
 

 

 

Abstract 

The evolution of artificial intelligence (AI) techniques in 

recent years has increased the generation of fake content 

including AI-generated text, images, audio, and videos. 

Among which the fake visual content commonly known as 

deepfakes has imposed a great threat to society due to its 

negative impacts. To mitigate the adverse aspects of 

deepfakes, the research community has introduced various 

deepfakes detection methods. However, these deepfakes 

detection methods lack the interpretability and 

explainability of the decision-making process. The 

interpretable model increases trustworthiness as it 

provides the reasoning for classifying outcomes as real or 

fake. Therefore, in this paper, we have introduced 

ConvNext-PNet, which is a prototypical-based learning 

framework for the interpretable and explainable detection 

of visual deepfakes. In the proposed framework, prototype 

learning is incorporated into the modified ConvNext model 

that improves the discriminative features learning 

capability of the proposed framework along with the 

explainability aspect. The performance of ConvNext-PNet 

is evaluated on challenging datasets including 

FaceForensics++ (FF++), CelebDF, DFDC-P, and 

DeepFakeFace (DFF) datasets. The robustness of the 

proposed model is validated through various experiments 

along with the interpretability analysis. The quantitative 

results demonstrate the effectiveness of the model for the 

detection of visual manipulation, whereas the model 

interpretability and explainability aspect increases the 

trustworthiness via providing reasoning for the model 

predictions. 

Keywords: ConvNext-PNet, ConvNext, ProtoPNet, 

Interpretable deepfakes detection, Explainable deepfakes 

detection. 

1. Introduction 

With the advancement in artificial intelligence (AI), 

generative AI has also evolved tremendously in recent 

years. Nowadays generative AI has been utilized for 

creating synthetic content including text, images, audio, 

and videos. With the introduction of variational 

autoencoders (VAEs), generative adversarial networks 

(GANs), and more recent diffusion models, highly realistic 

synthetic images and videos, also known as deepfakes, can 

be created [1]. Deepfakes generation has gained substantial 

attention as it can be used for performing various malicious 

activities such as propagating disinformation, defaming 

famous personalities, and misguiding individuals to create 

chaos. Besides the negative impacts, it has numerous 

positive aspects including its application in movie 

production, virtual meetings, and entertainment [1]. 

However, the unethical use of deepfakes necessitates the 

development of countermeasures.   

Existing literature on deepfakes detection mainly 

focuses on the effective, accurate, and generalizable 

deepfakes detection methods, however, less attention is 

given to the intrinsically interpretable deepfakes detection 

approaches. There is a lack of deepfakes detection models 

that are interpretable by design along with built-in self-

explainability. In other words, current deepfakes detection 

approaches can identify fake and real content but are 

unable to explain the decision-making process of the 

model. To overcome this knowledge gap, we introduce a 

prototype learning-based deepfakes detection framework 

namely ConvNext-PNet. More specifically, we present an 

intrinsically interpretable deepfake detection approach 

where the modified ConvNext model is incorporated with 

the prototypical part network (ProtoPNet). The modified 

ConvNext better learns the discriminative features of real 

and fake images, while the prototypical part network 

provides the explainability aspect of the model. The main 

contributions of the proposed research work are as follows: 

1. We propose a novel prototype learning-based 

approach, namely ConvNext-PNet for the 

interpretable and explainable detection of deepfakes. 

2. We introduce ConvNext as the base architecture in our 

framework to reliably capture more crucial features 

specific to synthetic data.  

 

ConvNext-PNet: An interpretable and explainable deep-learning model for 

deepfakes detection  
 

                                      Hafsa Ilyas                               Ali Javed 

            University of Engineering and Technology,        University of Engineering and Technology, 

                                     Taxila, Pakistan                                     Taxila, Pakistan 
            hafsailyas97@gmai1.com           ali.javed@uettaxila.edu.pk 
 

                              Khalid Mahmood Malik                               

                University of Michigan-Flint, MI, USA                         
            drmalik@umich.edu             



 

 

3. We performed extensive experimentation to show the 

effectiveness of the proposed explainable framework. 

