method
makes use of the power of prototype-based learning to
generate a set of representative images that capture the
essential features of genuine and deepfake images. These
prototypes are then used to explain our model's decision-
making process and to provide insights into the features
most relevant for deepfake detection. We then use these
prototypes to train a classification model that can detect
deepfakes accurately and with high interpretability. To
further improve the interpretability of our method, we also
utilize the Grad-CAM technique to generate heatmaps that
highlight the regions of the image that contribute the most
towards the decision of the model. These heatmaps can be
used to explain the reasoning behind the model's decision
and provide insights into the visual cues that distinguish
deepfakes from real images. Experimental results on a
large-scale FaceForensics++, Celeb-DF and DFDC-P
datasets demonstrate that our method achieves state-of-
the-art performance in deepfakes detection. Moreover, the
interpretability and explainability of our method make it
more trustworthy to forensic experts by allowing them to
understand how the model works and makes predictions.

Keywords: Deepfakes detection, DFP-Net, Interpretable
prototypes, Explainable Al, FaceForensics++.

1. Introduction

In recent years, deepfake technology has gained
widespread attention due to its ability to generate highly
convincing fake media content, such as videos, images, and
audio. While this technology has various applications,

including entertainment and creative expression, it poses
significant risks to individuals, organizations, and society.
Deepfakes can be used to spread false information,
manipulate public opinion, and perpetrate fraud, among
other malicious activities. Therefore, the need for reliable
deepfake detection methods has become more critical than
ever. Traditional deepfake detection methods have relied
on handcrafted feature-based techniques as well as end-to-
end deep learning-based techniques that are trained on
large datasets of real and fake content. However, these
methods have limitations, such as being vulnerable to
adversarial  attacks, lacking interpretability = and
explainability, and having limited generalization ability.
Deep neural networks (DNNs) have proved successful
in many computer vision tasks, but their "black box" nature
makes it challenging to understand their decision-making
process. Recently, there has been a growing interest in
developing interpretable and explainable machine learning
models for deepfake detection to counter this limitation of
DNN. Machine learning models rely heavily on the
concepts of interpretability and explainability. The ability
to understand how a model works and how it makes
predictions is referred to as interpretability. It means that
the cause and effect can be determined, and the model can
take the inputs and produce the same outputs on a regular
basis [1]. Explainability, on the other hand, refers to a
model's ability to provide a human understandable
explanation of how it works and why it makes certain
predictions. As a broader concept, explainability includes
interpretability as well [2]. Like, in [3], Supervised
Contrastive Learning (SCL) for deepfake detection was
presented, which aims to improve the generalization and
explainability of deepfake detection models. This method
trains a deepfake detection model using a supervised
contrastive loss function to classify real and fake samples
and generates class activation maps, which highlight the
regions of the input that are most relevant to the
classification decision. However, this method requires
access to both real and fake videos of the same person
during training, which may not be feasible. In [4],
attention-based architecture was presented for deepfakes
detection. Also, an ensemble of different models was
employed to improve the detection performance and



generate focus attention maps using Grad-CAM
explanations. However, this approach requires significant
computational power during training. In [5], pairwise
learning and complementary information from various
color space representations were utilized to detect
deepfakes. A multi-channel XceptionNet was used to
classify real and fake images by analyzing pairs of facial
components. The method also incorporated t-SNE and
attention maps to explain how the decision-making process
works. However, this method is not generalizable to real-
world scenarios. In [6], a graph neural network is presented
for identifying deepfakes by dividing images into nodes
and creating a graph by connecting adjacent nodes based
on low-level features such as color and texture. The
resulting graph structure is used to gain insight into the
model's decision-making process. However, computing the
adjacency matrix can be time-consuming for large graphs,
which limits scalability when dealing with extensive
datasets. These techniques employ diverse methods of
explanation to achieve different levels of interpretability.
For instance, grad-cams are used to explain the inner
working of a model, activation maximization helps in
visualizing neurons, while deconvolution or up-
convolution can explain and visualize the layers of the
architecture. While these models have made significant
efforts in achieving accurate predictions, there remains
considerable scope for enhancing the interpretability and
explainability of these models.

