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Abstract

The evolution of artificial intelligence (A1) techniques in
recent years has increased the generation of fake content
including Al-generated text, images, audio, and videos.
Among which the fake visual content commonly known as
deepfakes has imposed a great threat to society due to its
negative impacts. To mitigate the adverse aspects of
deepfakes, the research community has introduced various
deepfakes detection methods. However, these deepfakes
detection methods lack the interpretability —and
explainability of the decision-making process. The
interpretable model increases trustworthiness as it
provides the reasoning for classifying outcomes as real or
fake. Therefore, in this paper, we have introduced
ConvNext-PNet, which is a prototypical-based learning
framework for the interpretable and explainable detection
of visual deepfakes. In the proposed framework, prototype
learning is incorporated into the modified ConvNext model
that improves the discriminative features learning
capability of the proposed framework along with the
explainability aspect. The performance of ConvNext-PNet
is evaluated on challenging datasets including
FaceForensics++ (FF++), CelebDF, DFDC-P, and
DeepFakeFace (DFF) datasets. The robustness of the
proposed model is validated through various experiments
along with the interpretability analysis. The quantitative
results demonstrate the effectiveness of the model for the
detection of visual manipulation, whereas the model
interpretability and explainability aspect increases the
trustworthiness via providing reasoning for the model
predictions.

Keywords: ConvNext-PNet, ConvNext, ProtoPNet,
Interpretable deepfakes detection, Explainable deepfakes
detection.

1. Introduction
With the advancement in artificial intelligence (Al),

generative Al has also evolved tremendously in recent
years. Nowadays generative Al has been utilized for
creating synthetic content including text, images, audio,
and videos. With the introduction of variational
autoencoders (VAEs), generative adversarial networks
(GANSs), and more recent diffusion models, highly realistic
synthetic images and videos, also known as deepfakes, can
be created [1]. Deepfakes generation has gained substantial
attention as it can be used for performing various malicious
activities such as propagating disinformation, defaming
famous personalities, and misguiding individuals to create
chaos. Besides the negative impacts, it has numerous
positive aspects including its application in movie
production, virtual meetings, and entertainment [1].
However, the unethical use of deepfakes necessitates the
development of countermeasures.
Existing literature on deepfakes detection mainly
focuses on the effective, accurate, and generalizable
deepfakes detection methods, however, less attention is
given to the intrinsically interpretable deepfakes detection
approaches. There is a lack of deepfakes detection models
that are interpretable by design along with built-in self-
explainability. In other words, current deepfakes detection
approaches can identify fake and real content but are
unable to explain the decision-making process of the
model. To overcome this knowledge gap, we introduce a
prototype learning-based deepfakes detection framework
namely ConvNext-PNet. More specifically, we present an
intrinsically interpretable deepfake detection approach
where the modified ConvNext model is incorporated with
the prototypical part network (ProtoPNet). The modified
ConvNext better learns the discriminative features of real
and fake images, while the prototypical part network
provides the explainability aspect of the model. The main
contributions of the proposed research work are as follows:
1. We propose a novel prototype learning-based
approach, namely ConvNext-PNet for the
interpretable and explainable detection of deepfakes.

2. We introduce ConvNext as the base architecture in our
framework to reliably capture more crucial features
specific to synthetic data.



3. We performed extensive experimentation to show the
effectiveness of the proposed explainable framework.

2. Related Works

This section presented the discussion on the existing
deepfakes detection approaches including the explainable
methods implementing the post-hoc explainability
analysis. Along with, the methods that are interpretable by
design are also described in this section.

2.1. Deepfakes Detection Methods

Deepfakes detection models have gone through
significant advancement from hand-crafted feature-based
methods [2, 3] to deep learning-based approaches [4, 5]
and unified detection techniques [6]. Zhang et al. [4]
introduced a two-stream neural network combining image
spatial and residual domains to detect the tampering
artifacts in deepfakes videos. The spatial stream captured
the tampering artifacts while the residual stream detected
tampering traces from the image residual. Deepfakes
detection method namely the localized artifact attention
network (LAA-Net) was presented in [5] that incorporated
an attention mechanism and enhanced feature pyramid
network (E-FPNet). This method [5] is sensitive to
structural perturbations and performs worst when tested on
noisy 1images. The traditional hand-crafted-based
techniques lack the generalization ability; however, the
deep learning-based methods are not interpretable and
vulnerable to adversarial attacks.