2. Related Works 

This section presented the discussion on the existing 

deepfakes detection approaches including the explainable 

methods implementing the post-hoc explainability 

analysis. Along with, the methods that are interpretable by 

design are also described in this section. 

2.1. Deepfakes Detection Methods 

Deepfakes detection models have gone through 

significant advancement from hand-crafted feature-based 

methods [2, 3] to deep learning-based approaches [4, 5] 

and unified detection techniques [6]. Zhang et al. [4] 

introduced a two-stream neural network combining image 

spatial and residual domains to detect the tampering 

artifacts in deepfakes videos. The spatial stream captured 

the tampering artifacts while the residual stream detected 

tampering traces from the image residual. Deepfakes 

detection method namely the localized artifact attention 

network (LAA-Net) was presented in [5] that incorporated 

an attention mechanism and enhanced feature pyramid 

network (E-FPNet). This method [5] is sensitive to 

structural perturbations and performs worst when tested on 

noisy images. The traditional hand-crafted-based 

techniques lack the generalization ability; however, the 

deep learning-based methods are not interpretable and 

vulnerable to adversarial attacks.  

2.2. Explainable Deepfakes Detection Approaches 

Because of the non-transparent decision-making, and 

opaque nature of deep learning models, explainable AI 

(XAI) has emerged as a field focused on making AI models 

understandable and hence trustworthy [7]. XAI techniques 

include post-hoc explainability analysis and intrinsically 

interpretable methods. In post-hoc analysis, trained 

convolutional neural networks (CNNs) are interpreted by 

highlighting the parts of the input that contribute most to 

the final prediction. Techniques of post-hoc analysis 

include saliency map visualization, activation 

maximization, and deconvolution. Mostly in the deepfakes 

detection, post-hoc explainability analysis is performed on 

trained CNNs to provide the explainability aspect. For 

instance, to detect deepfakes images, a supervised 

contrastive learning approach was introduced in [8], 

providing the model explainability through heatmaps 

generated corresponding to the model’s last layer. In [9], a 

ResNet-Swish-Dense54 model was introduced for 

effective deepfakes detection along with explainability. 

The explainability power of the model was analyzed via 

generation heatmaps corresponding to the last layer of the 

trained model. A pairwise learning approach along with 

color space exploitation was presented in [10] for the 

generalizable deepfakes detection. More specifically, the 

multi-channel Xception network was employed with 

attentive pairwise learning. This approach [10] then 

utilized t-SNE and class activation maps to explain the 

decision-making process of the model. The above-

mentioned approaches implementing the post-hoc 

visualization analysis provide insights of the input image 

regions contributing to the final prediction. However, these 

approaches are unable to explain how the models arrive at 

the prediction decision.  

2.3. Intrinsically Interpretable Methods 

Intrinsically interpretable methods involve the 

modification of the model’s architecture before training to 

develop such frameworks that are interpretable by design 

with self-explaining ability. These methods provide 

predictions that are more understandable. One of the XAI 

intrinsic methods in the image recognition field is a 

prototype-based approach where explainability is provided 

based on visual similarity. The prototype-based approach 

implements case-based reasoning identical to the humans’ 

way of recognizing objects. This approach highlights the 

regions of the input image under examination, along with 

providing the prototypical cases identical to those regions. 

Chen et al. [11] introduced the prototypical part network 

that incorporates prototype learning into CNNs for image 

recognition. In [12], a model was presented that organized 

prototypes hierarchically and performed prediction at 

every level of taxonomy. To provide more explainability to 

ProtoPNet, [13] introduced the framework that specified 

the textual quantitative explanation for the model decision. 

of finding the similarity between prototypes and image 

patches. The textual information determined the influence 

of characteristics such as hue, texture, saturation, contrast, 

and shape on the model decision.  

3. Methodology 

In this section, in-depth details of the architecture and 

training process of the proposed framework ConvNext-

PNet in the context of visual deepfakes detection are 

provided. The overall architecture of the proposed 

framework is presented in Figure 1.  

3.1. Pre-processing 

Pre-processing involves the extraction of facial frames 

from the videos using Multi-task Cascaded Convolutional 

Neural Networks (MTCNN) [18]. MTCNN detects and 

extracts facial features with high accuracy from the given 

images having faces of distinct orientations and sizes. The 

extracted facial frames are resized to 224 × 224 × 3 and 

then input to the proposed framework for further 

processing. 



