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Abstract 
Deepfakes are highly realistic fabricated media created using sophisticated generative techniques that are massively used to 
spread disinformation in cyberspace. Implementing a deepfake detector is crucial to identify and counter these threats, thereby 
ensuring the integrity of digital media. However, these detection systems are susceptible to adversarial attacks that exploit 
vulnerabilities to circumvent identification. The present study investigates the vulnerability of deepfake detectors to adversarial 
attacks. To develop an adversarial attack that is visually realistic, resilient, and demonstrates formidable attacking capabilities, 
we proposed a new Facial Distraction Black-Box Attack (FDB attack) framework based on biological vision. The proposed 
black-box attack is capable of successfully evading deepfake detectors without the need for access to the target detector's 
parameters or architectural specifications. It exhibits high transferability across a variety of deepfake detectors, including end-
to-end deep learning, fused, and unified models, utilizing five standard datasets. The proposed attack beats the performance of 
the best detector and reduces the accuracy of the detectors significantly from 99.9% to 49.7%. Rigorous experimentation was 
performed to show the effectiveness of the proposed attack in comparison with the state-of-the-art attacks. In addition, we 
have developed a specialized penetration testing tool named DeepEvader to uncover and analyze the vulnerabilities of existing 
deepfake detectors systematically. By exposing weaknesses in current detection methodologies, our work highlights the urgent 
need for robust detection mechanisms to combat deceptive digital content effectively. Our research reveals flaws in existing 
detection methods, emphasizing the immediate requirement for strong and durable detection techniques to combat deepfakes 
successfully. 
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1. Introduction 

The rapid advancement in artificial intelligence, particularly in generative models like Generative Adversarial 
Networks (GANs) and autoencoders [1, 2], has led to the proliferation of deepfake technologies. These 
technologies can generate hyper-realistic audio and visual content posing significant threats to individuals and 
society by spreading disinformation [3]. Deepfake technologies have already been used to create convincing fake 
videos of public figures saying and doing things they never did [4]. As these technologies continue to improve, it 
will become increasingly difficult to discern between real and deepfake. The increasing sophistication of 
deepfakes has necessitated the development of advanced detection methods to mitigate their harmful impacts. 
Deepfake technologies can spread disinformation, but progress is being made in developing detection methods to 
counter their negative impact. It has become essential to focus on improving detection techniques rather than 
solely addressing the negative implications of these technologies. 

Due to the growing complexity of deepfakes, there is a need for more advanced detection methods [5-9] to reduce 
their negative effects. Researchers have developed deepfake detectors to identify deepfakes, these technologies 
can be categorized into traditional machine learning (ML) models and deep learning (DL) approaches, each with 
its unique strengths and areas of application. Traditional ML models rely on hand-crafted features [10, 11] and 
statistical analysis [12, 13] to identify inconsistencies in videos and images that may indicate manipulation. 
However, DL approaches, such as Convolutional Neural Networks (CNNs), and Recurrent Neural Networks 
(RNNs) leverage the power of neural networks to learn and identify subtle cues that distinguish genuine content 
from deepfakes [5-9, 14]. These methods can automatically learn complex patterns and anomalies in data without 
the need for manual feature selection, making them particularly effective against the continuously improving 
quality of deepfakes. 

Advancements in adversarial machine learning have made deepfake detectors vulnerable to attacks, which 
manipulate models to make inaccurate predictions, resulting in their ineffective performance. The adversarial 
attacks impact the reliability of deepfake detectors, potentially enabling harmful deepfakes to spread without 
control. There are two common types of attacks, white-box and, black-box, which are utilized to evaluate model 
performance and vulnerability. White-box attacks involve full knowledge of the model architecture and 
parameters [15-17], while black-box attacks only have access to the model's input-output behavior [16, 18-20]. In 
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real-life scenarios, black-box attacks are applicable when the attacker has limited information about the model 
they are trying to deceive. This makes black-box attacks more challenging to defend against, as they mimic real-
world conditions where attackers may not have complete access to the target system. However, existing 
approaches are not as effective due to knowledge gaps and limitations in transferring adversarial examples among 
different models [18]. Improving defenses against black-box attacks requires innovative strategies that can adapt 
to varying levels of information access.  

Black-box attacks are crucial in deepfake detection due to their lack of transferability [18, 21] across different 
models. These attacks simulate real-world scenarios without requiring access to the inner workings of the model 
they aim to deceive. However, existing black-box attacks often struggle to generalize across different detection 
systems, resulting in attacks that are effective against one model but ineffective against another [15]. To expose 
the vulnerability of deepfake detectors, there is a need for an adversarial attack that is robust, transferable, looks 
natural, and cannot be distinguished from real content. In this research, we proposed a black-box attack 
methodology that is both robust and transferable, while ensuring the generated content remains natural-looking, 
and represents a significant advancement in adversarial machine learning. The proposed technique creates 
adversarial examples that are effective at evading detection and can be applied across a range of models without 
losing effectiveness.  

Current detection methods rely on detecting real and deepfake-generated images by analyzing features such as 
inconsistencies in facial expressions, lighting, and shadows, algorithms can identify patterns that are indicative of 
manipulation [22]. To expose the vulnerability of existing deepfake detectors, we proposed imperceptible 
adversarial perturbations to the test data, causing the deepfake detectors to misclassify it. By carefully crafting 
these perturbations, we deceive the algorithm into incorrectly identifying a deepfake image as real. In addition, 
we propose a penetration testing tool that can simulate various adversarial attacks to evaluate the effectiveness 
and expose the vulnerability of deepfake detection algorithms. This highlights the ongoing challenge of 
developing robust detection methods that can withstand sophisticated adversarial attacks. The following are major 
contributions of this research: 

• This work presents a novel Facial Distraction Black-Box Attack framework inspired by biological vision 
to develop an adversarial attack that is visually natural, resilient, transferable across different deepfakes 
detectors, and demonstrates formidable attacking capabilities.  

• Our proposed black-box attack can successfully evade deepfake detectors without requiring access to the 
target detector's parameters or architectural specifications.  

• We employ attention distraction and lateral inhibition mechanisms, inspired by biological observations, 
to present an optimized attack strategy, which redirects the model's focus toward unintended areas. 

• We employ degradation methods to reduce statistical disparities, including illumination adjustment, 
brightness values in localized pixels, noise addition, and uniform Gaussian blurring. 

• We also propose a novel penetration testing tool to test the vulnerability of deepfake detectors on 
proposed and state-of-the-art adversarial black-box attacks. 

• Rigorous experiments were performed including quantitative, qualitative, explainability, transferability, 
and comparative analysis with existing adversarial attacks on different deepfake detectors i.e., end-to-
end, fused, and unified models using five benchmark datasets.  

2. Literature review  
This section examines the current state of deepfake detection technologies and the adversarial attacks that have 
been attempted to compromise the security of deepfake detectors. The following are some current techniques that 
have mainly focused on the detection of deepfakes, neglecting to account for vulnerability to adversarial attacks. 
For the detection of deepfakes, various handcrafted and local feature extractors have been utilized. 

2.1 Deepfake detectors 
For the detection of deepfakes, a hierarchical feature selection (HFS) method was introduced in [23]. From the 
inputs, both handcrafted and deep learning features were extracted, and HFS was utilized to select the nearest set 
of features. While the method exhibited strong performance on the same data, its accuracy was significantly 
diminished when applied to cross-dataset scenarios. Kolagati et al. [24] utilized a convolutional neural network 
and a multilayer perceptron to learn and predict features for deepfake video classification by transmitting facial 
landmark features to them. This model cannot detect fake videos reliably in low-light conditions or with multiple 
faces. Current algorithms designed to detect deepfakes using a single image rely heavily on a variety of deep-
learning techniques. CNN is compared to naive approaches because it learns to distinguish between genuine and 
fake data. In this category, Xception [25] and MesoNet [26] are two of the most widely used. Previous 
methodologies have utilized a range of deep learning-based strategies to identify deepfakes. Cao et al. introduce 
RECCE [27], an autoencoder that acquires compact latent representations of actual faces. As a result, deepfakes 



are categorized as out-of-distribution samples characterized by increased reconstruction error. Liang et al. [28] 
utilized U-net to forecast the depth map of an image, which was subsequently employed to guide a transformer-
based triplet feature extraction network. Instances involving extreme illumination and face occlusion render the 
method inapplicable. Ilyas et al. [5] introduced a new and efficient capsule network, referred to as E-Cap Net, 
designed specifically for detecting forgeries. The utilization of capsule network design enhances the identification 
of deepfake images and videos, however, this approach is computationally more intricate. Khalid et al. [7] 
introduced a combined truncated DenseNet121 model for identifying deepfakes via transfer learning, truncation, 
and feature fusion. The model effectively identifies deepfakes in a wide range of datasets. A cross-modality 
attention-based deepfake detector was introduced in [29]. Nawaz et al. [9] proposed  ResNet-Swish-Dense54 for 
reliable deepfake detection. The model extracts and analyses human faces from video frames, distinguishing 
between real and manipulated content. 