2.2. Explainable Deepfakes Detection Approaches

Because of the non-transparent decision-making, and
opaque nature of deep learning models, explainable Al
(XAI) has emerged as a field focused on making Al models
understandable and hence trustworthy [7]. XAl techniques
include post-hoc explainability analysis and intrinsically
interpretable methods. In post-hoc analysis, trained
convolutional neural networks (CNNs) are interpreted by
highlighting the parts of the input that contribute most to
the final prediction. Techniques of post-hoc analysis
include saliency map  visualization, activation
maximization, and deconvolution. Mostly in the deepfakes
detection, post-hoc explainability analysis is performed on
trained CNNs to provide the explainability aspect. For
instance, to detect deepfakes images, a supervised
contrastive learning approach was introduced in [8],
providing the model explainability through heatmaps
generated corresponding to the model’s last layer. In [9], a
ResNet-Swish-Dense54 model was introduced for
effective deepfakes detection along with explainability.
The explainability power of the model was analyzed via
generation heatmaps corresponding to the last layer of the
trained model. A pairwise learning approach along with

color space exploitation was presented in [10] for the
generalizable deepfakes detection. More specifically, the
multi-channel Xception network was employed with
attentive pairwise learning. This approach [10] then
utilized t-SNE and class activation maps to explain the
decision-making process of the model. The above-
mentioned approaches implementing the post-hoc
visualization analysis provide insights of the input image
regions contributing to the final prediction. However, these
approaches are unable to explain how the models arrive at
the prediction decision.

2.3. Intrinsically Interpretable Methods

Intrinsically  interpretable methods involve the
modification of the model’s architecture before training to
develop such frameworks that are interpretable by design
with self-explaining ability. These methods provide
predictions that are more understandable. One of the XAI
intrinsic methods in the image recognition field is a
prototype-based approach where explainability is provided
based on visual similarity. The prototype-based approach
implements case-based reasoning identical to the humans’
way of recognizing objects. This approach highlights the
regions of the input image under examination, along with
providing the prototypical cases identical to those regions.
Chen et al. [11] introduced the prototypical part network
that incorporates prototype learning into CNNs for image
recognition. In [12], a model was presented that organized
prototypes hierarchically and performed prediction at
every level of taxonomy. To provide more explainability to
ProtoPNet, [13] introduced the framework that specified
the textual quantitative explanation for the model decision.
of finding the similarity between prototypes and image
patches. The textual information determined the influence
of characteristics such as hue, texture, saturation, contrast,
and shape on the model decision.

3. Methodology

In this section, in-depth details of the architecture and
training process of the proposed framework ConvNext-
PNet in the context of visual deepfakes detection are
provided. The overall architecture of the proposed
framework is presented in Figure 1.

3.1. Pre-processing

Pre-processing involves the extraction of facial frames
from the videos using Multi-task Cascaded Convolutional
Neural Networks (MTCNN) [18]. MTCNN detects and
extracts facial features with high accuracy from the given
images having faces of distinct orientations and sizes. The
extracted facial frames are resized to 224 x 224 x 3 and
then input to the proposed framework for further
processing.
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Figure 1: ConvNext-PNet framework.

3.2. ConvNext-PNet

The proposed ConvNext-PNet framework is comprised
of 3 main components, ConvNext feature encoder CNywith
parameters wcy , prototype layer P;, and fully connected
layer Fywith weights wg,. Let X = {x]-, y]-}?]:l be the given
facial frames dataset, where x; is the input facial frames
with y € {0, 1 } representing the label for fake and real.
These facial frames x; are sampled as input to the
ConvNext-PNet.

ConvNext Feature Encoder. ConvNext feature encoder

CNr initialized with ImageNet pretrained weights, is

introduced as the backbone architecture of the proposed

framework ConvNext-PNet. The design choices for

ConvNext architecture are adapted from Swin Transformer

retaining the simplicity and efficiency of CNNs [19] and

thus can better capture the crucial features from synthetic
images. ConvNext proved to outperform the Swin

Transformer in terms of performance and simplicity [19].

Primarily, the ConvNext is based on the architecture of

ResNet that is modernized towards the design of Swin

Transformer in the following ways:

e The stem cell in ResNet is replaced with the patchify
stem implemented using 4x4 non-overlapping
convolutional layers. Also, the stage computation ratio
is adjusted to 1:1:3:1.

e Depth-wise convolutions are employed by adopting
the ResNext design and adjusting the network width to
96.

e Inverted bottlenecks are adopted from the Transformer
block design.

e Large kernel-sized convolutions are utilized.

e Fewer activation functions and normalization layers
are utilized.

