
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321406621

A framework for fall detection of elderly people by analyzing environmental

sounds through acoustic local ternary patterns

Conference Paper · October 2017

DOI: 10.1109/SMC.2017.8122836

CITATIONS

34
READS

786

6 authors, including:

Aun Irtaza

University of Engineering and Technology Taxila

121 PUBLICATIONS   3,775 CITATIONS   

SEE PROFILE

Syed Adnan

University of Engineering and Technology Taxila

53 PUBLICATIONS   737 CITATIONS   

SEE PROFILE

Sumair Aziz

University of Canberra

115 PUBLICATIONS   1,880 CITATIONS   

SEE PROFILE

Ali Javed

University of Engineering and Technology Taxila

186 PUBLICATIONS   4,595 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Ali Javed on 15 May 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/321406621_A_framework_for_fall_detection_of_elderly_people_by_analyzing_environmental_sounds_through_acoustic_local_ternary_patterns?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/321406621_A_framework_for_fall_detection_of_elderly_people_by_analyzing_environmental_sounds_through_acoustic_local_ternary_patterns?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aun-Irtaza?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aun-Irtaza?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Engineering-and-Technology-Taxila?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Aun-Irtaza?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Syed-Adnan-11?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Syed-Adnan-11?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Engineering-and-Technology-Taxila?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Syed-Adnan-11?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sumair-Aziz?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sumair-Aziz?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Canberra?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sumair-Aziz?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ali-Javed?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ali-Javed?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Engineering-and-Technology-Taxila?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ali-Javed?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ali-Javed?enrichId=rgreq-8b12ab1a95fdb6c49adec289a0381dc5-XXX&enrichSource=Y292ZXJQYWdlOzMyMTQwNjYyMTtBUzo3NTg4NzQ1NjI5MTYzNTNAMTU1Nzk0MTIwMzM5MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


A Framework for Fall Detection of Elderly People by 

Analyzing Environmental Sounds through Acoustic 

Local Ternary Patterns 

Aun Irtaza
1
, Syed M. Adnan

1
, Sumair Aziz

2
, Ali Javed

3
, Member IEEE, M. Obaid Ullah

2
 , Member IEEE and  

Muhammad Tariq Mahmood
4
, Senior Member IEEE 

1
Department of Computer Science, University of Engineering and Technology Taxila, Pakistan 

2
Department of Electronic Engineering, University of Engineering and Technology Taxila, Pakistan 
3
Department of Software Engineering, University of Engineering and Technology Taxila, Pakistan 

4
School of Computer Science and Engineering, Korea University  of Technology and Education, Cheonan, Republic of Korea,    

(e-mail: tariq@koreatech.ac,kr)

 

 
Abstract— The elderly people living alone or life of a patient 

face distress situations particularly in case of falling and 

becoming unable to ask for help. Fall in elderly people may result 

in head injury, broken hips, and bones that need immediate 

hospitalization to lower the mortality risk. During the last 

decade, several technological solutions were presented for early 

fall detection but most of them have critical limitations and are 

impeded by several environmental constraints. In this paper, we 

have analyzed the environmental sounds for early fall detection 

utilizing the fact that reflection of pain directly occurs through 

sound. The proposed framework first analyzes the environmental 

sounds by suppressing the silence zones in signals and 

distinguishing overlapping sound signals through hidden Markov 

model based component analysis (HMM-CA). The source 

separated components are then represented by acoustic local 

ternary patterns (acoustic-LTPs) by extending the existing ideas 

of acoustic local binary patterns (acoustic-LBPs). In the proposed 

work, we have also introduced the concept of rotation invariance 

through uniform patterns for audio signals that, arguably, is a 

fundamental requirement for an acoustic descriptor. Once the 

signal representation is completed, we classify the signals 

through SVM classifier. The performance of the proposed 

acoustic-LTP is evaluated against state-of-the-art methods and 

acoustic-LBP. Results clearly evince that proposed method is 

more powerful and reliable in terms of fall detection when 

compared against other methods.    