One of the prominent approaches to explain DNNs is
posthoc analysis via gradient [3-6]. This approach provides
insights into the model's behavior but does not modify the
underlying architecture and building frameworks that are
interpretable by design with a built-in ability of self-
explanation. Instead, another line of research allows for
more intuitive and understandable explanations for non-
experts by representing interpretability as general concepts
rather than raw inputs. Chen et al. [7] presented a deep
learning model for image recognition that uses prototypes
obtained through a clustering algorithm on similar patches
from training images. This method is easily extendable to
new classes without retraining and requires no human
intervention. In [8], a hierarchical prototype-based method
was introduced for object classification within a predefined
taxonomy. This method selects the most similar prototype
at each level to make predictions, enabling the
classification of previously unseen classes. In [9], natural
language explanations of prototype representation for a
class were generated using gradient and optimization
techniques to improve interpretability. Nauta et al. [10]
presented a ProtoTree for fine-grained image recognition
that uses prototype learning and decision trees. However,
its effectiveness depends on the prototypes' ability to
represent the class well, and it may not always provide
accurate local explanations. Trinh et al. [11] employed
dynamic prototypes to distinguish real videos from

deepfakes by capturing their unique characteristics. A deep
neural network (DNN) based encoder was applied to
produce these dynamic prototypes, which were then
utilized to calculate similarity scores for the test videos.
However, the method requires large amount of training
data.

Current literature focuses on detecting deepfakes but
lacks attention to interpretability and trustworthiness.
These methods only label faces as real or fake or give the
probabilities, it would be more useful to explain how the
model arrived at its decision. An explainable and
interpretable deepfake detector is needed that not only
detects deepfakes but also provides understandable
explanations for humans to understand and trust the
system's decision-making process. To counter these issues,
we propose an explainable and interpretable prototype-
based network DFP-Net for the detection of deepfakes.
DFP-Net works by creating a set of prototypical
representations by analyzing the features of real and fake
samples and grouping the similar features together. After
creating these prototypical representations, the proposed
method uses them to make predictions about testing
samples. It compares the features of the testing sample to
the prototypical representations and identifies which
prototypical representations are most similar to the testing
sample. Finally, to make it easier for experts to understand
what the model has learned, the prototypes are projected
onto representative image patches from the training
dataset. This allows us to see what the prototypes look like
in a more tangible way and better understand the
differences between real and fake samples that the
proposed method has identified. The main contributions of
this work are:

e  We propose a novel prototype based DFP-Net
method for the detection of deepfakes.

e We propose an interpretable and explainable
deep learning model for reliable deepfakes
detection.

e Rigorous experimentation was performed
including the cross corpora evaluation to show
the significance of our method.

2. Methodology

The following section provides an in-depth explanation
of the proposed DFP-Net for detecting deepfake videos.
The architecture of the proposed methodology is shown in
Figure 1.

2.1. Pre-processing

We utilized the Multi-task Cascaded Convolutional
Neural Networks (MTCNN) [12] face detector during pre-
processing stage to identify and extract the facial region of
224 x 224 from the input video. MTCNN is able to
recognize facial landmarks like eyes, nose, and mouth, in a
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Figure 1: Architecture of DFP-Net.

progressive manner from coarse to fine details. We opted
for the MTCNN as it accurately recognizes faces even in
the presence of occlusion and varying illumination
conditions, unlike other facial detectors [12].

2.2.DFP-Net architecture

The framework of the proposed architecture is shown in
Figure 1. Our DFP-Net model consists of three main
components: the backbone network f, the prototype-layer
l,, and the fully connected layer l,. The network is
designed to take input in the form of the video frames. Let
I = {(s;,¥:)} be the video frames of the dataset, where s;
represents the samples and y; as their corresponding
labels. The components are explained in the subsequent
sections.