Additionally, we utilized the LeakyReLU activation
function in each ConvNext block. LeakyReLU is
computationally efficient and its non-zero gradient for
negative inputs enables ConvNext to learn from both
negative and positive neurons thus ensuring subtle features
learning during training. Finally, the two successive 1x1
convolution layers are then added to the end of the
network, after the last ConvNext block. The first
convolution layer is followed by ReLU, and the second
convolution layer is followed by the sigmoid activation
function. The architecture of modified ConvNext is shown
in Figure 2.

For a given input image x, the ConvNext feature encoder
CN,, encodes the hidden representation v € RHXWC
where v = CNgx). In other words, ConvNext encoder
extracts the salient features CNy(x) that are further utilized
for prediction. HxWxC is the shape of the extracted output
features CNy(x), where the spatial dimensionis H = W =7
and the number of output channels C is selected from these
potential values: 128, 256, 512, via cross-validation.

Prototype Layer. The prototype layer P;of the ConvNext-
PNet enables the framework to learn a set of prototypes
P = {p;}i~, with the shape of H;xW;xC, where H; = W,
= /. This indicates that the depth C of the prototype is
similar to the output features CN/(x), however, the height
and width of the prototype are smaller compared to that of
output features v. Each prototype p; in latent space learns
the discriminative prototypical parts (consisting of facial
regions) from each class (real/fake). In the prototype layer
P;, each prototype unit P; computes the L, distance
between the prototypical part p; and the latent patches ¥
(having a shape similar to p;) of the given feature vector v
= CNgx) and then converts the distances to similarity
scores. This generates the similarity scores activation map
indicating the strength of the presence of the prototypical
part in the image. Then the corresponding activation map
is up-sampled to input image size to visualize as a heatmap,
identifying the part of the image most similar to the learned
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Figure 2: Architecture of modified ConvNext.

prototype. Mathematically, the prototype unit P; computes
the following.
Dyist = 19 — pill3 1)

Dgist+1
Py, v) = MAaXpepatches(v) log (DZ:;:_ 5) @)

where € represents the very small positive value to avoid
zero division.

The similarity scores activation map resulting from each
prototype unit Py is then reduced to a single similarity score
utilizing the max pooling layer. The highest similarity
score represents the stronger presence of the prototypical
part in the patch of the input image.

It is the objective to learn the meaningful and
discriminative features representing manipulation, during
the training phase. Therefore, to learn appropriate latent
space, the image patches ¥ must be clustered around
semantic similar prototypes P based on the L, distance and
the cluster of distinct classes (real or fake) must be well-
separated. For this purpose, ConvNext feature encoder
weights wey f, and prototypes P = {p;}I=, from prototype
layer P; are optimized jointly utilizing stochastic gradient
descent (SGD) before the fully connected last layer Fj,
while the last layer weights wp, are kept fixed.

Consider X = {xj, yj};vzl be the given facial frames
dataset, where x; is the input facial frames for training, the
optimization problem is given by:

minP,wCNf% " CE(F o P, o CNi(%),9,) +

Aclus Cclus + AsepSsep (3)
where CE(.), Cepys(.), and Sgep () refer to the cross entropy,
clustering, and separation loss, respectively, whereas A,
and A, represents the hyperparameters.

The clustering loss promotes the minimization of the L
distance between the patches in the training image and the
closest prototype from its class. For instance, it encourages
that each fake image has some patch that is close to some

or at least one prototype of the fake class and vice versa.
Clustering loss is defined as:
1 on . . ~
Ceus = n Zj:l min;. p.e Py; MIN 5 e patches (CN ¢ (x;)) 1o —
2
pill3 4)
The separation loss encourages the separation of the
patches of training image of a class from the prototypes of
other class. For instance, it promotes that every patch of
real image remains away from the prototypes of fake class
and vice versa. Separation loss is defined as:
Ssep =

1 . . ~
~a 27:1 mlni:piePyj MIN % e patches (CN ¢ (x;)) 10— pi”%

)

Fully Connected Softmax Layer. Finally, the fully
connected layer F; computes the weighted sum of the
similarity scores @ = wp P (v) , where wp, € Rk xm
represents the weights and k=2 denotes the number of
classes. The softmax function is used to produce the
predicted score for the given input image belonging to the
classes (real and fake) as follows.