Keywords— Acoustic-LTP; HMM-CA; Fall Classification 

I. INTRODUCTION  

Population of elderly people of age 65 and above is steadily 

increasing worldwide. As described in [1], the number of 

elderly people can touch the figure of 2 billion by 2050. The 

elderly people, living alone or life of a patient, face distress 

situations particularly when one falls and becomes unable to 

ask for help. Fall in elderly people may cause a life changing 

injury which may severely affect the quality of life. In US 

alone, almost 30% of about 13 million falls per year among 

elderly people result in broken hip and head trauma [2]. The 

delay of 24 hours in surgery  of hip fracture may cause the rise 

of 30-day mortality risk from 7.3% to 8.7% [3]. Moreover, if 

extended time passes without any medication the mortality risk 

further increases [4]. Fall in elderly people can also result in 

the form of other critical diseases like rhabdomyolysis, 

dehydration, pressure sores or hypothermia [5]. The estimated 

cost for such hospitalization is more than $19 billion [6]. 

Hence, the early fall detection is necessary so that the essential 

help can be provided to avoid the critical situations and 

lowering the hospitalization cost. 

In literature, the fall detection for elderly people is 

performed by either wearable devices that use sensing 

technologies mostly based on the accelerometer; or through 

environmental sensors on various locations of a building. The 

selection of the sensing technology has associated cost and 

usage constraint and is highly dependent on the target 

environment [7].  In [8] fall detection was carried-out using 

short-time Fourier transform based accelerometer attached on 

foot with a microphone. In [9] wearable microphone and 

Micro-Electro-Mechanical Systems (MEMS) accelerometer is 

used with a camera. In [10] a tri-axial accelerometer and 

barometric pressure sensors were attached with subject’s waist 

for fall detection. The wearable devices used for fall detection 

become a cause of inconvenience and obtrusiveness for the 

patient. Moreover, the intrusion and fixed relative relations 

with person may also cause frequent disconnection of such 

sensors along with continuous battery recharge and 

vulnerability to break make these wearable devices less 

desirable choice for the elderly people.  

To overcome these limitations of the wearable fall detection 

solutions, research also emphasized on the non-wearable 

solutions of fall detection. In [11] a Doppler radar-based fall 

detection method was proposed to recognize human activity. 

In [12] the fall detection was performed using Radar’s 

effective non-intrusive sensing modality by detecting the 

human motion. In [13] Wavelet transform was used to detect 

human falls using a ceiling mounted Doppler range control 
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radar. The major drawback of the Doppler radar based systems 

is their limited application due to the directional sensing 

capabilities. The radar based systems need the target in front 

range with static room settings [14]. The microwaves 

generated by the radars also have the severe health and 

behavioral hazards that make these methods less productive 

[15]. 

The acoustic analysis of environmental sounds provides an 

effective alternative to the drawbacks of both wearable and 

non-wearable solutions. Since non-wearable devices work as 

passive receivers with wider range, durability, and health 

related hazards, therefore, researchers have shown 

considerable interest in fall detection methods by monitoring 

patient’s sounds which truly reflect pain. In [16] acoustic 

analysis was proposed for fall detection using the MFCC 

features and nearest neighbor (NN) classifier. In [17] daily 

sound recognition was performed using the MFCC, Linear 

Predictive Coding (LPCs) and non-spectral features. Main 

drawback of this technique is the selection of many irrelevant 

features which also negatively impact the classification results 

[18].  Another drawback is the inherent complexity that makes 

the combination less suitable for implementation of real-time 

systems.  In [20], MFCC features were classified through NN, 

SVM, and Gaussian mixture classifiers for fall detection. The 

most common reasons to use MFCCs for fall detection are 

lower dimensional features and improved classification 

accuracy [21]. However, during the audio signal acquisition, 

several environmental factors affect this process and induce 

noise in the collected sound data. Various operating conditions 

also influence the extracted MFCC features by deteriorating its 

quality. These limitations can cause mismatch when MFCCs 

are used for classifier training and recognition of the fall event 

[19]. MFCC feature extraction is also a computationally 

complex process and consequently becomes difficult to 

implement on hardware devices. To increase the MFCC 

performance different feature extraction techniques are 

combined with MFCC that increase hardware implementation 

cost. Due to these reasons, more effective feature extraction 

techniques compared to MFCCs are required that ensure better 

classification performance for critical applications like fall 

detection, and also lower hardware implementation cost. 