To validate that the CNN has accurately identified distinguishing characteristics, explicit spatial modeling of 
particular deepfake artifacts was employed in [30], [31]. Nguyen et al. [31] proposed a method called the capsule 
network that takes advantage of the spatial and hierarchical relationships among image components. A feature 
extraction module employing learnable high-pass filters and Gabor convolutions; a shallow texture module 
enhancing texture and high-frequency features; and a cross-modality attention module enhancing feature learning 
and fusion comprise the three sections of the architecture. The computational expense of this approach is 
substantial because of its intricate architecture. A 5-layered 3DCNN for detecting facial manipulations such as 
FaceSwap, Face2Face, and Deepfakes was introduced in [32]. However, the generalization capabilities of this 
model were not assessed, which is a complex issue in deepfake detection. A vision transformer and distillation 
method were employed in [33] to distinguish between forged and authentic videos. Despite the method's promising 
outcomes, its efficacy and practicality are constrained by an absence of reliability. In our prior study [14], we 
introduced DFGNN, a comprehensible and versatile GNN designed for the identification of deepfake content. The 
method utilizes facial landmarks to generate a graph, enhancing the capacity to analyze and apply the results to 
various scenarios. However, sophisticated deepfakes could potentially impact the performance of DFGNN. 
Further investigation is required to assess its efficacy in detecting intricate deepfakes. The performance of 
DFGNN may be impacted by structurally regular advanced deepfakes.  

There is a dire need for a more resilient and widely applicable approach to identifying intricate artificial content. 
Yuyang et al. [34] redirected their attention toward frequency space image analysis, acknowledging that authentic 
and fabricated data generally possess indistinguishable frequency spectrums. By utilizing frequency-aware image 
decomposition and local frequency statistics, they develop F3-Net.  Ilyas et al. [6] suggested using a combination 
of Swish and ReLU activation functions to enhance the ability of the Efficient-Net architecture to detect deepfakes 
by improving its representation capabilities. The model demonstrated satisfactory performance in detecting 
deepfakes. However, it does not include a thorough analysis of how well the model can adapt to detecting 
deepfakes that it has not been trained on. Liu et al. [35] proposed that the phase spectrum of natural images retains 
a multitude of frequency components in contrast to manipulated images. By integrating spatial indicators with this 
information, their Spatial-phase shallow learning (SPSL) method enhances the effectiveness of deepfake 
detection. Luo et al. [36] suggested an additional frequency-based method, which used residual-guided spatial 
attention module-extracted low-level RGB features and high-frequency image disturbances.  

2.2 Adversarial Attacks on Deepfake Detectors 

The identification of deepfakes is not just a significant concern, but also a serious security issue that demands 
immediate attention. Adversaries are constantly modifying their approaches to evade current deepfake detectors, 
emphasizing the need to remain one step ahead of their strategies. Unfortunately, the efficacy of existing modern 
deepfake detection techniques in opposing scenarios has not been investigated, resulting in a deficiency in security 
standards. A method called a double-masked guided attack [37] was proposed to deliberately deceive the deepfake 
detector into identifying GAN-generated fake faces. This method involves introducing perturbations to the crucial 
facial areas that are often focused on by deepfake detectors during the detection of fake photos. The attack was 
executed on nine forensic classifiers using both white-box and black-box methodologies. However, there is a need 
to enhance the transferability and resilience of the adversarial cases. In addition to perturbations in the picture 
space, Carlini et al. [15] also explore the application of perturbations in the latent space of the generative model, 
resulting in the creation of adversarial images. In contrast, Liu et al. [38] engage in blind post-processing of pre-
generated deepfakes, eliminating identifiable traces that are left behind by the deepfake development process. The 
resulting deepfakes are thus more real and difficult to identify. Huang et al. [39] have created FakePolisher, a 
shallow dictionary model that is specifically trained to effectively eliminate common GAN artifacts by accurately 
reconstructing only actual data. 

Several researchers performed white and black-box attacks, Gandhi et al. [17] conducted adversarial attacks, 
specifically FGSM and C&W, on VGG16 and ResNet18 models. These attacks were carried out using synthetic 



images generated by Few-Shot Face Translation GAN [40]. Attacks were executed in both the black-box and 
white-box scenarios. The success rate of white-box assaults was 100% in all scenarios, except for the FGSM 
attack on the ResNet18 model. However, for black-box attacks, the success rate decreases dramatically. Shahriyar 
et al. [41] demonstrated the efficacy of FGSM and C&W assaults on a deepfakes detector that relies on sequence-
based analysis. The experiments were conducted in both white-box and black-box scenarios. To achieve this 
objective, the victim models, Conv-LSTM [42] and FacenetLSTM [43] were utilized using undisturbed photos 
from the FF++ dataset. The white-box approach designed for one model was employed as a black-box attack for 
the other model, and vice versa. In the white-box configuration, this adversarial assault diminishes the 
performance of detectors, however, in the black-box attack setting, the success rate of the attack is greatly reduced.  

Neekhara et al. [44] assess several methods of disruption in black-box scenarios. The study showcases the 
consistent ability of their generated adversarial samples to attack various deepfake detection methods. Lim et al. 
[45] conducted a black-box attack by putting cosmetic artifacts (eyeliner, blush, lipstick) on specific areas of facial 
landmarks, which led to distorted photographs. The assault resulted in a 50% reduction in the precision of the 
victim models, specifically MesoInception-4 and TwoStreamNet. However, this approach is less effective when 
compared to other conventional attacks such as PGD [46] and FGSM [47]. Lou et al. [48] have presented a new 
form of black-box attacks that target the reduction of GAN fingerprints. These fingerprints are frequently utilized 
as indicators in the process of detecting deepfakes. To accomplish this, they employ a training method that 
involves an autoencoder. This autoencoder is designed to generate images of excellent quality while also applying 
subtle changes to individual pixels that are difficult to detect. The differential evolution one-pixel assault [21] and 
the simulated annealing one-pixel attack [18] are two separate forms of black-box attacks commonly employed 
in image classification tasks to create adversarial instances. Su et al. [21] proposed a technique called differential 
evolution one-pixel assault, which involves iteratively altering the pixel values of a picture to generate an 
adversarial example. The CIFAR-10 dataset was subjected to an assault, specifically targeting images with a 
dimension of 32×32 pixels. This attack has the effect of reducing the performance of images with larger 
dimensions. Zhou et al. [18] introduced a simulated annealing one-pixel attack, which is an optimization approach 
that systematically alters the pixel values of an image to identify an adversarial instance. Both techniques [18, 21] 
generate adversarial samples through repetitive processes, resulting in computational complexity. Additionally, 
the effectiveness of these attacks diminishes when applied to high-dimensional images. 

The existing research contains examples of adversarial instances that were sent to detectors, which made the 
identification of deepfakes challenging. However, these methods do not possess the transferability property of 
adversarial instances inside a single setting. This is because an attacker creates an adversarial perturbation in a 
white-box setting and then transfers it to a black-box setting within the same setting. We offer a simple attack in 
comparison to existing attacks and are transferable based on a model attention distraction phenomenon. This attack 
is visually natural and transferable across several deepfake detectors, allowing them to fail their performance even 
in a black-box situation. Our method demonstrates the vulnerability of deepfake detectors to adversarial attacks, 
highlighting the need for robust defense in this rapidly evolving field. By exploiting model attention distraction, 
we show how easily deepfake detectors can be deceived, raising concerns about the reliability of current detection 
systems. 

3. Methodology of Proposed Attack Framework 
Several deepfake detection methods [49, 50] highlight statistical discrepancies that exist between real and 
deepfake visual content. The variations in brightness and statistics observed in GAN-generated images make them 
different in contrast to natural images. Some GANs might exhibit limitations when it comes to producing images 
that encompass a wide spectrum of intensity values, leading to an absence of saturated and underexposed areas. 
This demonstrates that GANs invariably introduce high frequency into manipulated images. These differentiations 
direct our attention toward integrating corresponding adversarial degradations. Compared to the existing 
adversarial attacks [18, 21, 51, 52], adding perturbation doesn’t look natural, and several attacks lack 
transferability. In this section, we first present the problem definition and then elaborate on the proposed attack 
overview. 