Backbone network. DFP-Net utilizes the convolutional
layers of DenseNet-121, augmented by two extra 1 x 1
convolutional layers, as its backbone network. We have
employed the Swish activation function for the
convolutional layers, until the last, which used the sigmoid
function. We have chosen Swish due to its non-monotonic
nature, which can enhance the representational power of
the network. This property can aid in detecting complex
and subtle patterns in deepfakes, where small features play
a vital role in accurate classification. The convolutional
layers of the proposed method extract significant features
f(s) from the input image s, which are utilized for
prediction. The convolutional output f(s) has a spatial
dimension of H = W = 7, and the number of output
channels D in the additional convolutional layers is chosen
from 128, 256, or 512 using cross-validation for our
dataset.

Prototype layer. The prototype layer is the main
component of our DFP-Net architecture. The prototype
layer is able to effectively learn a discriminative
representation of each class using only a few labeled
samples. DFP-Net utilizes mn prototype vectors
(p1,D2,---,Pn) of shape (1,1, D) in the latent space to

capture distinct activation patterns in the convolutional
feature maps. The prototype layer 1, computes the squared
distance [ between each prototypical vector pj and every
spatial patch (1, 1, D) in the input feature map x, and then
inverts the distance to generate n similarity maps for each
prototype. These maps indicate the presence of
prototypical parts in the image. The activation map of
similarity scores for each prototype unit is then globally
max-pooled to a single similarity score that represents the
strength of the prototypical part in some patch of the input
image. The prototype vectors' shape corresponds to the
smallest facial patch in x, and L, calculates n similarity
scores as:

1
max T
x1 e patches(x) 1+][xr= Lp, ||

by () = (0]

Where 1, (x) is the similarity score between the prototype
P and feature map x.

Fully connected layer. In this network, a fully connected
layer calculates the weighted sums of similarity scores as
l, =wl,(x), where the weights are denoted by
weRKX™ and k =2 is the number of classes. The
resulting values are passed through a SoftMax function to
obtain the predicted probabilities as:

A1 exp(ai)
=t 2
Tk exp(a)) 2)

To represent each class effectively, we allocate ny
prototypes for every class k in the range of {0,1}. This
means that the final model contains n;, prototypes for each
class.

2.3.DFP-Net Training

Our goal with DFP-Net is to acquire a significant
representation of forgeries that guarantees the proximity of



prototype vectors to input image patches, distinctness
between real and fake artifacts, and model interpretability.
We train DFP-Net by employing a loss function for all
layers except fully connected, prototype projections, and
optimization of the fully connected layer. These training
stages are repeated multiple times in a cycle.

Loss function. During the initial training phase, our
objective is to create a latent space where the image patches
are clustered around prototypes that represent similar
semantic classes. The clusters associated with prototypes
from both classes must be well-separated in terms of I?
distance. To accomplish this goal, we use loss functions to
optimize the convolutional layer parameters as well as the
prototypes in the prototype layer. Let I = {(s;,¥;)} be the
training dataset, where s; represent the image samples and
y; are their labels. The objective function that we aim to
minimize involves hyperparameters u., pg, and pg. It
includes four loss functions: cross entropy, clustering,
separation, and diversity. It is calculated as:

L(I,0) = CrossEntropy(l,0) + u.Rps(1,0) +
ﬂsRsep (1,0) + ugRyi,(1,0) 3)

Where Repys, Rsep, and Ry, represents the clustering,
separation, and diversity loss functions. @ represents the
training parameters of the backbone network f and
prototype layer l,. The cross-entropy function ensures
classification accuracy and is calculated as:

CrossEntropy(l,0) = =¥, —1[y; = k] log(9) (4)

On the other hand, the clustering loss R, minimizes
the squared distance I between a latent patch from a
training sample and its closest prototypical vector of the
same class. The expressions for these loss functions are
given below:

1 2
R = —=y" min X —P; 5
clus n <=1 piepyi'XEpatches(si)” p’”2 ®)

Py, refers to the collection of prototypical vectors

assigned to class y;. The Ry, separation-loss promotes
the distance between each patch of an altered training video
and the genuine prototypes, and vice versa. It is calculated
as:

1
R — _2\ym
sep — n&Hi=1

min ||x - pj||z (6)

piEpyi,pratches(si)

R,;, enables the penalization of similarity between
prototypes up to a certain threshold, which results in

representations that are more expressive and diverse and is
expressed as follows:

— VK
Rdiv - Zk:l,i::j—»pi,pje Pk max(O, COS(pi, pj) ~ Smax (7)

Prototype Projection. During the training process, we
visualize the prototypes by periodically performing a
projection step. This involves projecting prototype vectors
to real image patches from the training set, specifically for
all prototype vectors of a given class. The projection step
finds the closest latent representation of a manipulated or
genuine image patch within the same class. By doing this,
test predictions are based on the similarities between the
test sample and the learned prototypes. The prototype
projection has the same temporal complexity as a
convolutional layer feedforward computation followed by
global average pooling. This is due to the fact that the
projection step takes the shortest distance across all
prototype-sized patches, whereas global average pooling
takes the average of dot products across all filter-sized
patches. As a result, the prototype projection adds no
additional time complexity to the network training process.

Optimization function. During the training, we apply
optimization u to the weighted matrix wy of the fully
connected layer I, to achieve sparsity in the proposed
methodology. This sparsity property reduces reliance on
negative reasoning processes. The optimization problem is
solved as:

min%Z?’zl CrossEntropy(lp o l, © f(s;),y:) +
Wh

K k,j
MZR:l,j:pjep}JWh J| (8)

Aswe maintain all parameters constant in the
convolutional and prototype layers, the optimization is
convex. During this process, we apply u to the weights of
the fully connected layer I, to encourage sparsity.
Specifically, p is a sum of the absolute values of the
weights that connect to prototypes that are not associated
with the current input sample. It encourages the network to
use only a small subset of the prototypes for each input
sample, which reduces the reliance on negative reasoning
processes and can improve accuracy. It only impacts the
weights of the fully connected layer 1, without altering the
prototypes or the learned latent space. Therefore, the
prototypes and the learned latent space remain fixed
throughout the optimization process, and the improvement
in accuracy is achieved purely through the sparsity-
inducing p without changing the prototypes.
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2.4. Visualization of the prototypes

To determine the corresponding patch of s that
corresponds to the given prototype p,,, DFP-Net uses the
latent patch of s as p,, during prototype projection in
training. This identifies the image patch that is strongly
activated by p,, and uses it as the representation of p,,. This
is because the patch of s that corresponds to p,, should
have the highest activation from p,,. To locate this patch,
we feed s through a DFP-Net that has been trained and up
sampled the activation map generated by the prototype unit
L, (prior to maxpooling) to the same size as s as shown in
Prototype layer in Figure 1. The region of high activation
in the upsampled activation map indicates the most
strongly activated patch of s by p,,. To visualize p,,, we
identify the region of the input image s that corresponds to
the prototype by using the smallest rectangular patch. This
patch contains the pixels with the highest activation values
in the upsampled activation map generated by the
prototype unit I, . This rectangular patch corresponds to
the latent patch of s that is used as p,, during prototype
projection in training. The purpose of this process is to
locate the specific region of the input image that is most
strongly activated by the prototype unit L, , and use it as
the representation of the prototype p, . The rectangular
patch that is identified contains the most relevant pixels for
the prototype and can be visualized to better understand the
features that the prototype is representing.