To address the limitations of MFCC based fall detection 

mechanisms, in this paper, we propose a novel feature 

extraction scheme for acoustic signals through acoustic Local 

Ternary Patterns (acoustic-LTP) and SVM classifier by 

suppressing low frequency signal periods through hidden 

Markov model based component analysis (HMM-CA). LTP 

feature descriptors were originally proposed for face 

recognition [22] and these features are never described for 

audio signal representation that is mainly 1-D in nature. Hence, 

our contribution through this research work is to present a 

novel audio representation scheme using acoustic-LTP for 

environmental sound classification and fall detection. In this 

paper, we have also introduced the concept of rotation 

invariance for audio signals as a novel concept by arguing that 

rotation invariance is also a fundamental requirement for audio 

descriptors. Therefore, the hypothesis for this research work is 

to evaluate the performance of the proposed acoustic-LTP 

based feature extraction scheme and to compare it  

against existing state-of-the-art audio representation 

mechanisms like MFCC, linear predictive coding (LPC), and 

acoustic-LBP for fall detection by classifying environmental 

sounds. 

II. PROPOSED METHOD 

In this paper, we have analyzed environmental sounds for 
possible fall detection. The key contribution of this paper 
comes in the form of feature extraction scheme through 
acoustic-LTP over the source separated components of the 
audio signals through HMM-CA. Proposal of a new audio 
signal representation scheme is entailed by the requirement of 
precision in classification, which has direct correlation with the 
reliability of the signal representation mechanism, particularly 
in case of critical applications like fall detection. Once the 
source signals are represented by the acoustic-LTP, 
classification of feature vectors is performed through SVM and 
if a signal is classified as a fall event or an event associated 
with fall, like scream, we conclude occurrence of fall. To 
perform the targeted acoustic analysis for fall detection, we 
have also proposed HMM-CA that suppresses the low 
frequency signals (e.g. silence periods) and ensures that 
learning algorithm never remains continuously busy. The 
architecture of the proposed method is presented in figure 1. 

A. Problem Formulation 

Given an audio signal  ( )

1

[ ]
fi N

i

i

Y V n




  with 
f

N frames 

( )
[ ]

i
V n of frame length 

f
L  fall detection algorithm segments 

the audio signal into non-overlapping sources 𝑌𝑠(described in 

(2)) with 𝑁𝑠 frames where S represents distinct signal sources. 

For effective discrimination between different non-harmonic 

auditory environments, source signals are required to be 

represented effectively. Therefore, a more principled approach 

for environmental sound representation is required to 

effectively identify the human fall events through reliable 

classification. 

(a) (b) (c)  
Fig. 1. Circular symmetric neighbor sets for different (P, R) (a) (P, R) = 

(8,1), (b) (P, R) = (16,2), (c) (P, R) = (24,3) 
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B. Hidden Markov model based component analysis (HMM-

CA) 

Given the frame sequence Y , and to find frame sequences 

having acoustic events only, we find frame sequences that 

maximize posterior probability of frames 

((1) ( 2 ) )
( , , ..., )[ ] [ ] [ ]

N f
V V V Vn n n given the observations

1 2
( , , ..., )[ ] [ ] [ ]

T
O O O On n n : 

arg max ( | ) arg max ( | ) ( )
V V

V P V O P V O P V          (1) 

Where ( | )P V O  is the HMM model [23] for acoustic and 

silence events for given signal with left to right state transitions 

and 2 emission states. Observations 𝑂  are composed of 

acoustic-LTP components. Baum-Welch algorithm [24] is used 

to train the model for silence and acoustic events as per 𝑂 

observations and the original HMM model. To compute the 

posterior probability of each observation, Viterbi algorithm is 

used [25]. For acoustic events posterior probability is larger 

than the posterior probability of silence period. Therefore, 

frames belonging to the acoustic event have higher posterior 

probability for acoustic state and are labeled as 1. The frames 

having higher posterior probability of the silence state 

represent silence frames and are labeled as 0. We detect the fall 

event in the frames that are labeled as acoustic event by first 

segmenting the overlapping sources through the FAST-ICA 

algorithm [26]. The FAST-ICA algorithm returns us segmented 

acoustic components as: 

 ( )

1
[ ]

si N
i

s s
i

Y V n



        (2) 

 

Where 𝑌𝑠 represents the segmented acoustic events that are 

further analyzed for possible fall detection. 