-~ e
Vo= e (6)
The optimization is performed on the weights wg, of
last layer F; to introduce the sparsity property in our
ConvNext-PNet framework. The sparsity property reduces
the reliance of the framework on the process of negative
reasoning (the facial frame belongs to class fake because it
contains the patch that is not prototypical of class real).
The optimization is convex as the parameters of ConvNext
feature encoder and prototype layer are kept fixed. The
optimization problem is as follows:

. 1
Minyy, ~ Xj=1 CE (Fy o Pr o CNy(x;), ;) +
AXko1 Tipe pi|0r, 0| @)
where CE(.) represents the cross loss and A indicates the
hyperparameters.



4. Experiments and Results

This section presents the description of the datasets
utilized, details of the experiments conducted, and results
discussion to assess the performance of the ConvNext-
PNet.

4.1. Datasets

The performance of the proposed ConvNext-PNet is
evaluated utilizing the standard deepfakes detection
datasets including FaceForensics++ (FF++) [20], CelebDF
[21], DFDC-P [22], and DeepFakeFace (DFF) [23] dataset.
FF++ dataset includes Real subset and four different
manipulated subsets namely Faceswap, DeepFake,
Face2Face, and NeuralTextures, each containing 1000
videos. CelebDF dataset contains face-swapped videos of
celebrities including distinct ethnicity, age, and gender.
This dataset contains 590 real videos corresponding to
which 5639 face-swapped videos are generated. DFDC-P
dataset is more challenging in the deepfakes detection
domain, it includes 5000 videos of paid actors, and the
manipulated videos are generated using different
deepfakes generation algorithms. DFF dataset contains a
total of 120K images including 30K real images and 90K
fake images. Fake images are further split into 3 subsets
having 30K images. Each subset comprises the fake images
generated through distinct Stable Diffusion models.
Specifically, the DFF dataset includes the fake images
synthesized using Stable Diffusion Inpainting, Stable
Diffusion v1.5, and InsightFace. Overall, the datasets used
for ConvNext-PNet evaluation include the diverse
deepfakes generated using different algorithms having
distinct illumination conditions, viewpoints, and
background settings.

4.2. Performance Evaluation of Proposed Model

To assess the effectiveness of the proposed ConvNext-
PNet for the detection of deepfakes, we performed the
experiments in three stages. In the first stage, ConvNext-
PNet is evaluated for the faceswap deepfakes, in the second
stage, performance of the model is analyzed for facial
reenactment deepfakes. Whereas, in the third stage, the
model is evaluated for deepfakes generated via Stable
Diffusion. The performance of the proposed model is
evaluated using standard evaluation matrices including
accuracy and area under curve (AUC). The details and
results discussion of these experiments are provided in the
subsequent subsections.

Evaluation on Faceswap Deepfakes. To show the
performance of the proposed ConvNext-PNet for faceswap
deepfakes, we conducted experiments where we evaluated
ConvNext-PNet on FaceSwap and DeepFake subsets of
FF++ dataset, CelebDF, and DFDC-P datasets. For this, we

trained and tested the model for the real and fake samples
from the datasets. The results of the experiment are
presented in Table 1.

It can be seen from Table 1 that the proposed
interpretable model has shown robust performance for the
detection of faceswap deepfakes in the FF++ dataset,
generated using two different techniques. Specifically, the
model has achieved an accuracy of 98.70% and 98.67% on
the DeepFake and FaceSwap subsets of the FF++ dataset.
For the CelebDF and DFDC-P datasets, the ConvNext-
PNet has achieved an accuracy of 97.09% and 90.87%,
respectively. CelebDF dataset includes high-quality visual
manipulations with minimal flickering and color
discrepancies. However, the DFDC-P dataset includes
huge variations in lightning conditions, making it more
difficult to detect the manipulation. The results in Table 1
indicate that the presented models can detect the faceswap
visual manipulation generated using diverse algorithms
having variations such as different ethnicity, illumination
conditions, viewpoint, and background variations.

