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1 Introduction 

The best ways to communicate among human beings are speaking and writing. They 
communicate through natural languages, and the written form of language is called 
text. The vocal communication is done using speech that is easy to understand for 
the listeners. Speech or natural language processing techniques aim to develop a 
system that can analyze, generate, and understand human languages. Before the 
computer systems were able to understand only machine languages, however, with 
the advancement in machine learning and deep learning algorithms, the systems 
have become so powerful that they can process the statement in written or spoken 
form such as Google Search Engine [1]. 

Advancements in Internet of Things (IOTs) have made ways for the researchers 
to work for development of smart systems that aid people suffering from different 
health issues. Various health-care applications have been developed [2–5] to aid  
the smart technologies. One of the most important applications is artificial speech 
synthesis based-on various machine learning [6–8] techniques. 

The computational models for human language processing utilize the human cog-
nition in machines i.e. how humans store, and process the text. Due to enhancement 
in models, computer systems have become able to speak just like humans [9]. The 
artificial intelligent systems generate waveforms from an input text to synthesize 
speech. The input can be in any natural language form and the system may comprise 
of several phases for the conversion from text to speech. There exist various 

R. Mahum (!) · A. Irtaza 
Computer Science Department, University of Engineering and Technology, Taxila, Pakistan 
e-mail: rabbia.mahum@uettaxila.edu.pk; aun.irtaza@uettaxila.edu.pk 

A. Javed 
Software Engineering Department, University of Engineering and Technology, Taxila, Pakistan 
e-mail: ali.javed@uettaxila.edu.pk 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
S. A. Parah et al. (eds.), Intelligent Multimedia Signal Processing for Smart 
Ecosystems, https://doi.org/10.1007/978-3-031-34873-0_ 12

289

mailto:rabbia.mahum@uettaxila.edu.pk
mailto:rabbia.mahum@uettaxila.edu.pk
mailto:rabbia.mahum@uettaxila.edu.pk
mailto:rabbia.mahum@uettaxila.edu.pk
mailto:aun.irtaza@uettaxila.edu.pk
mailto:aun.irtaza@uettaxila.edu.pk
mailto:aun.irtaza@uettaxila.edu.pk
mailto:aun.irtaza@uettaxila.edu.pk
mailto:ali.javed@uettaxila.edu.pk
mailto:ali.javed@uettaxila.edu.pk
mailto:ali.javed@uettaxila.edu.pk
mailto:ali.javed@uettaxila.edu.pk


290 R. Mahum et al.

Fig. 1 The basic architecture of TTS synthesizer 
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Fig. 2 Types of speech synthesis 

applications of TTS synthesizers such as people with speaking difficulties are able 
to communicate better with those listeners who may not be able to understand 
sign language. Moreover, in educational background, TTS synthesis based systems 
can teach 365 days a year without any break. Furthermore, the applications can 
be programmed for any specific task i.e. for spell correction and pronunciation 
teaching. TTS synthesizers may be installed in security systems such as in warning 
or alarm systems, synthesized speech can give accurate information. Besides the 
positive uses of TTS synthesis systems, one drawback of these systems is to get 
used by hackers. The hackers may generate spoofed speech to fool the Automatic 
Spoofing Verification systems (ASV), which create a big threat for the community. 

The basic architecture of TTS synthesizer is shown in Fig. 1. 
There exist various types of speech synthesis methods as shown in Fig. 2. 
The remaining chapter is organized as: Sect. 2 demonstrates some existing 

techniques for TTS synthesis and detection, Sect. 3 demonstrates the applications 
of TTS synthesizers, Sect. 4 refers to our proposed TTS synthesizer based on 
reinforcement block using encoder-vocoder. Furthermore, Sect. 5 demonstrates 
some experiments and in the end, conclusion of the chapter is presented in Sect. 6.
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2 TTS Synthesis and Detection 