3.1 Problem definition 
Suppose the deepfake detectors, based on deep neural networks 𝐷! are trained on original instances Ioriginal (real 
and deepfake) with the labels l. The black box attack involves an optimization task, where the objective is to 
minimize the loss function	𝐿$𝐼"#$%$&'( , 𝐷!',	while adhering to the constraint ‖P‖ 	≤ 	𝜀. In this context, 𝐿 represents 
the deviation between the actual label and the predicted label, and 𝜀 signifies a minor positive constant that restricts 
the magnitude of perturbations. The aim is to identify the perturbation 𝑃 which reduces detection accuracy to the 
greatest extent possible while remaining within the perturbation constraint as follows: 



minimize 𝐿$𝐼"#$%$&'( , 𝐷!'								                                                 (1) 

                    𝐼')* = 𝐼"#$%$&'( 	+ 	𝑃				𝑠. 𝑡.			‖P‖ 	≤ 	𝜀	                                    (2) 

The test set adversarial instances Iadv can expose the vulnerabilities of Dθ. In addition, as an adversary, we aim to 
add the perturbation to target instances which ensures the visual natural 𝜀 for the adversarial instances Iadv. The 
adversarial perturbation can lead the model to make a false prediction as follows:  

𝐷!	(𝐼')*) 	≠ 	𝑙				𝑠. 𝑡.		||	𝐼')* 	−	𝐼"#$%$&'(	|| 			< 	𝜀    (3) 

The proposed adversarial attacks emphasize the development of a natural-looking adversarial attack that deceives 
the authenticity and exposes the vulnerability of deepfake detection systems.  

3.2 Method overview 
In this work, we present a novel framework inspired by biological vision's mechanisms [51, 53] and principles to 
develop an adversarial attack that is visually natural, capable of transferring across models with resilience, and 
demonstrates formidable attacking capabilities. Even if the attacker lacks access to the target detector's parameters 
and architectural specifications, the proposed method can still evade the detectors by utilizing both human and 
model attention. Initially, heatmaps were generated using the surrogate model following the attention distraction 
method [53] and the lateral inhibition mechanism [51] to assess the explainability factor [54] and examine the 
principal characteristics of the facial frames focused by the trained model. To optimize the applicability of our 
attack, we incorporate insights from biological observations and deliberately shift the focus of the model from the 
intended targets to unintended regions, including the background. Concerning visual naturalness, we aim to 
circumvent the bottom-up attention that is unique to human vision by developing an adversarial attack that appears 
visually natural. A mask is created to accurately represent the precise region of the facial frame that is focused by 
the detector. We employ a set of facial degradation methods in the proposed attack to effectively reduce statistical 
disparities. We initially employ the illumination adjustment and extract the mask of the frame landmark area. After 
that, we adjust the brightness values in localized pixels of masked areas. The addition of noise demonstrates that 
the introduction of random noise into fabricated images effectively reduces regular artifacts. Lastly, uniform 
Gaussian blurring blurs statistical differences in the frequency domain by removing high-frequency components 
from images. The details are provided in subsequent sections. Figure 1 illustrates the methodology, and the 
following sections provide further elaboration on the proposed approach. 

3.3 Surrogate model creation  
A surrogate model 𝑆!	resembles the target model and is intended to exploit or manipulate system vulnerabilities 
to comprehend the behavior of the target model. Additionally, the concept of lateral inhibition [55] provides an 
intrinsic neural process identified in biological systems, including inhibition of the activity of adjacent neurons, 
thereby augmenting the ability to differentiate between contrast and features. These abilities are inherent in all 
deep learning models. By drawing inspiration from the principles of lateral inhibition, we create surrogate models 
to make proposed adversarial attacks transferable across different deep-learning models. To simultaneously 
strengthen the resilience of adversarial perturbations and implement attention distraction, we leverage the concept 
of lateral inhibition [55] in our attack strategies.  

Deep neural networks' perception is crucial for recognition and classification tasks. Surrogate model lateral 
inhibition methods allow us to attack model attention. Simultaneously, this process restricts the activation of the 
ground-truth class, resulting in an improved ability to make effective attacks. Thus, the model must focus on the 
wrong class, which affects its attention to the true label. Based on the above description, we chose the VGG-19 
architecture [56], a pre-trained model that is computationally efficient for many detection tasks. The target model 
is any deepfake detector that verifies video authenticity. Our goal as an adversary is to modify the test set videos 
to reject the target model's label. We want the target to mistake a deepfake video for a real one, or vice versa. We 
employ a surrogate model to approximate the behavior of target models. The surrogate model misclassified data 
after testing it with proposed attacked test set samples. Based on surrogate model findings, we visualize [57] 
thetraits of facial frames focused by a surrogate model. This provides us with the information to add the proposed 
adversarial attack to these ROIs. 



 

3.4 Grad-cam Visualization  
In biology, there are noteworthy observations regarding selected attention features and their impact on cerebral 
activities. These observations have revealed that these attention features can stimulate similar patterns of cerebral 

Figure 1: Framework of proposed method. To emphasize the attention mechanism, a surrogate model is created; heatmaps 
are extracted using Grad-Cam visualization, and the landmark region is eventually extracted to generate the mask. In 
addition, we generate a visually natural adversarial attack to bypass the human-specific visual attention mechanism. 
Finally, we assess the transferability of the proposed attack across various deep learning models, such as unified models, 
fused models, and end-to-end models.  



activity across different individuals [53]. This finding suggests the presence of comparable characteristics in terms 
of neuron hyperperception among these individuals. In this research, we explored the potential similarities in 
attention patterns exhibited by deep neural networks when predicting the same objects. The implementation of 
artificial neural networks is influenced by the functioning of the human central nervous system, which forms the 
basis for this assumption. Our objective is to capture attention structures that are independent of the deep learning 
models to improve the practicality of adversarial attacks. 

Visual attention techniques, including CAM, Grad-CAM, and Grad-CAM++ [57], have been the subject of 
extensive research to gain insights and comprehension into the behaviors of deep learning models. In predictive 
modeling, it is a common practice for models to direct their attention toward specific target objects. To effectively 
execute an attack on a model, it is imperative to employ a strategy that diverts the model's attention away from 
significant objects. This can be observed by manipulating the attention map shared by the model on the salient 
area. Figure 2 shows heat maps generated from our surrogate model. Visual assessment shows the surrogate 
model's focus on facial landmark areas including foreheads, brows, nose, and eyes. The red-highlighted portion 
of the facial frame is the area of interest. This investigation shows that perturbing only the highlighted region of 
facial frames reduces the computational complexity of the attack. Additionally, this perturbation bypasses the 
deepfake detector's intended performance. 

3.5 Proposed Facial Distraction Blackbox Attack 
As we have already discussed in the method overview for the proposed Facial Distraction Blackbox (FDB) Attack, 
we employ different statistical degradation methods that effectively reduce statistical disparities from generated 
images. In the first step, we adjust image intensity, then extract facial ROI via masking and apply some other 
techniques to the masked region. We design three distinct stages in our approach to improve the effectiveness and 
covert nature of proposed adversarial perturbations. In the masked region, we adjust channel-wise brightness and 
add uniform noise and Gaussian blur. We carefully construct adversarial degradations to covertly manipulate 
visual signals with the intention of misleading image authenticity. The visual presentation of the proposed attack 
pipeline is provided in Figure 1 and the details of all the degradations are as follows: 
3.5.1 Adversarial illumination adjustment 
Specific visual cues identify most of the generated images as computer-generated. Those cues encompass a range 
of visual characteristics, including the presence of unrealistic lighting and shading effects and a noticeable absence 
of fine details. To make these generated images look realistic, we adjust the intensity, which refines the brightness 
of the generated deepfake images. We achieve this by manipulating their intensity within the HSV color space. 
This technique isolates intensity information while suppressing color details to enhance the realism of deepfake 
outputs.  

Figure 2: Heatmap visualization generated through the Grad-Cam visualization technique. 



To adjust the intensity, we first convert the default BGR color channel to the hue, saturation, and intensity (HSI) 
color space. This color space allows the separation of intensity data from color tones. Incorporating the given 
description, the conversion from the original BGR channel 𝐼+,-	to the HSI channel 𝐼/01	can be denoted as follows: 

𝐼/01	 =	 (𝐼+,-("#$%$&'()		)                                                           (4) 

Following this, an adjustment is made to the intensity channel (𝐼/01_')5	) by increasing image intensity. By 
multiplying intensity channel pixel values by the intensity factor, the image will appear brighter, improving detail 
visibility and visual impact. By utilizing the clip function, the adjusted intensity values remain within the allowed 
range of [0, 255]. We can mathematically represent the adjustment as: 

     𝐼/01_')5	 = 	𝑐𝑙𝑖𝑝(𝐼/01 	× 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦_𝑓𝑎𝑐𝑡𝑜𝑟)                                      (5) 

In the last step, the adjusted intensity channel is transformed back into the BGR color space, resulting in the 
generation of the modified image denoted as 𝐼+,-_')5	. This conversion allows for the restoration of the modified 
image to its original color representation, ensuring that the visual information is preserved and represented as: 

𝐼+,-_')5	 =	 (𝐼/01!"#)                                                         (6) 

3.5.2 Mask Generation 
Extending the concepts of attention distraction and heat map analysis, the creation of a facial landmark area 
mask	𝑀67 introduces a novel approach to perturb specific regions within an image. By creating a mask, we can 
manipulate the region of interest by disrupting specific facial characteristics. This method determines critical facial 
landmark areas, enabling precise disruption of the image. Utilizing the mask enables one to manipulate visual 
attention and assess the influence of particular regions on overall perception in a more precise manner. Facial 
landmarks are identified for every intensity-adjusted frame through the utilization of a landmark’s predictor. This 
results in the generation of a set of (𝑥, 𝑦)	coordinates that collectively represent 68 distinct facial landmarks. With 
these coordinates, we draw a convex hull 𝐻67, a polygon that includes all the landmark features of the face. The 
convex hull enables precise capture of the facial landmarks and boundaries, ensuring the adjustment process 
exclusively incorporates the intended landmarks. This process involves iterating through each of the 68 facial 
landmarks, extracting their (𝑥, 𝑦) coordinates, and generating the convex hull. Let {(𝑥$ , 𝑦$)}89:;< denote facial 
landmarks, so the convex hull is:  

𝐶𝑜𝑛𝑣𝑒𝑥	𝐻𝑢𝑙𝑙 = 	𝐻67({(𝑥$ , 𝑦$)}89:;< )																																																													(7) 

After deriving the convex hull, we construct a binary mask. The mask effectively highlights the facial landmark 
area by filling the region within the hull with white pixels (255). This results in the creation of a binary 
representation of the identified region. 