3. Experimental setup

3.1.Dataset

We evaluated our proposed methodology's performance
by utilizing three distinct datasets: FaceForensics (FF)++
[13], Celeb-DF [14] and Deepfake Detection Challenge-
Preview (DFDC-P) [15]. The FaceForensics++ dataset
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Figure 2: The explainability (reasoning process) of the DFP-Net for real (A) and fake (B) class.

comprises over 1,000 videos, both original and
manipulated, along with corresponding ground truth masks
that indicate the manipulated frames. The manipulated
videos were produced using four different techniques:
Deepfakes, Face2Face, FaceSwap, and NeuralTextures.
The videos have diverse individuals wearing glasses and
having various illumination levels, making it challenging
to differentiate between genuine and fake samples. The
FaceForensics++ dataset has become a standard
benchmark for evaluating deepfakes detection algorithms.

Celeb-DF dataset consists of more than 600,000 videos
along with corresponding ground truth labels indicating
whether each video is a deepfake or genuine. The genuine
videos were extracted from YouTube and contain
interviews of celebrities from various ethnicities, genders,
and age groups. The fake videos were generated using a
variety of deepfake generation techniques like face
swapping and facial re-enactment. The dataset features a
diverse range of subjects, including politicians, celebrities,
and individuals from the general population, making it one
of the most challenging and extensive datasets for deepfake
detection.

DFDC-P dataset contains more than 5000 videos from
paid actors, which were synthesized using deep learning
techniques to create both real and manipulated faces in a
variety of lighting, angles, and expressions. The dataset
features a diverse range of different scenarios and subjects,
including news footage, political speeches, and social
media posts.

3.2.Performance evaluation of proposed method

Our proposed DFP-Net was evaluated on real and fake
samples from FF++, Celeb-DF, and DFDC-P datasets
through a two-stage experiment to assess its efficacy for
the detection of deepfakes. In the first stage, we used our
DFP-Net model to differentiate real and fake samples from
each subset of the FF++ dataset. We compared real
samples against fake samples from Deepfakes (DF),
FaceSwap (FS), Face2Face (F2F), NeuralTextures (NT),
and FaceShifter (SH) sets of FF++. The results are shown



in Table 1, where the FaceSwap set obtained the highest
accuracy of 98.2%, and the FaceShifter set had the lowest
accuracy of 89.1% compared to other sets. Our DFP-Net
model demonstrated excellent results on all subsets of
FaceForensics++ dataset, indicating its capability of
detecting identity (FaceSwap, Deepfakes, FaceShifter) and
expression (Face2Face and NeuralTextures) swap
generated faces.

Table 1 Performance evaluation on the FaceForensics++ dataset.

DF FS F2F NT SH
Accuracy | 98.2% | 98.4% | 92.3% | 91.1% | 89.1%
AUC 0.97 0.98 0.93 0.87 0.84

Secondly, for the Celeb-DF and DFDC-P dataset, we
also tested the real samples against fake samples, and the
results are displayed in Table 2. The high accuracy of
96.05% achieved on the real and fake samples of the Celeb-
DF dataset indicates that the DFP-Net model can
accurately distinguish highly realistic face swapped
samples with minimal color discrepancy and temporal
flickering. This is an important achievement since highly
realistic face swaps are the most challenging types of
deepfakes to detect due to their high quality and minimal
artifacts. Moreover, DFP-Net achieved the accuracy of
92.53% indicating that the model can differentiate between
low illumination and side pose angled samples. These
types of samples are difficult to classify accurately because
they contain less discriminative features and pose
challenges for most deepfake detection models. The high
accuracy achieved on these samples shows that the DFP-
Net model has learned to extract meaningful features and
can classify even the most challenging samples with high
accuracy.

Table 2 Performance evaluation on Celeb-DF and DFDC-P
datasets.

Celeb-DF DFDC-P
Accuracy 96.05% 92.53%
AUC 0.95 0.93

Overall, the high accuracy and AUC scores achieved on
FaceForensics++, Celeb-DF and DFDC-P datasets
demonstrate the robustness and generalizability of the
proposed DFP-Net model. The model can accurately detect
deepfakes across different datasets, each with their unique
traits and generative algorithms. This highlights the
potential of the DFP-Net model to be used in real-world
applications for deepfake detection.