 

 

3.2. ConvNext-PNet 

The proposed ConvNext-PNet framework is comprised 

of 3 main components, ConvNext feature encoder CNf with 

parameters ���� , prototype layer Pl, and fully connected 

layer Fl with weights ��� . Let � �  
�� , ������
�

 be the given 

facial frames dataset, where xj is the input facial frames 

with � ∈ �0, 1 � representing the label for fake and real. 

These facial frames xj are sampled as input to the 

ConvNext-PNet.   

ConvNext Feature Encoder. ConvNext feature encoder 

CNf initialized with ImageNet pretrained weights, is 

introduced as the backbone architecture of the proposed 

framework ConvNext-PNet. The design choices for 

ConvNext architecture are adapted from Swin Transformer 

retaining the simplicity and efficiency of CNNs [19] and 

thus can better capture the crucial features from synthetic 

images. ConvNext proved to outperform the Swin 

Transformer in terms of performance and simplicity [19]. 

Primarily, the ConvNext is based on the architecture of 

ResNet that is modernized towards the design of Swin 

Transformer in the following ways: 

• The stem cell in ResNet is replaced with the patchify 

stem implemented using 4×4 non-overlapping 

convolutional layers. Also, the stage computation ratio 

is adjusted to 1:1:3:1. 

• Depth-wise convolutions are employed by adopting 

the ResNext design and adjusting the network width to 

96. 

• Inverted bottlenecks are adopted from the Transformer 

block design. 

• Large kernel-sized convolutions are utilized. 

• Fewer activation functions and normalization layers 

are utilized.  

Additionally, we utilized the LeakyReLU activation 

function in each ConvNext block. LeakyReLU is 

computationally efficient and its non-zero gradient for 

negative inputs enables ConvNext to learn from both 

negative and positive neurons thus ensuring subtle features 

learning during training. Finally, the two successive 1×1 

convolution layers are then added to the end of the 

network, after the last ConvNext block. The first 

convolution layer is followed by ReLU, and the second 

convolution layer is followed by the sigmoid activation 

function. The architecture of modified ConvNext is shown 

in Figure 2. 

For a given input image x, the ConvNext feature encoder 

CNf, encodes the hidden representation � ∈ ℝ����� , 

where �  = CNf(x). In other words, ConvNext encoder 

extracts the salient features CNf(x) that are further utilized 

for prediction. H×W×C is the shape of the extracted output 

features CNf(x), where the spatial dimension is H = W = 7 

and the number of output channels C is selected from these 

potential values: 128, 256, 512, via cross-validation.  

Prototype Layer. The prototype layer Pl of the ConvNext-

PNet enables the framework to learn a set of prototypes 

� � �������
  with the shape of H1×W1×C, where H1 = W1 

= 1. This indicates that the depth C of the prototype is 

similar to the output features CNf(x), however, the height 

and width of the prototype are smaller compared to that of 

output features �.  Each prototype pi in latent space learns 

the discriminative prototypical parts (consisting of facial 

regions) from each class (real/fake). In the prototype layer 

Pl, each prototype unit Pli computes the L2 distance 

between the prototypical part pi and the latent patches �! 

(having a shape similar to pi) of the given feature vector � 

= CNf(x) and then converts the distances to similarity 

scores. This generates the similarity scores activation map 

indicating the strength of the presence of the prototypical 

part in the image. Then the corresponding activation map 

is up-sampled to input image size to visualize as a heatmap, 

identifying the part of the image most similar to the learned 

Figure 1: ConvNext-PNet framework. 



 

 

prototype. Mathematically, the prototype unit Pli computes 

the following. 

"#�$% �  ‖�! '  ��‖(
(              (1) 

�)*+�, � -.�/!∈01%234$+/, log 89:*;<=�
9:*;<= >?        (2) 

where @ represents the very small positive value to avoid 

zero division. 

The similarity scores activation map resulting from each 

prototype unit Pli is then reduced to a single similarity score 

utilizing the max pooling layer. The highest similarity 

score represents the stronger presence of the prototypical 

part in the patch of the input image.  