Evaluation on Facial Reenactment Deepfakes. To
analyze the facial reenactment deepfakes detection
capability of ConvNext-PNet, experiments are conducted
on Face2Face and NeuralTextures subsets of the FF++
dataset. These two subsets involve facial manipulation
where the source face is transferred to the target face while
preserving the identity and appearance of the target face.
The ConvNext-PNet is evaluated on the real and fake
samples and the obtained results in terms of accuracy and
AUC are shown in Table 1.

From Table 1, it is observed that the model attained an
accuracy of 97.78% and 92.64% for the Face2Face and
NeuralTextures subsets of the FF++ dataset. Facial
reenactments generated using NeuralTextures are most
difficult to detect as these involve alternation to the mouth
region only. However, our proposed ConvNext-PNet
detects such manipulation quite effectively with 92.64%
accuracy. Overall, the results validated that the model has
the potential to accurately identify facial reenactment
manipulation. This indicates the better ability of the model
to capture the complicated patterns that exist in the real and
fake samples.

Evaluation for Diffusion Models Generated Deepfakes.
To evaluate the performance of the proposed ConvNext-
PNet for the deepfakes images generated using diffusion
models, we utilized the DeepFakeFace dataset. We trained
and tested the proposed model for the real and fake images
of the subsets of DFF dataset, separately. The attained
accuracy and AUC on the dataset subsets are presented in
Table 1.

The results in Table 1 indicate the remarkable performance
of the ConvNext-PNet for detecting deepfakes generated
via Stable Diffusion models. Stable Diffusion v1.5 subset



Table 1. Performance of ConvNext-PNet for deepfakes
detection.

Dataset | Accuracy (%) | AUC (%)
Faceswap Deepfakes
DeepFake (FF++) 98.70 99.80
FaceSwap (FF++) 98.67 99.78
CelebDF 97.09 98.99
DFDC-P 90.87 93.62
Facial Reenactment Deepfakes
Face2Face (FF++) 97.78 99.25
NeuralTextures (FF++) 92.64 95.88
Deepfakes Images Generated Via Stable Diffusion Models
InsightFace 90.51 94.12
Stable Diffusion v1.5 98.80 99.89
Stable Diffusion Inpainting 93.75 96.78

comprises fake images that are entirely constructed from
scratch (including background elements and facial
attributes). The accuracy of 98.80 % on the Stable
Diffusion v1.5-based deepfakes indicates the ability of the
model to detect fully synthesized deepfakes images. Stable
Diffusion Inpainting subset contains deepfakes images
where only the facial area is synthesized while retaining the
background elements. The proposed model effectively
identifies the inpainted deepfakes images with an accuracy
0f 93.75%. Moreover, 90.51% accuracy is achieved for the
deepfakes generated via InsighFace toolbox representing
the ability of our model for better classification of identity-
swapped fake images. Overall, the ConvNext-PNet
performs remarkably in the detection of entirely synthetic
deepfakes (generated using Stable Diffusion vI1.5)
compared to the partially synthesized deepfakes (generated
using InsightFace and Stable Diffusion Inpainting).

4.3. Comparison with Existing Methods

To elaborate on the deepfakes detection performance of
the proposed framework, we compared it against other
existing contemporary methods [14, 15, 16, 17, 24, 25]
employing the same datasets. Among the comparative
methods, [14] introduced the interpretable model utilizing
the graph neural network (GNN) for deepfakes detection.
However, [15, 16] utilized the weighted attention
mechanism module in the presented models and applied the
LayerCAM technique to the different layers of introduced

including standard and attention-based networks and
utilized GradCAM, to demonstrate the interpretability
aspect. Method [24, 25] are the transformer-based
approaches for deepfakes detection. Table 2 presents the
comparative results in terms of accuracy. Specifically, for
the FF++ dataset, the proposed model is evaluated against
the approaches [14, 15, 16, 24, 25], while it is compared
with methods [14, 17, 24, 25] for the DFDC-P dataset.
However, the model performance is compared with [14,
16, 17, 24] for the CelebDF dataset, where our model is the
best performer among the contemporary methods with
97.09% accuracy. In the case of DFDC-P dataset, DFGNN,
a graph-based neural network with complex architecture
and high computational cost, is the best performer with
92.05% accuracy. However, our model performance is
satisfactory on the DFDC-P dataset which is the most
challenging dataset in the deepfakes detection domain. The
proposed model performance is compared for each subset
of the FF++ dataset. Our ConvNext-PNet attained the
highest accuracy among the contemporary methods for
FaceSwap, Face2Face, and NeuralTextures subsets, while
for the DeepFake subset, our model is the second-best
performer with 98.70% accuracy. From the comparative
analysis, it is evident that our ConvNext-PNet performs
remarkably well for detecting deepfakes generated
utilizing distinct deepfakes generation algorithms. The
results above 90.00% on all the datasets indicate the
powerful feature learning capability of modified ConvNext
along with the prototype learning.