3.3.Cross dataset evaluation

We conducted a cross-dataset experiment on FF++,
Celeb-DF and DFDC-P datasets to assess the
transferability and generalizability of our proposed
method. This experiment consists of following scenarios:

(i) training on the entire FF++ dataset and testing on Celeb-
DF, DFDC-P, and vice versa, (ii) training on Celeb-DF and
testing on DFDC-P, and (iii) training on DFDC-P and
testing on Celeb-DF. The results of this experiment are
shown in Table 3. It can be seen that FF++ trained model
has shown higher accuracy on the test sets of Celeb-DF and
DFDC-P as compared to other datasets. FF++ dataset is a
diverse and standardized dataset comprising videos with
varying lighting conditions, backgrounds, age, gender, and
diverse ethnicities, featuring both expression and identity
swap techniques. The DFDC-P trained model has shown
lower accuracies as compared to both datasets, it may be
due to the presence of very low illumination and side posed
angles. Each dataset possesses unique traits and generative
algorithms, making it important to test the transferability
and generalizability of our proposed method across
multiple datasets. The results of our cross-dataset
experiment demonstrate the effectiveness of our method in
achieving convincing accuracies across different datasets.

Table 3 Performance evaluation on cross-datasets.

Test Dataset
Train Dataset | FF++ Celeb-DF | DFDC-P
FF++ 97.9% 81.26% 78.6%
Celeb-DF 74.71% 96.05% 70.04%
DFDC-P 71.97% 67.2% 92.53%

3.4. Explainability analysis of the testing image

We presented an analysis to show the explainability
power and decision-making process of our DFP-Net. To
achieve this, we examined how DFP-Net classifies a real
sample test image using its learned prototypes. Figure 2
illustrates the decision-making process of the model, where
the latent features f(s) of the test image s (Figure 2a) are
compared with the learned prototypes (Figure 2b) to find
evidence for its belonging to a certain class k. The latent
patches representation of s is compared with each
prototype p, of class k to obtain similarity scores, as
depicted in Figure 2e. These scores are then used to
generate an activation map, which highlights the regions of
the image that are activated by each prototype (Figure 2d).
In the original sample column (Figure 2a), a bounding box
represents the most activated image patch of the given
image for each prototype (Figure 2b). For instance, the first
prototype of the real class strongly activates the lower
facial area of the testing image, while the second prototype
most strongly activates the right side of the nose and lips.
The similarity scores between image patches and
prototypical features are then weighted and averaged to
obtain an overall score for the sample belonging to a
specific class. This process is repeated for each class until
the network correctly recognizes the testing image as a real
sample. Our findings indicate that DFP-Net focuses on
specific facial features, such as nose and lips, to accurately



detect the real and fake samples. By providing insights into
the decision-making process of DFP-Net, our study
improves the transparency and interpretability of our
model.

3.5. Comparative analysis with the state-of-the-
art methods

To evaluate the effectiveness of the proposed DFP-Net
for deepfake detection, we compared it with contemporary
methods. In this comparative analysis, we focused solely
on those methods that emphasize the interpretability of
deepfake detection. Specifically, we compared the
performance of DFP-Net with [3, 5, 6] on FaceForensics++
dataset, and with [4, 6] on Celeb-DF, and DFDC-P
datasets. The results, presented in Table 4, show that DFP-
Net outperforms or matches the performance of existing
methods. Notably, DFP-Net achieves the highest accuracy
on subsets based on expression swapping, namely
Face2Face and NeuralTextures, with accuracy gains of
27.7% and 35.6%, respectively, compared to [3]. These
subsets are particularly challenging to detect due to subtle
semantic changes, but our model demonstrates superior
capability in distinguishing them compared to
contemporary methods. In contrast, [3] using contrastive
learning shows the lowest accuracy on all subsets of FF++
due to sensitivity to negative sample selection and requires
a more complex model that demands greater computational
resources. Our DFP-Net has shown relatively lower
accuracy on FaceShifter set, which is attributed to the
difficulty of detecting faces generated by this algorithm
with minimal semantic changes.