𝑀67(𝐻67) = N
255,																																					𝐻67	
0,																														𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	                                     (8) 

By applying the facial landmark area mask that is obtained, the original image is subsequently modified in a way 
that permits precise perturbation of the desired region. Mathematically, the process of applying the mask 𝑀67 to 
the intensity-adjusted image 𝐼+,-_')5 	is denoted as follows: 

𝐼='>?@)(𝑀67) 	= 		 𝐼+,-_')5 	&	𝑀67(𝐻67)                                        (9) 

Finally, a masked facial frame 𝐼='>?@)(𝑀67) is generated through the “bitwise AND” of the intensity-adjusted 
image 𝐼+,-_')5 	and its mask 𝑀67(𝐻67). The utilization of the mask allows for the diversion of the detector's focus 
toward the essential facial characteristics, such as the mouth, eyes, and nostrils. As a result, the attack execution 
becomes more effective, and the computational load is reduced. The mask generation pipeline is also provided in 
Figure 1.  

3.5.3 Adversarial Brightness 
In the next step, we slightly enhance the brightness in this masked area, the facial landmarks, to make them more 
visible and more apparent. This adjustment helps to highlight the eyes, nose, and mouth, allowing for better 
recognition and interpretation of the facial expressions. The method accesses specific pixels in the region with the 
facial landmark, augmenting each color channel with a constant value and verifying that the resultant values fall 



within a suitable range of brightness. This is achieved through the addition of a brightness factor to each color 
channel and the mathematical expression representing this operation is: 

    𝑃+#$%AB	 = 𝑀67	([𝑏+	, 𝑏,	, 𝑏-	]))                                                  (10) 

Here, 𝑀67	 and the constant array [𝑏+	, 𝑏,	, 𝑏-	] represent the original pixel at coordinates (𝑥, 𝑦). The brightness 
factor b is added to each corresponding color channel (red, green, and blue). The degree of brightness enhancement 
can be precisely adjusted by modifying the constant values, providing further control to the overall appearance of 
adversarial bright images. 

3.5.4 Adversarial Uniform Noise 
After adversarial brightness addition, we add uniform noise to each color channel of a masked image that occurs 
within a specified range. The procedure includes the independent generation of random noise values for the red, 
green, and blue channels. Adding small adversarial uniform noise to each color channel results in a realistic and 
natural appearance of the image. By carefully controlling the range of the uniform noise, we can adjust the level 
of distortion and achieve the desired balance between preserving image details and introducing a realistic level of 
noise. 

𝑃C"$>@	 = (𝑀67	[𝑐] + 𝑛𝑜𝑖𝑠𝑒[𝑐+	, 𝑐,	, 𝑐-	])                                           (11) 

The noise is added to the color channel [𝑐+	, 𝑐,	, 𝑐-	] of 𝑀67	at coordinates (x, y). After adding the generated noise, 
the resulting intensity is reduced to ensure that it remains within the acceptable range of [0, 255]. The noise added 
to each channel 𝑐 introduced slight variations in the mask texture and gave the image a more natural look. 
Simulating the existence of noise in the region containing facial landmarks enhances the overall visual realism 
and dynamism of the image. 

3.5.5 Adversarial Blur 
In the last step of the proposed attack, we add Gaussian blurring. Employing this technique eliminates the high-
frequency components present in manufactured images, reducing the statistical difference in the frequency 
domain. To introduce Gaussian distortion to a masked image 𝑀67	, the image is convolved with a Gaussian kernel 
represented as: 

𝑃+(D##@)	 = ∑ 𝑥EFF
$9G ∑ 𝑦	EFF

59G 𝑀67	(𝑥 + 𝑖, 𝑦 + 𝑗) 	∗ 𝐺(𝑖, 𝑗)                                  (12) 

The outcome of convolving the functions 𝑀67	(𝑥 + 𝑖, 𝑦 + 𝑗) represents the pixel intensity of the image at 
coordinates (𝑥, 𝑦), while 𝐺(𝑖, 𝑗) denotes the Gaussian kernel positioned at the given offset in the context of image 
processing. The Gaussian kernel 𝐺(𝑖, 𝑗) is defined as follows: 

𝐺(𝑖, 𝑗) = :
EHI$

𝑒J	
%$&	($

)$                                                                     (13) 

Where	𝛼	represents the base of the natural logarithm and denotes the standard deviation of the Gaussian 
distribution. The Gaussian kernel convolution operation results in a noticeable opacification of the image as 
standard deviations increase. The adversarial Gaussian kernel blurs the fabricated image. 

We sequentially employ these three perturbations to mask landmark image Equations (8), (9), and (10) and provide 
the following overview of the perturbations: 

               𝐼K@#BD#L@) =	𝑃+(D##@)	(𝑃C"$>@	(𝑃+#$%AB	(𝑀67	)))                                          (14) 

The perturbed frame 𝐼')*	is formed through “bitwise AND” of the perturbed frame masked 𝐼K@#BD#L@)	with the 
bright-adjusted frame 𝐼+,-_')5 mentioned as:  

𝐼')* 	= 		 (𝐼+,-_')5)	&	(𝐼K@#BD#L@))                                                        (15) 



To assess the performance of the proposed attack, we provided the victim models with a test set of attacked facial 
frames. The original and attacked samples can be analyzed in Figure 3. As it can be observed the proposed 
perturbed frames look visually natural. The modified frames maintain the main facial features and expressions of 
the original pictures, posing difficulty for human observers to detect any abnormalities. The visual similarity 
highlights the effectiveness of the attack in evading detection by both human observers and deepfake detectors. 
The flow of the proposed method is described in Algorithm 1. 

Algorithm 1: Proposed Facial Distraction Blackbox Attack.  

Input: Input Video, Surrogate Model, Target Model.  
Output: Attack creation, Target models misclassification (Acc drop), Attack Success rate.  

1. Initializing  
2. Selection of target model 𝑫𝜽	and creation of a surrogate model 𝑺𝜽: 
3. 𝑺𝜽	 
4.      Train$𝑰𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍'						// train instance with 𝑺𝜽 
5.      Heat map generation 
6.      Analyzing heatmaps on landmark ROI 
7. Proposed Facial Distraction Blackbox Attack 
8.      𝑰𝑯𝑺𝑰	 ←	(𝑰𝑩𝑮𝑹(𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍))  //each facial frame color space conversion for illumination adjustment 
9.     	𝑰𝑯𝑺𝑰_𝒂𝒅𝒋	 ←	(𝑰𝑯𝑺𝑰 	× 𝒊𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚_𝒇𝒂𝒄𝒕𝒐𝒓) 
10.     	𝑰𝑩𝑮𝑹_𝒂𝒅𝒋	 ←	(𝑰𝑯𝑺𝑰𝒂𝒅𝒋)   //color conversion to BGR 
11.      For  
12.           𝑴𝒙𝒚 for each 𝑰𝑩𝑮𝑹_𝒂𝒅𝒋	 , // mask creation 
13.                𝐶𝑜𝑛𝑣𝑒𝑥	𝐻𝑢𝑙𝑙 ← 𝑯𝒙𝒚     //convex hull 
14.              		𝑴𝒙𝒚$𝑯𝒙𝒚' ← 255          // 𝑎𝑟𝑒𝑎	𝑖𝑛𝑠𝑖𝑑𝑒	𝐻67     
15.              		𝑰𝒎𝒂𝒔𝒌𝒆𝒅(𝑴𝒙𝒚) 	← 	 𝑰𝑩𝑮𝑹𝒂𝒅𝒋 	&	𝑴𝒙𝒚(𝑯𝒙𝒚) 
16.          	𝑷𝑩𝒓𝒊𝒈𝒉𝒕	 ← 𝑴𝒙𝒚	([𝒃𝑩	, 𝒃𝑮	, 𝒃𝑹	]))     // adversarial brightness perturbation in 𝑀67 
17.                𝒃	        // brightness factor    
18.           	𝑷𝑵𝒐𝒊𝒔𝒆	 ← (𝑴𝒙𝒚	[𝒄] + 𝒏𝒐𝒊𝒔𝒆[𝒄𝑩	, 𝒄𝑮	, 𝒄𝑹	]  // adversarial noise perturbation in 𝑀67 
19.                𝒏𝒐𝒊𝒔𝒆[𝒄𝑩	, 𝒄𝑮	, 𝒄𝑹	]										 // noise addition to each color channel     
20.           	𝑷𝑩𝒍𝒖𝒓𝒓𝒆𝒅	 ← 𝑴𝒙𝒚	 ∗ 𝑮(𝒊, 𝒋)            // adversarial blurriness perturbation in 𝑀67 
21.                𝑮(𝒊, 𝒋)                                // Gaussian kernel 
22.     	𝑰𝒑𝒆𝒓𝒕𝒖𝒓𝒃𝒆𝒅 ←	𝑷𝑩𝒍𝒖𝒓𝒓𝒆𝒅	(𝑷𝑵𝒐𝒊𝒔𝒆	(𝑷𝑩𝒓𝒊𝒈𝒉𝒕	(𝑴𝒙𝒚	)))   // perturbed mask creation  
23. 𝑰𝒂𝒅𝒗 	← 		 (𝑰𝑩𝑮𝑹_𝒂𝒅𝒋)	&	(𝑰𝒑𝒆𝒓𝒕𝒖𝒓𝒃𝒆𝒅)      // Attacked frame creation  through proposed attack 
24. Test set (𝑰𝒂𝒅𝒗) ← target model 𝑫𝜽      //target model testing using attack instances  
25. Output←misclassification of 𝑫𝜽.	 
26. End 