4.4. Cross-corpora Evaluation

To analyze the generalizability of the ConvNext-PNet, a
cross-corpora evaluation is conducted. In this experiment,
the proposed model trained on one dataset is evaluated on
another distinct dataset. For instance, the ConvNext-PNet
trained on the FF++ dataset is evaluated on DFDC and
CelebDF datasets and vice versa. The results of cross-
corpora evaluation and their comparison with existing
approaches [9, 14, 24] are provided in Table 3. The results
depict the robustness of prototype-learning-based
ConvNext model for the unseen samples of entirely
different deepfakes datasets. From Table 3, it is evident
that the performance of the ConvNext-PNet is degraded for

networks. [17]

introduced the ensemble of models

Table 2. Performance comparison against the existing contemporary methods in terms of accuracy.

cross-corpora evaluation compared to the intra-dataset

Models FF++ CelebDF DFDC-P
DeepFake (%) | FaceSwap (%) | Face2Face (%) | NeuralTextures (%) (%) (%)

DFGNN [14] 98.97 98.07 62.49 75.09 93.90 92.05
MRT-Net [15] 96.70 96.76 97.67 90.25 --- ---

AW-MSA [16] 98.05 97.79 97.60 91.28 96.12 ---

Ensemble [17] - - - - 93.64 92.00
ViXNet [24] 89.10 66.00 78.10 84.00 94.40 86.30
CviT [25] 93.00 69.00 -—- 60.00 - 91.50
ConvNext-PNet 98.70 98.67 97.78 92.64 97.09 90.87
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Figure 3: Ablation study for the evaluation of the base architectures.

experiment. The basic reason is the diversity present in the
different datasets in terms of generation algorithms,
viewpoint variations, and diverse illumination conditions.
For instance, the FF++ dataset includes face swapped and
face reenactment manipulation generated using four
different algorithms. Likewise, DFDC comprises face-
swapped deepfakes generated via various unknown face-
swapping methods.

Table 3. Cross-Corpora evaluation.

Tested Dataset (Accuracy (%))
Methods FF++ | CelebDF | DFDC-P
Trained on FF+
DFGNN [14] - 73.40 71.01
ResNet-Swish- -- 70.04 81.51
Dense54 [9]
ViXNet [24] -- 69.30 --
ConvNext-PNet - 68.45 75.42
Trained on CelebDF
DFGNN [14] 69.60 -- 61.30
ViXNet [24] 68.00 -- -
ConvNext-PNet 41.28 -- 60.00
Trained on DFDC-P
DFGNN [14] 68.90 72.12 -
ResNet-Swish- 70.12 67.14 --
Dense54 [9]
ConvNext-PNet 79.67 60.06 --

It is observed from Table 3 that ConvNext-PNet model
trained on FF++ dataset attained reasonable performance
in cross-corpora settings and achieved an accuracy of
68.45% and 75.42% on CelebDF and DFDC-P datasets,
respectively. This is because the FF++ dataset is more
diverse in terms of generation algorithms, therefore model
trained on the FF++ dataset has greater generalization
aptitude compared to the other datasets. The ConvNext-
PNet trained on the CelebDF dataset attained the lowest
performance when tested on FF++. The reason is that
CelebDF consisted of only face-swapped deepfakes,
therefore the model is unable to accurately identify face
reenactment deepfakes present in the FF++ dataset.
Overall, for the cross-corpora evaluation, ConvNext-PNet
has attained satisfactory results, however, these results
should be further improved, compared to the existing
models.

4.5. Ablation Study

We conducted an ablation study experiment to analyze
the impact of different base architectures in the proposed
prototype-based framework, The main goal of this study is
to assess the performance of the latest ConvNext in the
prototype-based framework for the task of deepfakes
detection against other existing deep learning models
including VGG, ResNet, and DenseNet. Specifically, we
compared the performance of DenseNet-121, DenseNet-
201, ResNet-101, ResNet-152, VGG-16, and ConvNext as
the base architecture of the prototypical part network. This
experiment is conducted utilizing the faceswap deepfakes
(DeepFake and FaceSwap subsets) from the FF++ dataset.
The results in terms of accuracy are shown in Figure 3.