C. Acoustic Local Binary Patterns (Acoustic-LBP) 

As described in [27] acoustic-LBP is a fast and 

computationally inexpensive mechanism for signal 

representation that distinctively marks certain signal features. 

The signal features in the form of linear LBP codes can be 

adopted for signal segmentation and signal thumb-impression 

generation. The LBP examines the neighborhood of data 

samples from a signal and assigns an LBP code to each center 

sample after thresholding them against the neighboring 

samples [27]. Let 
( )

[ ]
j

s
V n  be the central sample in the 

samples window with 𝑃 + 1 elements in audio signal 𝑌𝑠  for 

𝑗 = [
𝑃

2
: 𝑁𝑠 −

𝑃

2
]. The acoustic-LBP can be defined as: 

 

 
1

2

0
2

[ ] [ ] 2
2

[ ]

... 2[ 1] [ ]

P k
s s

P s P
kk

s s

P
S V j k V j

LBP V j

S V j k V j





  
  

  
 

 
 

    

   



  



              (3) 

Where sign function S[.] is given by: 

 

1, 0

0, 0
[ ]

s

s

for V

s forV
S V








 




     (4) 

In LBP, sample ][
s

V j  serves as a threshold for the 

neighboring samples, and sign function S[.] transforms the 

difference between [ ]
s

V j  and neighborhood as a P-bit binary 

code. The binomial weights are then multiplied to LBP code 

and summed to generate LBP value for the sample [ ]
s

V j . 

The LBP locally describes a sample using neighborhood 

differences. For a constant signal these differences cluster near 

zero whereas at peaks and plateaus the difference is large. The 

LBP codes are used to described the local patterns as: 

  
2 2

[ ] ,P Pk P sj N
H LBP V j k

  
   (5) 

Where k=1…n, and n describes histogram bins corresponding 

to each LBP code and 𝛿(𝑖, 𝑗) is Kronecker delta function. 

Acoustic-LBP features threshold exactly at the central sample, 

therefore, they are sensitive to noise. Particularly, at edges 

where the difference in some directions is larger than other 

directions [27]. Even exposure to small noise make results of 

acoustic-LBP descriptor unreliable. Another drawback of 

acoustic-LBP is its inability to address the concept of rotation 

for linear signals. Due to this reason, same expressions with 

different sounds have varying representations. Consider a 

scream that sounds “AAAH” against “HAAA”, acoustic-LBP 

generates different representations for both sounds. The 

foremost reason behind this disagreement is the signal 

representation mechanism for linear signals that do not 

consider the concept of circularity that serves as a basis for 

2D-LBPs [28]. In this paper, we argue that rotation invariance 

is an equally important concept for linear signals as that of 2D 

counterparts to represent various forms of similar events. The 

feature extraction scheme we introduce is immune to noise 

and is based on the concept of circularity with uniform 

patterns that make it rotation invariant as well. Hence, signal 

representation occurs in a much precise way that significantly 

improves classifier performance for fall detection.  

 
Fig. 2. Architecture of the proposed fall detection framework 
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1) Circular Mapping for Linear Signals 

For central sample [ ]
s

V j   in the samples window with 𝑃 + 1 

elements in audio signal 𝑌𝑠  and 𝑗 = [
𝑃

2
: 𝑁𝑠 −

𝑃

2
] ; circular-

wedge can be defined by first converting linear signal pattern 

into squared pattern with respect to the order √𝑃 + 1 

elements. Suppose coordinate of the sample [ ]
s

V j  is (0,0), 

coordinates of local neighborhood 𝑈𝑃 (p= 1,…,P) is given by 

(−R · sin (2πp/P), R · cos (2πp/P)) [29]. Figure 2 shows three 

examples of circularly symmetric neighbor sets for different 

configurations of (P, R). 