 

Figure 3: The Top row represents deepfake images from the dataset, bottom row represents perturbed frames by the 
proposed attack. 



 

4. DeepEvader Testing Tool 
To detect the vulnerabilities of existing deepfake detectors, we proposed a novel penetration testing tool named 
DeepEvader. It uncovers the vulnerabilities of deepfake detectors on proposed and state-of-the-art adversarial 
black-box attacks. This emerges as an indispensable tool for pinpointing weaknesses within deepfake detectors, 
thereby evaluating the robustness and vulnerability of detectors against diverse manipulation strategies. This part 
explains the underlying concept of DeepEvader (Section 4.1), as well as the components (Section 4.2) and 
workings (Section 4.3) of the proposed system. Figure 4 displays the testing tool's flow diagram. Additionally, the 
evaluation results of DeepEvader on various deepfake detection models showcase effectiveness in identifying 
vulnerabilities. The tool also includes a user-friendly interface for easy navigation and utilization by researchers 
and practitioners in the field. 

4.1 Concept of DeepEvader 
A DeepEvader, acting as a black-box adversary, can carry out black-box adversarial attacks on deepfake detectors 
to undermine their integrity. This tool performs the following tasks: (i) allows the user to select different models 
and test them with perturbed and unperturbed samples, (ii) the test set data is changed to create adversarial outputs; 
and (iii) based on the attack, it generates actual outputs. This tool provides a platform to evaluate the resilience of 
detectors by simulating adversarial scenarios. DeepEvader and various deepfake detection models showcase their 
effectiveness in identifying vulnerabilities. The tool also includes a user-friendly interface for easy navigation and 
utilization by researchers and practitioners in the field. The interface of the developed testing tool is provided in 
Figure 5.  
4.2 Components of DeepEvader  
The DeepEvader framework is composed of several critical components, each of which is essential for the 
evaluation of the security and robustness of machine learning models. These components collaborate to simulate 
and analyze potential adversarial scenarios. 

4.2.1 Model Selection 
For now, we use three different varieties of deepfake detectors, including deep learning [5] fusion-based [7], [6] 
and unified deepfake detectors [8]. Section 5.2 provides the details of all models. 

4.2.2 Dataset Selection  
In the proposed application, we provide several datasets, including FF++, DFDC, Celeb-DF, FakeAVCeleb, and 
WLDR. We also offer attacked versions of all datasets, including existing and proposed black box attacks. 

Figure 4: DeepEvader Flow Diagram.  



4.2.3 Attack Selection 
The application includes various attack methods to test the resilience and expose the vulnerability of deepfake 
detection models. These attacks include Blur, Noise, Pix-DE, Pix-SA, Mole, FGSM, PGD, and the proposed 
attack. 

4.3 How DeepEvader Works 
DeepEvader utilizes a range of attack methods and its own proposed attack to expose the vulnerability of deepfake 
detection models. After selecting the model, dataset, and attack method, the user can initiate the test or scan 
process. The application will run the chosen deepfake detection model on the dataset, applying the provided 
blackbox attacks to assess the model's performance. The application provides a detailed comparison of the model's 
performance metrics, including accuracy before attack, accuracy after attack, and attack success rate. However, it 
is important to note that for now, we provide a few models, datasets, and attacks, and we plan to scale this process 
up in the future by providing access to users to upload their required models with datasets and desired attacks. 
This expansion will enable users to tailor the evaluation process to their needs and explore various scenarios. By 
incorporating a variety of models, datasets, and attacks, users can gain a more thorough understanding of the 
vulnerabilities present in different machine-learning systems. 

Figure 5: Proposed penetration testing tool “DeepEvader” Interface. 



5. Experiments and Results 
In this section, we provide a detailed description of the experiments that were conducted to assess the efficacy of 
our proposed attack, including the details of datasets and metrics that were employed. 

5.1 Datasets 
Experiments are performed on several distinct datasets to evaluate the proposed attack’s performance. These 
datasets are FaceForensics++ [2], Celeb-DF [1], World Leaders Dataset [4], DFDC-Preview [58], and FakeAV 
Celeb [59]. For the fake AV Celeb dataset, we perform the attack on the video subset only. The details of these 
datasets are discussed in the following sections. 

5.1.1 FaceForensics (FF)++ 
One of the most challenging deepfake datasets, FaceForensics (FF)++ [2], comprises one thousand authentic 
YouTube videos featuring frontal features and no occlusions. Each video features individuals of different 
ethnicities ornamented with accessories, including spectacles, and features frames with contrasting lighting. These 
elements contribute to the challenge of distinguishing between real and counterfeit samples. These authentic 
videos are manipulated using computer graphics and deep learning techniques to generate the subsets i.e., 
Deepfakes, FaceSwap, Face2Face, NeuralTextures, and FaceShifter. 

5.1.2 DFDC-P 
The Deepfake Detection Challenge Preview (DFDC-P) dataset [58] comprises 5,000 manipulated and authentic 
videos. The authentic videos were obtained from the compensated actors, while several deepfake, GAN-based, 
and unlearned techniques were used to generate the fake videos. These videos are produced using facial 
manipulation methods such as DeepFakes and Face2Face, among others. DFDC considers various acquisition 
scenarios (e.g., outdoor, and indoor environments), illumination conditions (e.g., day and night), subject distance 
to the camera, pose variations, and more. DFDC is varied in numerous respects, including age, gender, and skin 
tone. 

5.1.3 CelebDF 
The Celeb-DF dataset [1] consists of 590 genuine videos in addition to 5639 fake videos. The authentic videos, 
which feature interviews with personalities of various ages, genders, and ethnic backgrounds, are obtained from 
YouTube. The recordings captured in the real world demonstrate a wide range of variations, encompassing 
disparities in facial dimensions (measured in pixels), orientations, illumination conditions, and backgrounds. The 
methodology employed to generate deepfakes centers on augmenting the luminance and contrast of facial images 
to mitigate discrepancies between the altered material and its environment. As a result, the videos that have been 
altered exhibit an elevated degree of deceit and highlight superior visual expertise. 

5.1.4 WLDR 
The World Leaders Dataset (WLRD) [1] is a selection of YouTube recordings featuring internationally renowned 
political figures, such as Barack Obama, Hillary Clinton, Joe Biden, Elizabeth Warren, Donald Trump, and Bernie 
Sanders. This dataset is additionally subdivided into several subsets, which comprise comedic imitations, face 
exchanges, and the original videos. Additionally, subdivisions for puppet master and lip-sync are included in the 
Obama section of this dataset. The WLRD dataset contains a face exchange subset in which the authentic 
appearance of a leader is substituted with that of a comedic impersonator. It is important to acknowledge that this 
subset lacks balance, as the quantity of fake videos is comparatively small in comparison to the number of 
authentic recordings about each featured leader. 

5.1.5 FakeAVCeleb 
The FakeAVCeleb dataset [59] consists of more than 20,000 false celebrity videos and 500 authentic ones. 
RealAudioRealVideo (RaRv), FakeAudioFakeVideo (FaFv), RealAudioFakeVideo (RaFv), and 
FakeAudioRealVideo (RaRv) are its four subsets. Videos of men and women from distinct ethnic groups: 
American, European, African, South Asian, and East Asian comprise the FakeAVCeleb dataset, which is diverse 
in terms of gender and ethnic distribution. From this dataset, we took Rv and Fv, which are video-only subsets 
because our proposed attack is performed on visual content. 