From Figure 3, it can be clearly observed that ConvNext
outperforms the other comparative models for the detection
of deepfakes. The lowest performance is reported by the
VGG-16 with an accuracy of 73.98% and 73.40% on
DeepFake and FaceSwap subsets of the FF++ dataset,
respectively. DenseNet-201with an accuracy of 8§7.08% on
the DeepFake subset and 84.26% on the FaceSwap subset,
is the second-best performer. ConvNext has attained the
best performance with 98.00% accuracy on both DeepFake
and FaceSwap subsets. This is mainly due to the
modernized architecture of ConvNext having a
resemblance to the Transformers. ConvNext has the
simplicity of CNN architectures and design resemblance
with the Swin Transformer without having modules like
shifted windows and thus leads to better performance. On
the other hand, models like VGG, ResNet, and DenseNet
have the standard CNNs architectural design leading to
comparatively low performance. So, the results indicate
that the introduction of ConvNext as base architecture to
the proposed prototypical-based framework is more robust
for the detection of visual manipulation compared to the
other deep learning models. The reliable performance of
ConvNext is due to the model’s potential to learn the
distinct features. This eventually leads to the better ability
of the model to deal with the transformation changes
involved in the visual manipulation.
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Figure 4: Reasoning process of ConvNext-PNet.

5. Explainability of ConvNext-PNet

In this section, it is depicted how the ConvNext-PNet
reaches the prediction decision by explaining the reasoning
process of the model shown in Figure 4. The goal is to
highlight the interpretability and explainability aspects of
the proposed ConvNext-PNet. Consider a test image x, for
which the model captures the latent features v = CNy(x).
The model has already learned the prototypes p; of the
classes (real and fake). The patch representations ¥ of the
latent features are compared against the learned prototypes
pi of each class to find the evidence that the input image x
belongs to that class.

Consider Figure 4, where our ConvNext-PNet tries to
find the proof that the input facial image belongs to a fake
or real class. For this, the model compares the patch
representations of latent features of the input image with
every learned prototype of the fake and real class. The
similarity score against each prototype is computed which
is then up-sampled and overlaid on the input image. This
produces the activation map indicating the part of the input
image activated by the respective prototype. For instance,
the left side of Figure 4 represents the network’s ability to
find evidence for the real class by comparing image
patches with every prototype of that class. The resultant
similarity score map toward each prototype was
superimposed on the given input image to highlight the part
activated by each prototype (shown in the Activation Map
row). Additionally, the bounding box on the input image
(shown in the Original Image row) represents the most
activated part of the input image for each prototype. This
indicates that our model considers that the image patch
looks like the corresponding prototype. The similarity
score between the learned prototype and image patch is
shown in the Similarity Score row. The class Connection
row indicates the degree to which a specific prototype is
associated with a particular class. A similarity score is
multiplied with a class connection to obtain the points

contributed. These contributed points are summed up to
find the final similarity score (representing total points to a
specific class). The highest final similarity score for the
class represents that the input image belongs to that class.
In our case, the final similarity scores for the real and fake
classes are 13.765 and 2.781, respectively. This indicates
that the input image belongs to the real class.

6. Conclusion

This paper has presented a prototype-based learning
framework namely ConvNext-PNet for the interpretable
and explainable detection of visual deepfakes. Precisely, in
the proposed framework, prototype-based learning is
incorporated into the modified ConvNext model.
Performance of the ConvNext-PNet on the FF++,
CelebDF, DFDC-P, and DeepFakeFace datasets highlights
the effectiveness of the prototype-based learning model for
the identification of visual deepfakes generated using
distinct approaches. The ablation study outcome also
signifies the effectiveness of ConvNext incorporated with
the prototype learning framework for deepfakes detection.
Overall, the results emphasize the significance of
explainable models for deepfakes detection to increase the
trustworthiness of the model prediction. In the future, we
plan to further investigate the performance of the
prototype-based learning framework for deepfakes
detection under the occurrence of post-processing attacks
(i.e., size transformation, blurring, and noise) and
adversarial attacks (i.e., FGSM and PGD). We also
intended to extend the implementation of interpretable
models for the audio-visual deepfake detection task along
with improving the interpretability and explainability
aspects of such models.
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