When our DFP-Net is compared with methods [4,6]
evaluated on Celeb-DF and DFDC-P, it achieved the
highest accuracy for both the datasets as shown in Table 4.
Compared to [4], DFP-Net achieved a higher accuracy of
2.65% on Celeb-DF, while on DFDC-P, it outperformed
[6] with an accuracy gain of 0.53%. It is worth noting that
in [4], an ensemble of weakly supervised models was used
for the detection of deepfakes involving training using
limited labeled data and unlimited unlabeled data. This
model achieved the accuracy of 93.64% and 92.4% on
Celeb-DF and DFDC-P, respectively. However, DFP-Net
achieved higher accuracy than [4] on both datasets.

DFP-Net has achieved the highest accuracy among most
state-of-the-art methods on FaceForensics++, Celeb-DF,
and DFDC-P datasets. The superior performance indicates
that the DFP-Net can adapt well to different types of
manipulations. The deepfake techniques used to create
manipulated images can vary in terms of the level of detail,
complexity, and type of manipulation applied. For
instance, some deepfake techniques may involve subtle
changes in facial expressions, while others may involve
more drastic changes, such as replacing an entire face with
another person's face. DFP-Net's ability to detect these

manipulations with high accuracy demonstrates its
versatility and robustness in detecting various deepfake
techniques.

Table 4 Comparative analysis with the state-of-the-art methods.

Paper | DF FS F2F | NT | SH | FF++ | Celeb- | DFDC-
DF P

[3] | 83.9 [ 49.7 | 64.6 | 555 | -

[6] | 989 [ 98.0 | 624 | 75.0 | 97.7 | 97.1 | 939 | 92.0
4 |- ; ; 93.64 | 924

[y |- - - - B 552

DFP | 98.2 | 984 | 923 | 91.1 | 89.1 | 97.9 96.05 | 92.53

4. Ablation study

An ablation study was carried out on the
FaceForensics++ dataset to showcase the efficacy of
different convolution neural network backbone
architectures, the impact of various activation functions on
backbone network, and prototype layer for the detection of
deepfakes.

4.1. Choosing backbone architecture

This experiment was designed to assess the accuracy of
various convolutional neural networks (CNNs) in detecting
deepfakes. The experiment was performed on the
FaceSwap and Deepfakes set of FaceForensics++, where
real samples were compared with fake samples to analyze
the effectiveness of the model. A range of pre-existing
neural networks including VGG-16, ResNet-101, ResNet-
152, DenseNet-121 and DenseNet-201 with their
corresponding frameworks (ReLu activation function)
were employed in the backbone architecture, and the
findings are presented in Table 5. Compared to VGG-16,
which achieved a moderate accuracy of 73.4% and 73.98%
on FaceSwap and Deepfakes subsets respectively, ResNet-
152 demonstrated better performance with accuracy of
80.15% and 82.83% on the same subsets. Similarly,
ResNet-101 exhibited an accuracy of 79.33% and 80.61%
on the FaceSwap and Deepfakes subsets, respectively.
However, DenseNet-121 outperformed all other models,
achieving the highest accuracy of 84.1% and 86.97% on
FaceSwap and Deepfakes subsets. DenseNet-201 also
showed promising results with an accuracy of 84.26% and
87.08% on the respective subsets.