D. Acoustic-Local Ternary Patterns (Acoustic-LTP) 

Once the circular representation of signal with respect to 

[ ]
s

V j  is generated, a three-valued code called acoustic-LTP 

is defined. For this, we compute signal magnitude difference 

between [ ]
s

V j   and its surrounding neighbors 𝑈𝑃 . Signal 

values in the range of width  ±𝑡ℎ  around [ ]
s

V j   are 

quantized to zero. Values above [ ]
s h

V j t are quantized to 1 

and below [ ]
s h

V j t are quantized to -1. Hence, a three-

valued function 𝑠′ is given by: 

 

 

 

1, [ ] 0

, [ ], 0, [ ] [ ]

1, [ ] 0

P s h

P s h s h P s h

P s h

U V j t

S U V j t V j t U V j t

U V j t

   

     

   

  
 


       


 
 

  (6) 

 , [ ],
P s h

S U V j t  operator (6) represents acoustic signal by 

three valued ternary pattern that is further split into 𝑆′𝑢𝑝𝑝𝑒𝑟 

and 𝑆′𝑙𝑜𝑤𝑒𝑟. In 𝑆′𝑢𝑝𝑝𝑒𝑟 only +1 values are retained and all 

other values are replaced with zero as described in (7): 

 
1, ( , [ ], 1

, [ ],

0,

P S h

upper P s h

for S U V j t
S U V j t

otherw ise

        



               (7) 

Similarly, in  , [ ],
lower P s h

S U V j t , -1 values are retained as 

1 and all other values are replaced with zero as described in 

(8): 

 
1, ( , [ ], 1

, [ ],

0,

P S h

low er P s h

for S U V j t
S U V j t

otherw ise

  
 

    



               (8) 

Hence, acoustic-LTP can be represented as (9): 

 

1 1

1 1

1 1

1 1

[ , ] [ ] 2 ||

... [ , ] [ ] 2

[ ]

i k

l

upper s s

i k

P i k

l

low er s s

i k

s

S V i k V j

Acoustic LTP

S V i k V j

V j

 

 

 

 

 
    

 
 

 

   
   

 

 

 (9) 

For rotation invariant audio signal representations, we obtain 

uniform patterns by obtaining the U value of acoustic-LTP as: 

 

   

   

1

1

1

1

...

[ ] [ ]

( )

[ ] [ ]

P S S

PP

P S P S

P

S U V j S U V j

U Acoustic LTP

S U V j S U V j







 

 

 

 

  

    

 

   

 

(10

) 

 Where S  is the representation of both 
upper

S  and 
lower

S  . The 

U value of an acoustic-LTP can be defined as the number of 

bitwise transitions in the pattern and refers to uniform 

appearance i.e. with minimal discontinuities [30]. It is well 

established in research that uniform patterns with (U≤ 2) are 

the only fundamental patterns that contain rotation invariant 

attribute [30]. For signal representation, we consider uniform 

patterns as specific bins with P(P-1) +3 possible entries [30] 

and all non-uniform patterns are grouped under a 

“miscellaneous” label. So, a locally rotation invariant pattern 

can be described as: 

   1

1

[ ] 2

1

P

P S p

riu

PP

S U V j if U Acoustic LTP

Acoustic LTP

P otherwise





   

 












           (11) 

After identifying rotation invariant acoustic-LTPs local 

patterns are described as: 

2 2

( ( [ ]), )
riu

P Pk P Sj N
H Acoustic LTP V j k

  
     (12) 

Where k={1,…,n}, and n describes histogram bins 

corresponding to rotation invariant acoustic-LTP codes and 

𝛿(𝑖, 𝑗) is Kronecker delta function. 

E. Classification 

Once signal representation is done, we classify signal as fall 

or non-fall event by training SVM classifier.  

III. EXPERIMENTS AND RESULTS 

The system evaluation experiments are performed on two 

standard benchmarks: a) real world computing partnership 

(RWCP) sound scene dataset [31], and b) daily sound dataset 

[32].  