5.2 Victim Detectors 
For experiments, we choose two fusion-based deep learning models: Fused Truncated DenseNet [7] and Fused 
Swish-ReLU Efficient-Net [6], and two end-to-end deep learning models: Efficient-capsule Net [5] and ResNet-
Swish-Dense54 [9]. Initially, this model [9] was trained on the FaceSwap and Face-Reenactment subsets of the 
FF++ and DFDC datasets, but we trained it on other subsets of the FF++, WLDR, and Celeb-DF datasets. In 



addition, we use a unified end-to-end Dense Swin Transformer [8], which combines audio-visual deepfake 
detection, but we attack the video stream because the proposed attack targets visual content. Selecting these deep 
learning models as victim detectors ensures a fair evaluation of proposed attack transferability, as these models 
may still have similar vulnerabilities or weaknesses that can be exploited. 
To evaluate the robustness of the suggested adversarial method, it is necessary to select a variety of deepfake det
ectors. We select these diverse deepfake detectors to ensure a comprehensive assessment of the proposed attack's 
impact on different deepfake detectors. This allows us to gain insights into the overall effectiveness and 
generalizability of our attack across various detection frameworks. The accuracy (ACCBefore) of these detectors on 
each dataset is presented in Table 1. 

5.3 Evaluation Metrics 
The following evaluation metrics were implemented to assess the effectiveness of the proposed attack on the 
dataset. These metrics were also utilized by the comparative methods [15, 18, 20]. These established metrics aid 
in evaluating the effect of the proposed attack. 

5.3.1 Accuracy   
Accuracy quantifies the proportion of correct predictions about the overall number of predictions generated by 
the model. It gives information regarding the proportion of instances that were accurately classified into the 
predetermined categories. 

𝐴𝑐𝑐% = C"."k	l"##@mB	n#@)$mB$"&>
o"B'(	&"."k	n#@)$mB$"&>

	× 100                                     (16) 

5.3.2 Attack Success Rate (ASR) 
ASR is an essential metric utilized to assess the efficacy of a particular attack. The efficacy of the attack is assessed 
through the quantification of the percentage of model predictions that were altered successfully. It is worth noting 
that instances that were initially misclassified by the classifier are excluded from this metric. 
 

𝐴𝑆𝑅 = 	pmm-./01.J	pmm2/3.1
pmm-./01.

× 100                                               (17) 

5.4 Experiment parameters  
For the video preprocessing, we use MTCNN [60] for frame extraction of size 224×224. The proposed attack is 
performed only on a test set of all datasets in the black box setting. For the best results and visual naturalness of 
the proposed Facial distraction black box attack, we select the parameter of each adversarial perturbation very 
carefully. For hyperparameters, we set the intensity factor = 1.2 because intensity factors 0–3 give a visually 
natural outcome. For the proposed adversarial brightness, noise, and blur, we choose the minimum value of 3 w.r.t. 
the range of [0, 255], choosing these values slightly increases the illumination of the frame and perturbs the 
landmark region naturally. In addition to other state-of-the-art attacks, we set the same value = 5 for noise and 
blur. For PGD and FGSM attacks [61], we set the epsilon = 5. Whereas for one pixel DE [21] and one pixel SA 
[18], only one pixel is modified per frame, but for mole attack, a maximum of 15 pixels per frame are modified. 
Selecting these values for all attacks guarantees uniformity and the ability to make significant comparisons in 
evaluating the various attacks. Based on these parameters, we perform all the experiments.  

5.5 Performance evaluation of proposed attack 
To comprehensively assess the efficacy of our proposed attack in evading modern deepfake detectors, we carried 
out this experiment. Each model was evaluated before and after the attack. Before the attack, the models are 
evaluated through an accuracy assessment on all unperturbed datasets. Then an attack is performed on all datasets 
to perturb their test instances, and models are individually evaluated with perturbed samples. The results, including 
before-attack accuracy (ACCBefore), after-attack accuracy (ACCAfter), and attack success rate of all deepfake 
detectors, are mentioned in Table 1, and details of the experiments are given in subsequent sections. 

5.5.1 End-to-end deep learning target model  
The objective of this experiment was to evaluate the susceptibility of end-to-end deep learning models utilized in 
deepfake detection to proposed adversarial attacks. A substantial decline in accuracy is observed after proposed 
adversarial attacks. The CAP net [5] has the highest accuracy loss on the NT subset of the FF++ dataset, with 
50.4%. On WLDR, a loss of 50.1% was reported on the Joe subset. DFDC-P has a 51.2% accuracy drop, while 
CelebDF reported an accuracy loss of 60%. On the other hand, on RNSD [9], the F2F subset of FF++ had the 
lowest accuracy of 50.5%, followed by WLDR at 51.0% on the Joe subset and CelebDF at 49.8%. The DFDC-P 
dataset had the lowest accuracy drop of 45.6%. The overall highest ASR on CAP [5] is reported on the WLDR 
dataset, which is 51.7%, and on RNSD [9], the highest ASR is 49.3% on the DFDC-P dataset. 



Table 1: Models Before and After Attack Accuracy % and ASR. 

5.5.2 Fusion-based target model 
In this experiment, we select the two fusion-based models: Fused DenseNet [7] and Fused Swish-ReLU Efficient-
Net [6]. These models attained the highest accuracy on several datasets on the unperturbed samples; however, 
their accuracy significantly decreased on samples attacked with the proposed method. The highest accuracy loss  
on the SRE [6] model was reported on the NT subset of the FF++ dataset with 45.7%. On WLDR, a loss of 47.9% 
was reported on the Clinton subset. CelebDF has a 57.7% accuracy drop, while DFDC reported an accuracy loss 
of 59.6%. However, on the Fused [7] model, the lowest accuracy was reported on the F2F subset of FF++, which 
is 52.5%; WLDR is 49.9% on the Clinton subset; and CelebDF is 56.6%, whereas the accuracy drops of 55.4% 
have been reported on the DFDC dataset. Table 3 represents existing attacks and proposed attack results of fused 
deepfake detectors. Both Fused models on the WLDR dataset achieved the highest ASR, SRE [6] reported an 
ASR of 52.0%, on the other hand, the fused model [7] achieved an ASR of 50.9%. 

5.5.3 Unified Target Model 
In this experiment, we selected a unified audio-visual deepfake detector [8]. This model was initially trained on 
DFDC and the audio-visual stream of the FakeAV Celeb dataset. Because the proposed attack modifies only visual 
information, for this experiment, we took only a visual subset of the FakeAV Celeb dataset. Although this model 
attained the highest accuracy on the unperturbed samples, their accuracy significantly dropped on samples 
attacked with the proposed method. Specifically, the accuracy dropped from 90.0% to 45.6% on the FakeAV Celeb 
dataset, with an ASR (Attack Success Rate) of 49.3%. On the DFDC dataset, a loss of 43.9% in accuracy was 
observed, dropping from 73.0% to 39.1%, with an ASR of 39.8%. 

Overall, the above end-to-end model and fused models had the lowest accuracy on the NT and F2F subsets, even 
when nothing was changed. This is because their algorithm only alters the mouth area to modify a person's 
expression, resulting in such subtle changes that they are almost indistinguishable. In addition, due to deep 
learning models’ linear decision boundary and extraordinary sensitivity to even minor input data modifications, 
these models are vulnerable to proposed adversarial attacks. The experiment with contemporary attacks was also 
performed and reported in Table 1, showing the good attack ability of the proposed method. 

5.6 Comparative analysis with state-of-the-art attacks 
The selected state-of-the-art attacks for analysis include black box, evasion, and statistical attacks. For statistical 
attacks, we selected blur [62] and noise [63]. In addition, pure black-box attacks involve Pix-DE [21], Pix-SA 
[18], and Mole attack, while evasion attacks consist of FGSM [61] and PGD [61]. The proposed attack combines 
statistical evasion black-box techniques, which is the reason for choosing these specific attacks in comparison. 
Detailed results of these attacks are provided in Tables 2-4.  