The exceptional performance of DenseNet-121 and
DenseNet-201 may be due to the feature reuse property,
which connects each layer to every other layer in a
feedforward manner. This aids in the efficient propagation
of information across the network, allowing the model to
achieve faster convergence and learn more discriminative
features for deepfake detection. In contrast, VGG-16,
ResNet-101 and ResNet-152 are not as efficient in
propagating information across the network, which can
limit their ability to capture subtle patterns in the data.
Furthermore, the parameter efficiency of DenseNet-121




and DenseNet-201 contributes to improved generalization
performance and reduced risk of overfitting. These results
validate our choice of DenseNet-121 as the backbone
network in our proposed network and suggest that
DenseNet-201 shows potential for deepfake detection.

Table 5 Performance evaluation on various backbone
architectures.

Network FaceSwap Deepfakes
VGG-16 73.4% 73.98%
ResNet-152 80.15% 82.83%
DenseNet-121 | 84.1% 86.97%
ResNet-101 79.33% 80.61%
DenseNet-201 | 84.26% 87.08%

4.2.Choosing activation function for backbone
architecture

This experiment was aimed to analyze the impact of
various activation functions on the backbone network. We
considered three commonly used activation functions;
ReLu, GeLu and Swish. These functions were considered
due to their prevalence in the literature and their ability to
improve the network’s performance. The real and fake
samples of FaceSwap and Deepfakes set were compared
with each other to evaluate the performance of the
activation function on the backbone architecture
(DenseNet-121). It can be seen from the results in Table 6
that the Swish activation function outperformed the other
functions in terms of accuracy. Swish has a smoother curve
than ReLu and GeLu, making it easier to optimize and
avoid the dying ReLu problem, resulting in faster
convergence during training. Furthermore, Swish's non-
monotonic behavior assists the model in learning more
complex patterns in the data, which contributes to its
superior performance when compared to ReLu and GeLu.

Table 6 Performance evaluation on various activation function
for backbone network.

Activation Function | FaceSwap Deepfakes
ReLu 84.1% 86.97%
GeLu 90.13% 94.3%
Swish 98.4% 98.2%

4.3. Choosing activation function for prototype
layer

This experiment was carried out to analyze the impact of
various activation functions on prototype layer of
DenseNet-121 having Swish function. The performance of
the Logarithmic and Linear activation function was
evaluated using the real and fake samples of FaceSwap and
Deepfakes set of FF++. These activation functions were
considered because they are commonly used and have
different characteristics that can affect the performance of

the prototype layer. The results shown in Table 7 indicate
that the Logarithmic function outperformed the Linear
function. This is due to the Logarithmic function's ability
to compress a wide range of input values into a narrow
range of output values, which is especially useful for
prototypes aiming to represent input data with a small
number of prototype vectors. The prototype layer plays a
vital role in learning a condensed and informative
representation of the input data, where the Logarithmic
activation function can capture significant patterns and
features while keeping the output values manageable. The
Linear activation function, on the other hand, lacks
nonlinearity, making it difficult to capture intricate
relationships between input and output, resulting in a less
effective representation of input data in the prototype layer.
Hence, Logarithmic activation function is a viable option
for compressing input values and capturing intricate
relationships between input and output, resulting in a more
effective representation of input data in the prototype layer.

Table 7 Performance evaluation on various activation function
for prototype layer.

Activation Function FaceSwap Deepfakes
Logarithmic 98.4% 98.2%
Linear 91.99% 90.36%

5. Conclusion

In this paper, we have presented a novel DFP-Net that
uses prototype-based learning to generate an interpretable
and explainable deepfake detection method. We developed
a deepfakes detection system by leveraging the power of
the prototype-based learning technique, which provides
insights into the model's decision-making process, making
it more transparent and trustworthy. Our experimental
findings on FaceForensics++, Celeb-DF and DFDC-P
datasets, including cross-dataset experiments, show that
our method outperforms traditional black-box machine
learning models in deepfake detection. Our research results
emphasize the significance of developing transparent and
interpretable deepfake detection methods to ensure the
authenticity and trustworthiness of video content in the
digital age. In the future, we intend to investigate more
interpretability techniques and the application of our
method for the detection of unified audio-visual deepfakes.
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