RWCP dataset contains environmental sounds that were 

recorded in an anechoic chamber through microphone and 

DAT recorder at 48 kHz [31]. The sounds were later down-

sampled to 16 kHz. RWCP dataset contains a total of 9722 

instances and 105 different non-speech dry source sounds. The 

dry source sounds are the sounds that are free from room 

acoustics [31]. Daily sound dataset contains all non-speech 

sound files in WAV format with sampling frequency of 16 

KHz [32]. The sound files present in the dataset were 

downloaded from internet or recorded using a microphone 

[32]. The dataset comprises of 1049 sound files grouped into 

18 different sound classes.  
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For fall detection experiments, we have recorded 100 fall 

sounds through human subjects with associated events e.g. 

screaming and object falling like cup breaking etc. The fall 

events were recorded in a rectangular room measuring 7m x 

2m with carpeted floor. We have particularly selected night 

time for experiments, so that recorded sounds have minimum 

amount of external interventions. The fall events were 

performed at a distance spanning from 1m to 6m from the 

microphones with different angles in order to reproduce 

realistically different fall patterns. The fall events comprise of 

falls on hands, sides, back, and knees. The fall sounds were 

then merged with sound files present in RWCP and daily 

sound repositories using Audacity software to mimic real 

world environments. The isolated sound files were used for 

classifier training purposes whereas merged sound files were 

used for evaluation purposes of proposed framework. For 

evaluation of this work precision, recall, F1-score, accuracy, 

and error rates are used. 

A. Fall Detection Evaluation  

As aforementioned, for fall detection evaluation we have 

extended two standard repositories i.e. RWCP dataset, and 

daily sound dataset with fall events. Therefore, for validation 

of this work, we have written a computer simulation that 

randomly draws fall and non-fall classes for 50 times. Due to 

severe imbalance between number of samples in both classes, 

SVM hyperplane biases towards non-fall class due to more 

training examples. Therefore, in all 50 runs, fall class contains 

all 100 audio samples whereas random selection is applied 

only over non-fall class to also have 100 samples to represent 

various environmental events. Once training set is generated 

we randomly select 70% of the data for training purposes and 

remaining 30% of the data for testing purposes. For 

implementation of this work and acoustic-LTP based feature 

extraction, we have used threshold value of 0.0005. The 

evaluation criteria described earlier is then applied over 

classification output to measure efficacy of the system by 

reporting average results. 

B. Fall Detection Results  

For fall detection evaluation, we have compared our method 

against state-of-the-art audio representation schemes i.e. 

MFCC [19], acoustic-LBP [27], and LPC [33]. From results 

presented in figure 3 and 4, it can be observed that the 

proposed method has highest recall, accuracy, F1-score rates, 

and lowest error rate against comparative schemes.  

 
Fig. 3.  Fall detection evaluation over RWCP dataset 

C. Multiclass Evaluation 

To unveil the capabilities of the proposed acoustic-LTP as a 

reliable audio descriptor, we have broadened evaluation scope 

by performing feature descriptor validation over multi-

category 

problems. So that classification results over multiclass 

problems confirm robustness of the proposed feature 

descriptor. As shown in figure 5 proposed methodology 

achieves 97.41% accuracy on RWCP dataset with one-against-

all classification settings for SVM classifier. Whereas, with 

similar experimental settings MFCC achieves 83.9% accuracy 

on RWCP dataset,  

 
Fig. 4.  Fall detection evaluation over Daily sounds dataset 

IV. CONCLUSION 

In this paper, we have provided a framework for automatic 

fall detection for elderly people by analyzing the 

environmental sounds. Our fall detection framework has 

attributes of powerful audio extraction and representation 

mechanisms through HMM-CA, and acoustic-LTP. The 

proposed novel audio representation mechanism is robust 

against rotation attacks that we have investigated in this paper. 

Performance comparison against state-of-the-art methods 

reveals the reliability of the proposed method in terms of fall 

Fig. 5. Confusion matrix analysis over RWCP 
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detection to enhance the quality of life for elderly people 

living an independent life. 
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