It is the objective to learn the meaningful and 

discriminative features representing manipulation, during 

the training phase. Therefore, to learn appropriate latent 

space, the image patches �! must be clustered around 

semantic similar prototypes P based on the L2 distance and 

the cluster of distinct classes (real or fake) must be well-

separated. For this purpose, ConvNext feature encoder 

weights ���� , and prototypes � � �������
  from prototype 

layer Pl are optimized jointly utilizing stochastic gradient 

descent (SGD) before the fully connected last layer Fl, 

while the last layer weights ���  are kept fixed.  

Consider � �  
�� , ������
�

 be the given facial frames 

dataset, where xj is the input facial frames for training, the 

optimization problem is given by: 

-ABC,DEF�
�
  ∑ HI +J)  ∘  �)  ∘  HLMN��O, ��  , 

��� P
 Q2)R$H2)R$ P  Q$40S$40                 (3) 

where CE(.), H2)R$(.), and S$40(.) refer to the cross entropy, 

clustering, and separation loss, respectively, whereas Q2)R$ 

and Q$40  represents the hyperparameters.  

The clustering loss promotes the minimization of the L2 

distance between the patches in the training image and the 

closest prototype from its class. For instance, it encourages 

that each fake image has some patch that is close to some 

or at least one prototype of the fake class and vice versa. 

Clustering loss is defined as: 

H2)R$ �  �
  ∑ -AB�: 0*∈ CUV

  -AB /! ∈ 01%234$ +���+WV,, 
 
��� ‖�! '

 ��‖(
(                  (4) 

The separation loss encourages the separation of the 

patches of training image of a class from the prototypes of 

other class. For instance, it promotes that every patch of 

real image remains away from the prototypes of fake class 

and vice versa. Separation loss is defined as: 

S$40 �
' �

  ∑ -AB�: 0*∉ CUV
  -AB /! ∈ 01%234$ +���+WV,, 

 
��� ‖�! '  ��‖(

(

                    (5) 

 Fully Connected Softmax Layer. Finally, the fully 

connected layer Fl computes the weighted sum of the 

similarity scores Y � ����)+�, , where ���  ∈  ℝZ �[ 

represents the weights and k=2 denotes the number of 

classes. The softmax function is used to produce the 

predicted score for the given input image belonging to the 

classes (real and fake) as follows. 

�\] �  4^*
∑ 4^V_

V`a
                (6) 

The optimization is performed on the weights ���   of 

last layer Fl to introduce the sparsity property in our 

ConvNext-PNet framework. The sparsity property reduces 

the reliance of the framework on the process of negative 

reasoning (the facial frame belongs to class fake because it 

contains the patch that is not prototypical of class real). 

The optimization is convex as the parameters of ConvNext 

feature encoder and prototype layer are kept fixed. The 

optimization problem is as follows: 

-ABDb�
�
  ∑ HI +J)  ∘  �)  ∘  HLMN��O, ��  , 

��� P
 Q ∑   ∑ c���

+Z,�,c�: 0*∉ C_ 
d
Z��            (7) 

where CE(.) represents the cross loss and Q indicates the 

hyperparameters. 

Figure 2: Architecture of modified ConvNext. 



 

 

4. Experiments and Results 

This section presents the description of the datasets 

utilized, details of the experiments conducted, and results 

discussion to assess the performance of the ConvNext-

PNet. 

4.1. Datasets 

The performance of the proposed ConvNext-PNet is 

evaluated utilizing the standard deepfakes detection 

datasets including FaceForensics++ (FF++) [20], CelebDF 

[21], DFDC-P [22], and DeepFakeFace (DFF) [23] dataset. 

FF++ dataset includes Real subset and four different 

manipulated subsets namely Faceswap, DeepFake, 

Face2Face, and NeuralTextures, each containing 1000 

videos. CelebDF dataset contains face-swapped videos of 

celebrities including distinct ethnicity, age, and gender. 