5.6.1 Statistical attacks 
Statistical attacks are added to test instances with different intensities. Specifically, we executed the blur and noise 
attacks varying in parameters and intensities, such as various kernel sizes, including 3, 5, 7, and 9, as seen in 
previous work [63], to diversify the testing data. By utilizing varying intensities, these attacks could either be 
noticeable or imperceptible to the human eye. We use salt and pepper noise and median blur with a kernel size of 
5, which are minimal but perceptible statistical attacks visible on instances. Blurring an image reduces detail and 
sharpness. It softens or distorts sections of the image, making it less concentrated and smoother. This effect can 
improve aesthetics, and depth, or conceal critical information. Salt and pepper noise adds random black-and-white 
pixels to an image. Random speckles from this noise alter the image, making it grainy or distorted. It can lower 

Models Target 
model 

Measur
es  

Models Before and After Attack Accuracy % and ASR on different datasets 
FF++ WLDR DFDC

-P 
Celeb 

DF 
FS DF F2F SH NT Obama Clinton Joe Sander Warren   

End-to-
end deep 
learning 

CAP[5]  ACCBefore 99.5 98.6 99.6 96.1 95.1 98.8 93 99.9 99.7 99.9 87.9 83.6 
ACCAfter 54.2 52.5 53.9 51.4 50.4 60.9 59.2 50.2 52.2 48.3 51.2 60.8 

ASR 45.5 46.8 45.9 46.5 47.0 38.4 36.3 49.7 47.6 51.7 41.8 27.3 
RNSD [9]  ACCBefore 98.7 98.5 98.1 97.9 96.6 97.1 96.2 97.3 95.8 91.0 96.8 92.3 

ACCAfter 64.6 56.4 50.5 52.8 60.1 59.3 54.8 51.0 57.1 52.7 45.6 49.8 
ASR 34.9 42.7 48.5 46.1 35.0 40.2 44.8 48.6 40.2 42.7 49.3 44.9 

Fused 
Models 

SRE [6]  ACCBefore 98.8 97.1 98.5 96 92.11 99.7 99.8 97.5 99.6 90.4 88.4 98.7 
ACCAfter 51 50.8 55.7 54 45.7 48.3 47.9 48.9 49.7 50.0 59.6 57.7 

ASR 48.4 47.7 43.5 43.8 50.4 51.6 52.0 49.8 50.1 44.7 32.6 41.5 
Fused [7]  ACCBefore 95.7 93.9 92.6 83.5 60.9 94.5 84.1 89.6 89.5 93.1 86 96.8 

ACCAfter 52.9 58.1 52.5 58.5 57.4 51.4 49.9 53.6 59.5 45.7 55.4 56.6 
ASR 44.7 38.1 43.3 29.9 5.7 45.6 40.7 40.2 33.5 50.9 35.6 41.5 



visual quality and clarity, making minute details harder to see. The impact of noise and blur on distorting image 
quality slightly affects the performance of models, as can be seen in Tables 2 to 4. Still, these methods, as 
adversarial attacks, do not help exploit vulnerabilities in the given deep learning models.  

5.6.2 Black box attacks 
We select three attacks for black box attacks: the one-pixel differential evolution attack, the simulated annealing 
one-pixel attack, and the facial mole attack. Each attack presents a distinct method for evaluating the susceptibility 
of a deepfake detector, offering a thorough evaluation of its security measures. The selection of these attacks was 
focused on their effectiveness in identifying potential vulnerabilities.  One-pixel attacks utilizing Differential 
Evolution (DE) [21] and Simulated Annealing (SA) [18] are limited by factors such as intensity, resolution 
sensitivity, transferability, and hyperparameter dependence. Limitations of these attacks include their 
hyperparameter dependence, sensitivity to image resolution, and intensity. The impact of an isolated pixel 
modification on the overall prediction of a model is insignificant. Practical scenarios may require the alteration of 
numerous pixels to carry out a successful assault. Furthermore, a facial mole attack targets a specific area of the 
face; for this experiment, we select 25 moles per frame. however, the utilization of numerous moles renders the 
attack detectable and accessible for defense mechanisms. Furthermore, the effectiveness of DE and SA attacks is 
dependent on the initial starting point, a variable factor that may require multiple iterations to determine a feasible 
attack strategy. Due to these limitations, it is impractical to implement such attacks in real-world scenarios where 
robustness and effectiveness are crucial. The results of these black box attacks on selected deep-learning models 
can be seen in Tables 2 to 4. 

5.6.3 Evasion attack 
For this experiment, we selected FGSM and PGD attacks [61]. These attacks demonstrate efficacy in producing 
adversarial examples in white-box scenarios, assuming access to model gradients; they encounter difficulties when 
applied in black-box environments. These attacks slightly fool various models, but their lack of transferability 
limits attack usefulness in practice. Moreover, these attacks are affected by hyperparameters, making it harder to 
find the best values in the black box setting, where information about the model is missing. For this attack, we 
randomly select an epsilon value of 5 for both attacks, which helps to slightly degrade the performance of all 
deepfake detectors. 

The results of the experiment showed that the deep learning models used in deepfake detection were indeed 
susceptible to the proposed adversarial attacks in comparison with state-of-the-art attacks. The models exhibited 
varying levels of vulnerability depending on the parameters and intensities of the attacks, with some attacks being 
easily detectable while others were almost indistinguishable. Comparing the results of all attacks in Tables 2, 3, 
and 4, it can be noticed that the proposed attack is robust, transferable, and less suspectable than the others. With 
minimal parameters and less computational time, the proposed attack fails all different kinds of deep learning 
models. 

Table 2: Accuracy drop % of end-to-end deep learning models after Attack.  

Models Attacks Datasets 
FF++ WLDR DFDC Celeb 

DF 
  

FS DF F2F SH NT Obama Clinton Joe Sander Warren 

RNSD 
[9] 

Blur[62] 89.4 90.1 89.5 88.5 77.4 90.4 93.4 88.5 85.6 88.4 75.9 85.7 
Noise [63] 83.7 85.5 82.7 74.7 73.6 82.4 88.9 87.8 82.7 83.6 72.2 77.4 

1 Pix-
DE[21] 

92.2 91.4 90.3 91.8 87.2 92.2 91.4 90.3 91.8 87.2 87.5 87.2 

1 Pix-SA[18] 91.7 92.3 90.1 90.3 88.5 91.7 92.3 90.1 90.3 88.5 85.3 89.5 
Mole 64.4 67.8 76.7 82.9 59.1 64.4 67.8 76.7 82.9 59.1 55.0 63.1 

FGSM[61] 83.0 76.3 62.2 96.3 71.1 98.3 94.6 91.3 94.2 79.6 56.6 66.4 
PGD[61] 95.4 96.2 88.3 97.7 85.4 95.4 98.2 97.4 94.7 82.4 71.8 87.5 
Proposed  54.2 52.5 53.9  51.4 50.4 60.9  59.2 50.2  52.2  48.3  51.2 60.8 

Capsule 
[5] 

 

Blur[62] 89.5 88.5 85.7 86.9 88.5 78.9 85.6 89.5 87.9 88.5 75.6 76.5 
Noise [63] 85.3 82.1 89.7 84.3 80.6 84.4 79.1 87.5 90.3 88.6 78.4 70.5 

1 Pix-
DE[21] 

95.4 96.7 95.7 90.5 94.3 96.7 90.6 97.8 98.9 97.9 85.3 76.8 

1 Pix-SA[18] 96.7 97.3 97.5 93.3 92.5 95.4 90.6 96.5 97.5 97.6 84.6 80.6 
Mole 78.4 84.5 73.9 66.5 70.1 67.5 77.5 63.6 76.5 69.9 65.4 81.4 

FGSM[61] 89.0 58.8 80.2 78.1 79.2 79.7 68.6 85.7 85.6 83.5 50.3 55.9 
PGD[61] 94.8 85.4 82.4 91.3 85.1 88.4 87.9 85.7 89.3 88.4 64.9 58.4 
Proposed  64.6 56.4 50.5 52.8 60.1 59.3 54.8 51.0 57.1 52.7 45.6 49.8 

 
 



Table 3: Accuracy drop % of fused deep learning models after Attack.  

Models Attacks Datasets 
FF++ WLDR DFDC Celeb 

DF 
  

FS DF F2F SH NT Obama Clinton Joe Sander Warren 

SRE 
[6]  

 

Blur[62] 88.6 86.4 85.4 89.4 85.4 94.3 89.4 89.7 88.5 85.6 76.4 87.5 
Noise [63] 86.4 85.3 88.4 85.3 83.7 90.3 88.8 84.3 87.5 81.2 74.3 83.9 

1 Pix-
DE[21] 

95.3 94.5 95.3 94.3 90.3 97.5 97.7 95.4 96.6 88.2 85.4 96.9 

1 Pix-SA[18] 96.7 93.3 96.4 92.5 89.6 96.4 93.4 94.8 94.3 87.5 83.5 97.4 
Mole 69.4 65.2 67.4 66.4 59.7 73.4 75.6 69.9 78.5 57.6 50.3 77.3 

FGSM[61] 72.4 86.2 60.2 94.6 65.4 98.6 90.9 70.6 99.7 95.0 61.6 84.8 
PGD[61] 95.5 97.3 75.7 95.7 87.1 95.8 91.8 88.3 99.7 94.9 75.5 96.2 
Proposed  51.0 50.8 55.7 54.0 45.7 48.3 47.9 48.9 49.7 50.0 59.6 57.7 

Fused 
[7]  

Blur[62] 84.6 80.6 80.7 73.3 58.5 84.8 75.1 77.9 79.6 86.5 77.6 87.5 
Noise [63] 82.3 78.5 76.9 60.8 54.6 87.5 72.5 73.4 70.5 79.6 70.5 79.8 

1 Pix-
DE[21] 

93.9 90.5 89.6 81.6 57.5 92.4 80.7 86.5 88.5 91.5 83.7 94.9 

1 Pix-SA[18] 92.6 92.4 90.4 80.5 56.6 90.3 81.2 87.9 87.9 92.5 82.2 92.3 
Mole 79.8 63.1 65.1 51.8 59.1 66.7 61.5 63.4 65.6 66.5 59.6 60.7 

FGSM[61] 72.3 66.5 64.1 95.5 85.3 81.0 75.4 92.3 97.4 89.9 79.5 79.6 
PGD[61] 83.4 95.8 88.4 96.5 88.3 80.9 93.8 88.7 80.1 97.7 84.5 96.9 
Proposed  52.9 58.1 52.5 58.5 57.4 51.4 49.9 53.6 59.5 45.7 55.4 56.6 

 
Table 4: Accuracy drop % of unified deep learning models after Attack.  