This dataset contains 590 real videos corresponding to 

which 5639 face-swapped videos are generated. DFDC-P 

dataset is more challenging in the deepfakes detection 

domain, it includes 5000 videos of paid actors, and the 

manipulated videos are generated using different 

deepfakes generation algorithms. DFF dataset contains a 

total of 120K images including 30K real images and 90K 

fake images. Fake images are further split into 3 subsets 

having 30K images. Each subset comprises the fake images 

generated through distinct Stable Diffusion models. 

Specifically, the DFF dataset includes the fake images 

synthesized using Stable Diffusion Inpainting, Stable 

Diffusion v1.5, and InsightFace. Overall, the datasets used 

for ConvNext-PNet evaluation include the diverse 

deepfakes generated using different algorithms having 

distinct illumination conditions, viewpoints, and 

background settings.  

4.2. Performance Evaluation of Proposed Model 

To assess the effectiveness of the proposed ConvNext-

PNet for the detection of deepfakes, we performed the 

experiments in three stages. In the first stage, ConvNext-

PNet is evaluated for the faceswap deepfakes, in the second 

stage, performance of the model is analyzed for facial 

reenactment deepfakes. Whereas, in the third stage, the 

model is evaluated for deepfakes generated via Stable 

Diffusion. The performance of the proposed model is 

evaluated using standard evaluation matrices including 

accuracy and area under curve (AUC). The details and 

results discussion of these experiments are provided in the 

subsequent subsections. 

Evaluation on Faceswap Deepfakes. To show the 

performance of the proposed ConvNext-PNet for faceswap 

deepfakes, we conducted experiments where we evaluated 

ConvNext-PNet on FaceSwap and DeepFake subsets of 

FF++ dataset, CelebDF, and DFDC-P datasets. For this, we 

trained and tested the model for the real and fake samples 

from the datasets. The results of the experiment are 

presented in Table 1.  

It can be seen from Table 1 that the proposed 

interpretable model has shown robust performance for the 

detection of faceswap deepfakes in the FF++ dataset, 

generated using two different techniques. Specifically, the 

model has achieved an accuracy of 98.70% and 98.67% on 

the DeepFake and FaceSwap subsets of the FF++ dataset. 

For the CelebDF and DFDC-P datasets, the ConvNext-

PNet has achieved an accuracy of 97.09% and 90.87%, 

respectively. CelebDF dataset includes high-quality visual 

manipulations with minimal flickering and color 

discrepancies. However, the DFDC-P dataset includes 

huge variations in lightning conditions, making it more 

difficult to detect the manipulation. The results in Table 1 

indicate that the presented models can detect the faceswap 

visual manipulation generated using diverse algorithms 

having variations such as different ethnicity, illumination 

conditions, viewpoint, and background variations.  

Evaluation on Facial Reenactment Deepfakes. To 

analyze the facial reenactment deepfakes detection 

capability of ConvNext-PNet, experiments are conducted 

on Face2Face and NeuralTextures subsets of the FF++ 

dataset. These two subsets involve facial manipulation 

where the source face is transferred to the target face while 

preserving the identity and appearance of the target face. 

The ConvNext-PNet is evaluated on the real and fake 

samples and the obtained results in terms of accuracy and 

AUC are shown in Table 1.  

From Table 1, it is observed that the model attained an 

accuracy of 97.78% and 92.64% for the Face2Face and 

NeuralTextures subsets of the FF++ dataset. Facial 

reenactments generated using NeuralTextures are most 

difficult to detect as these involve alternation to the mouth 

region only. However, our proposed ConvNext-PNet 

detects such manipulation quite effectively with 92.64% 

accuracy. Overall, the results validated that the model has 

the potential to accurately identify facial reenactment 

manipulation. This indicates the better ability of the model 

to capture the complicated patterns that exist in the real and 

fake samples. 

Evaluation for Diffusion Models Generated Deepfakes. 
To evaluate the performance of the proposed ConvNext-

PNet for the deepfakes images generated using diffusion 

models, we utilized the DeepFakeFace dataset. We trained 

and tested the proposed model for the real and fake images 

of the subsets of DFF dataset, separately. The attained 

accuracy and AUC on the dataset subsets are presented in 

Table 1.  