Models Attacks Models After Attack Accuracy %  
DFDC FakeAVCeleb 

Unified [8]  

Blur[62] 69.4 86.4 
Noise [63] 70.3 87.3 

1 Pix-DE[21] 72.3 89.9 
1 Pix-SA[18] 71.9 87.4 

Mole 65.5 73.5 
FGSM[61] 50.3 82.1 
PGD[61] 54.9 57.9 
Proposed  43.9 45.6 

5.7 Ablation study 
In this experiment, we tried different combinations of attacks to evade the performance of existing deepfake 
detectors. We found that certain attack combinations were able to successfully evade the performance of existing 
deepfake detectors. These attacks included manipulating texture patterns to create more convincing perturbed 
frames, but these perturbations do not look as natural as the proposed attack. However, some of these combinations 
make the image quality very low, with a dark or bright illumination effect and distorted facial features. Despite 
their success in evading detection, it is important to note that these alterations significantly compromised the 
overall image quality and appearance, making them easily distinguishable. Therefore, we proposed the attack, 
which perturbs images without compromising image quality. The combination of statistical distraction attacks 
chosen in this study are as follows: 

5.7.1 Gamma Dark and Bright attack 
In this attack, we used gamma correction in place of adversarial illumination adjustment, and the rest of the 
perturbations were added the same as the proposed attack. Gamma correction is generally used to improve image 
quality by adjusting brightness and contrast. Using less gamma brightens and blurs the frame; however, using 
slightly higher values produces a darker image. For this experiment, we use the minimum value of gamma factor 
= 0.5; on the other hand, we use gamma value = 3, which darkens the frame. The results of these attacks are 
comparatively the same as the proposed attack, but the quality of the perturbed frame does not look natural. 

5.7.2 Proposed attack variations  
In the variation to the proposed attack, we change the placement of blur and noise. We use blur before noise, and 
the results are almost equivalent to the proposed attack, but the visual naturalness of the image is distorted. By 
employing noise before blurring an image, it is possible to improve the visibility of details and textures. 
Conversely, applying blur before noise may yield a smoother appearance by diminishing the visibility of noise. 



The order of noise and blur application can have a substantial impact on the overall visual impact of an image. By 
applying noise before blur, it is possible to emphasize the image's textures and details, thereby increasing the 
appearance of depth and realism. On the contrary, the application of blur before noise reduces its clarity and 
sharpness, making it harder to distinguish details and potentially distorting the overall quality of the image. The 
results of the above method in comparison to the proposed attack can be seen in Table 5, and the outcome of these 
attacks can be analyzed in Figure 6. 

5.8 Analysis and Discussion  
Several analyses have been conducted in this section, including an evaluation of the attack's transferability across 
multiple deepfake detectors, an assessment of the surrogate model's explainability and quality, and an evaluation 
of the attack's robustness. 

5.8.1 Transferability Analysis  
To assess the transferability of the proposed adversarial attack, we performed a transfer attack and assessed 
adversarial samples against a variety of detection algorithms, fused, end-to-end deep learning models, and unified 
models. Observing the results from Tables 2, 3, and 4, it can be noticed that it significantly improved the 
applicability of adversarial perturbations to a variety of detection techniques. The transferability of the proposed 
attack is due to our attack’s ROI specification based on the surrogate model observation. This is because the 
proposed attack exploits weaknesses in the decision-making processes of DNN-based deepfake detectors. The 
aforementioned weaknesses arise due to the complex, multidimensional, and non-linear characteristics of deep 
neural networks, which render them prone to fluctuations in adversarial attacks. 

5.8.2 Explainability Analysis  
To assess the explainability of target models, we utilized a surrogate model to quantify the resemblance between 
heat maps originating from real facial frames and those generated by deepfakes. Based on the output of the 
surrogate model, as illustrated in Figure 2, the heat maps produced emphasize critical information. Under the 
assumption that attention patterns among various DNNs are comparable. Utilizing heatmaps facilitates the 
effective initiation of an adversarial attack against all deep neural networks. Through making use of the proposed 
attack, we successfully redirected the model's focus away from features, leading to misclassification. This 
methodology emphasizes the susceptibility of deep neural networks to adversarial attacks, as it illustrates how as 
an attacker, we can deceive the model into producing erroneous predictions through the manipulation of attention 
patterns.  

5.8.3 Qualitative Analysis  
We conducted a qualitative analysis by comparing the perturbed samples of different attacks as mentioned in 
Section 5 with our proposed attack. Although basic methods such as noise addition, and image blurring can cause 
image disruption, they are frequently ineffective as adversarial attacks when robust models are employed. 
Although these methods may cause some disruptions, they do not possess the deliberate and calculated disruptions 
that are inherent in more sophisticated approaches. Conversely, methodologies such as FGSM and PGD [61] 
exhibit superior effectiveness when it comes to constructing adversarial examples. However, there continues to 
be a desire for straightforward and efficient attacks, particularly in situations where computational resources or 
model complexity limitations are apparent. Manipulating just one or few pixels through One-pixel attacks [18, 
21], and mole attacks introduces localized perturbations, the impact might be limited, and robust models can 
potentially mitigate the effect. It is critical to strike a balance between simplicity and impact when formulating 
practical adversarial attacks that can effectively challenge neural networks. In contrast to the aforementioned 
attacks, our proposed attack is unnoticeable upon observation and exclusively disrupts the facial regions. On the 
other hand, existing attacks are distributed throughout the complete frame sequence, thereby increasing their 
visibility and facilitating their defense. Our method, in contrast to attacks, only perturbs instances within the ROI.  

Figure 6: Deepfake images from the dataset, gamma bright frame, gamma dark frame, FDB-variation perturbed frame, 
proposed FDB attack perturbed frame. 



Table 5: Comparison of the proposed attack with other proposed variants. 

DFDC dataset 
Models 

RNSD [9] CAP[5] Fused [7] SRE [6] Unified [8] 

Before 
Attack Test Acc  89.9 87.9 86.0 88.4 73.0 

After Attack 

Gamma (Bright) 50.3 64.2 57.3 57.3 45.6 

Gamma (Dark) 42.3 57.4 55.7 58.4 43.2 

FDB attack variation 48.9 57.3 55.9 59.9 40.8 

Proposed FDB attack 45.6 51.2 55.4 59.6 39.1 

 

Therefore, in comparison to alternative attacks, our proposed attack attained the maximum success rate across all 
datasets. A visual analysis of our attack, as well as other existent attacks, is depicted in Figure 5. 

5.8.4 Quantitative Analysis  
To analyze the robustness of our attack, we applied Blur, Noise, 1 Pix-DE, 1 Pix-SA, Mole attack, FGSM, and 
PGD attacks to each instance of the test set and created its perturbed instance. It is significant to highlight that the 
attacks were executed across the entirety of the facial frame. All deepfake detectors were utilized in this 
investigation, and each trained subset model was evaluated using perturbed instances. In contrast to our attack, 
the prior attacks were executed on complete images, rendering them perceptible and readily identifiable. The 
computational expense of the differential evaluation one-pixel attack arises from the requirement to assess a 
substantial quantity of candidate pixels. Conversely, the simulated annealing one-pixel attack may necessitate 
multiple iterations to achieve success, as it may be sensitive to the initial starting point of the optimization 
procedure. The PGD and FGSM attacks, on the other hand, focus on manipulating a few selected pixels but are 
not effective because these attacks are computationally expensive. The outcomes depicted in Tables 2-4 indicate 
that the accuracy drop of our proposed attack was the highest compared to the other attacks. Therefore, we assert 
that our method of attack is transferable and can be effectively executed to undermine the current deepfake 
detectors. 

6. Conclusion  
The proposed research has emphasized the susceptibilities of deepfake detection systems to adversarial attacks, 
exposing significant flaws in current approaches. The proposed penetration testing tool has yielded useful insights 
into these vulnerabilities, highlighting the need for more effective detection solutions. It is crucial to improve the 
security and efficiency of deepfake detection technologies to preserve the authenticity of digital media in the face 
of more advanced synthetic content. Future research should give priority to the advancement of deepfake detection 
systems that possess the ability to withstand adversarial attacks. This entails investigating adaptive machine 
learning algorithms that can evolve in response to emerging threats. In addition, the implementation of complex 
security measures and the integration of data from multiple sources could enhance the effectiveness of detection 
systems.  
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