The results in Table 1 indicate the remarkable performance 

of the ConvNext-PNet for detecting deepfakes generated 

via Stable Diffusion models. Stable Diffusion v1.5 subset  



 

 

Table 1. Performance of ConvNext-PNet for deepfakes 

detection. 

Dataset Accuracy (%) AUC (%) 

Faceswap Deepfakes 

DeepFake (FF++) 98.70 99.80 

FaceSwap (FF++) 98.67 99.78 

CelebDF 97.09 98.99 

DFDC-P 90.87 93.62 

Facial Reenactment Deepfakes 

Face2Face (FF++) 97.78 99.25 

NeuralTextures (FF++) 92.64 95.88 

Deepfakes Images Generated Via Stable Diffusion Models 

InsightFace 90.51 94.12 

Stable Diffusion v1.5 98.80 99.89 

Stable Diffusion Inpainting 93.75 96.78 
 

comprises fake images that are entirely constructed from 

scratch (including background elements and facial 

attributes). The accuracy of 98.80 % on the Stable 

Diffusion v1.5-based deepfakes indicates the ability of the 

model to detect fully synthesized deepfakes images. Stable 

Diffusion Inpainting subset contains deepfakes images 

where only the facial area is synthesized while retaining the 

background elements. The proposed model effectively 

identifies the inpainted deepfakes images with an accuracy 

of 93.75%. Moreover, 90.51% accuracy is achieved for the 

deepfakes generated via InsighFace toolbox representing 

the ability of our model for better classification of identity-

swapped fake images. Overall, the ConvNext-PNet 

performs remarkably in the detection of entirely synthetic 

deepfakes (generated using Stable Diffusion v1.5) 

compared to the partially synthesized deepfakes (generated 

using InsightFace and Stable Diffusion Inpainting).  

4.3. Comparison with Existing Methods 

To elaborate on the deepfakes detection performance of 

the proposed framework, we compared it against other 

existing contemporary methods [14, 15, 16, 17, 24, 25] 

employing the same datasets. Among the comparative 

methods, [14] introduced the interpretable model utilizing 

the graph neural network (GNN) for deepfakes detection. 

However, [15, 16] utilized the weighted attention 

mechanism module in the presented models and applied the 

LayerCAM technique to the different layers of introduced 

networks. [17] introduced the ensemble of models 

including standard and attention-based networks and 

utilized GradCAM, to demonstrate the interpretability 

aspect. Method [24, 25] are the transformer-based 

approaches for deepfakes detection. Table 2 presents the 

comparative results in terms of accuracy. Specifically, for 

the FF++ dataset, the proposed model is evaluated against 

the approaches [14, 15, 16, 24, 25], while it is compared 

with methods [14, 17, 24, 25] for the DFDC-P dataset. 

However, the model performance is compared with [14, 

16, 17, 24] for the CelebDF dataset, where our model is the 

best performer among the contemporary methods with 

97.09% accuracy. In the case of DFDC-P dataset, DFGNN, 

a graph-based neural network with complex architecture 

and high computational cost, is the best performer with 

92.05% accuracy. However, our model performance is 

satisfactory on the DFDC-P dataset which is the most 

challenging dataset in the deepfakes detection domain. The 

proposed model performance is compared for each subset 

of the FF++ dataset. Our ConvNext-PNet attained the 

highest accuracy among the contemporary methods for 

FaceSwap, Face2Face, and NeuralTextures subsets, while 

for the DeepFake subset, our model is the second-best 

performer with 98.70% accuracy. From the comparative 

analysis, it is evident that our ConvNext-PNet performs 

remarkably well for detecting deepfakes generated 

utilizing distinct deepfakes generation algorithms. The 

results above 90.00% on all the datasets indicate the 

powerful feature learning capability of modified ConvNext 

along with the prototype learning.  

4.4. Cross-corpora Evaluation 

To analyze the generalizability of the ConvNext-PNet, a  

cross-corpora evaluation is conducted. In this experiment, 

the proposed model trained on one dataset is evaluated on 

another distinct dataset. For instance, the ConvNext-PNet 

trained on the FF++ dataset is evaluated on DFDC and 

CelebDF datasets and vice versa. The results of cross-

corpora evaluation and their comparison with existing 

approaches [9, 14, 24] are provided in Table 3. The results 

depict the robustness of prototype-learning-based 

ConvNext model for the unseen samples of entirely 

different deepfakes datasets. From Table 3, it is evident 

that the performance of the ConvNext-PNet is degraded for 

cross-corpora evaluation compared to the intra-dataset
 

Table 2. Performance comparison against the existing contemporary methods in terms of accuracy. 

Models 
FF++ CelebDF 

(%) 

DFDC-P 

(%) DeepFake (%) FaceSwap (%) Face2Face (%) NeuralTextures (%) 

DFGNN [14] 98.97 98.07 62.49 75.09 93.90 92.05 

MRT-Net [15] 96.70 96.76 97.67 90.25 --- --- 

AW-MSA [16]  98.05 97.79 97.60 91.28 96.12 --- 

Ensemble [17] --- --- --- --- 93.64 92.00 

ViXNet [24] 89.10 66.00 78.10 84.00 94.40 86.30 

CviT [25] 93.00 69.00 --- 60.00 --- 91.50 

ConvNext-PNet 98.70 98.67 97.78 92.64 97.09 90.87 



 

 

experiment.  The basic reason is the diversity present in the 

different datasets in terms of generation algorithms, 

viewpoint variations, and diverse illumination conditions. 

For instance, the FF++ dataset includes face swapped and 

face reenactment manipulation generated using four 

different algorithms. Likewise, DFDC comprises face-

swapped deepfakes generated via various unknown face-

swapping methods.   
 

Table 3. Cross-Corpora evaluation. 

Methods 
Tested Dataset (Accuracy (%)) 

FF++ CelebDF DFDC-P 

Trained on FF+ 

DFGNN [14] -- 73.40 71.01 

ResNet-Swish-

Dense54 [9] 

-- 70.04 81.51 

ViXNet [24] -- 69.30 -- 

ConvNext-PNet -- 68.45 75.42 

Trained on CelebDF 

DFGNN [14] 69.60 -- 61.30 

ViXNet [24] 68.00 -- -- 

ConvNext-PNet 41.28 -- 60.00 

Trained on DFDC-P 

DFGNN [14] 68.90 72.12 -- 

ResNet-Swish-

Dense54 [9] 

70.12 67.14 -- 

ConvNext-PNet 79.67 60.06 -- 
 

It is observed from Table 3 that ConvNext-PNet model 

trained on FF++ dataset attained reasonable performance 

in cross-corpora settings and achieved an accuracy of 

68.45% and 75.42% on CelebDF and DFDC-P datasets, 

respectively.  This is because the FF++ dataset is more 

diverse in terms of generation algorithms, therefore model 

trained on the FF++ dataset has greater generalization 

aptitude compared to the other datasets.  The ConvNext-

PNet trained on the CelebDF dataset attained the lowest 

performance when tested on FF++. The reason is that 

CelebDF consisted of only face-swapped deepfakes, 

therefore the model is unable to accurately identify face 

reenactment deepfakes present in the FF++ dataset. 

Overall, for the cross-corpora evaluation, ConvNext-PNet 

has attained satisfactory results, however, these results 

should be further improved, compared to the existing 

models.  

4.5. Ablation Study 

We conducted an ablation study experiment to analyze 

the impact of different base architectures in the proposed 

prototype-based framework, The main goal of this study is 

to assess the performance of the latest ConvNext in the 

prototype-based framework for the task of deepfakes 

detection against other existing deep learning models 

including VGG, ResNet, and DenseNet. Specifically, we 

compared the performance of DenseNet-121, DenseNet-

201, ResNet-101, ResNet-152, VGG-16, and ConvNext as 

the base architecture of the prototypical part network. This 

experiment is conducted utilizing the faceswap deepfakes 

(DeepFake and FaceSwap subsets) from the FF++ dataset. 

The results in terms of accuracy are shown in Figure 3. 

From Figure 3, it can be clearly observed that ConvNext 

outperforms the other comparative models for the detection 

of deepfakes. The lowest performance is reported by the 

VGG-16 with an accuracy of 73.98% and 73.40% on 

DeepFake and FaceSwap subsets of the FF++ dataset, 

respectively. DenseNet-201with an accuracy of 87.08% on 

the DeepFake subset and 84.26% on the FaceSwap subset, 

is the second-best performer. ConvNext has attained the 

best performance with 98.00% accuracy on both DeepFake 

and FaceSwap subsets. This is mainly due to the 

modernized architecture of ConvNext having a 

resemblance to the Transformers. ConvNext has the 

simplicity of CNN architectures and design resemblance 

with the Swin Transformer without having modules like 

shifted windows and thus leads to better performance. On 

the other hand, models like VGG, ResNet, and DenseNet 

have the standard CNNs architectural design leading to 

comparatively low performance. So, the results indicate 

that the introduction of ConvNext as base architecture to 

the proposed prototypical-based framework is more robust 

for the detection of visual manipulation compared to the 

other deep learning models. The reliable performance of 

ConvNext is due to the model’s potential to learn the 

distinct features. This eventually leads to the better ability 

of the model to deal with the transformation changes 

involved in the visual manipulation.  

Figure 3: Ablation study for the evaluation of the base architectures. 
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5. Explainability of ConvNext-PNet 

In this section, it is depicted how the ConvNext-PNet 

reaches the prediction decision by explaining the reasoning 

process of the model shown in Figure 4. The goal is to 

highlight the interpretability and explainability aspects of 

the proposed ConvNext-PNet. Consider a test image x, for 

which the model captures the latent features � = CNf(x). 

The model has already learned the prototypes pi of the 

classes (real and fake). The patch representations �! of the 

latent features are compared against the learned prototypes 

pi of each class to find the evidence that the input image x 

belongs to that class.  

Consider Figure 4, where our ConvNext-PNet tries to 

find the proof that the input facial image belongs to a fake 

or real class. For this, the model compares the patch 

representations of latent features of the input image with 

every learned prototype of the fake and real class. The 

similarity score against each prototype is computed which 

is then up-sampled and overlaid on the input image. This 

produces the activation map indicating the part of the input 

image activated by the respective prototype. For instance, 

the left side of Figure 4 represents the network’s ability to 

find evidence for the real class by comparing image 

patches with every prototype of that class. The resultant 

similarity score map toward each prototype was 

superimposed on the given input image to highlight the part 

activated by each prototype (shown in the Activation Map 

row). Additionally, the bounding box on the input image 

(shown in the Original Image row) represents the most 

activated part of the input image for each prototype. This 

indicates that our model considers that the image patch 

looks like the corresponding prototype. The similarity 

score between the learned prototype and image patch is 

shown in the Similarity Score row. The class Connection 

row indicates the degree to which a specific prototype is 

associated with a particular class. A similarity score is 

multiplied with a class connection to obtain the points 

contributed. These contributed points are summed up to 

find the final similarity score (representing total points to a 

specific class). The highest final similarity score for the 

class represents that the input image belongs to that class. 

In our case, the final similarity scores for the real and fake 

classes are 13.765 and 2.781, respectively. This indicates 

that the input image belongs to the real class. 

6. Conclusion 

This paper has presented a prototype-based learning 

framework namely ConvNext-PNet for the interpretable 

and explainable detection of visual deepfakes. Precisely, in 

the proposed framework, prototype-based learning is 

incorporated into the modified ConvNext model. 

Performance of the ConvNext-PNet on the FF++, 

CelebDF, DFDC-P, and DeepFakeFace datasets highlights 

the effectiveness of the prototype-based learning model for 

the identification of visual deepfakes generated using 

distinct approaches. The ablation study outcome also 

signifies the effectiveness of ConvNext incorporated with 

the prototype learning framework for deepfakes detection. 

Overall, the results emphasize the significance of 

explainable models for deepfakes detection to increase the 

trustworthiness of the model prediction. In the future, we 

plan to further investigate the performance of the 

prototype-based learning framework for deepfakes 

detection under the occurrence of post-processing attacks 

(i.e., size transformation, blurring, and noise) and 

adversarial attacks (i.e., FGSM and PGD). We also 

intended to extend the implementation of interpretable 

models for the audio-visual deepfake detection task along 

with improving the interpretability and explainability 

aspects of such models. 
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