There exist three types of modalities i.e., replay attack (RA), TTS, and voice cloning 
(VC) to synthesize speech. TTS and VC comprise of regenerated content and 
more similar to natural speech than RA. In ASV spoof 2019 competition, logical 
access (LA) and physical access (PA) tasks were introduced for synthesized speech, 
and RA for the development of ASV systems respectively. Various researchers 
have proposed different approaches [10–12] for the spoofing detection including 
all modalities. Some algorithms exist based on machine learning techniques to 
discern the audios based on data driven and knowledge focused countermeasures 
[13]. However, in traditional machine learning algorithms, hand crafted features 
extraction is performed which is time consuming task, moreover they may ignore 
the deep features underlying the audios spectrograms [14]. With the improvement 
in domain of convolutional neural networks (CNNs), some methods have been 
proposed based on deep layers such as in [15], an end to end algorithm employing 
raw waveforms as input is developed. Chintha et al. proposed a recurrent CNN 
structure to detect spoofed (fake) audios [16]. Moreover, a lightweight CNN has 
been employed by [17], namely LCNN utilizing softmax loss function to detect 
anti spoofed attacks. Furthermore, various combinations of detecting systems have 
been tested along with ResNet [18], and explored with other classifiers as well 
for better performance [19, 20] in spoofed speech detection. In [21], a model was 
employed based on an end-to-end ensemble method to learn the fusions of various 
detection systems. Even though, the performance of these proposed algorithms was 
satisfactory, however there exist an issue of generalization for unseen attacks in the 
models, and requirement of high computational resources such as time and memory, 
therefore it is required to introduce an efficient and robust system that can carry out 
detection of fake audios from any source. 

From last two decades text to speech systems have become so powerful that are 
capable to generate a realistic voice after training of limited audio samples from 
target speakers [22]. Therefore, it is a huge threat for ASV systems as they may be 
attacked by the naturalness of the speech generated [23]. The applications that can 
protect the ASV systems from the spoofed audio attacks are called deepfake speech 
detectors. Thus, various machine learning and deep learning based works have 
been proposed in various domains [6–8] including the detection of forged speech. 
In [24], a SVM based classifier has been utilized as ASV employing Gaussian 
Mixture Model (GMM). They attained equal error rate (EER) as 4.92%, and 7.78% 
on the 2006 NIST for speaker identification core test. The authors have proposed 
the GMM, and a Relative Phase shift with Support Vector Machine (SVM) for 
the synthetic speech detection to minimize the weaknesses of speaker verification 
systems. Moreover, a detailed comparison of Hidden Markov Model (HMM), and 
DNN has been performed for the detection of spoofed speech [25]. In [26], proposed 
model employs the spectrograms in image form as input to CNN, thus forming a 
base of audio processing using images. In [27], various features descriptors have 
been used such as Mel Frequency Cepstral Coefficient (MFCC), spectrogram, etc.
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and the effect of GMM-UBM on the accuracy has been analyzed. It is concluded 
that the combination of different feature descriptors gives better result in terms of 
EER. Chao et al. [24] utilized SVM to discern the real speeches from the fake 
recordings of the claimed man. Similarly, in [28] Chao has employed two core 
methods such as Kernel Fisher Discriminant (KFD) and SVM to verify speakers 
and attained better results as compared to their previous work based on GBM and 
UBM method. Moreover, to decline the computational cost of the polynomial kernel 
SVM by exchanging the dot product among two utterances with two i-vectors [29] 
was used. Furthermore, authors applied feature selection technique attaining 64% 
dimensionality reduction in features having EER of 1.7% [29]. Whereas, Loughran 
et al. [30] overcame the issue of imbalanced data (where the one class samples are 
greater than the other) utilizing Genetic algorithm (GA) with adjusted cost function. 
Malik et al. [31], developed a system for audio forgery detection based on acoustic 
signatures of environment by investigating the integrity of audio. However, these 
proposed models failed to address synthesized audio content with high precision. 

3 Applications of the TTS Synthesis 

The intelligent speech synthesizers have widespread domain of usage in develop-
ment of human-machine interaction systems [32, 33]. Moreover, the systems based 
on TTS synthesizers are becoming more affordable to common people for daily use 
[34]. Some important applications of TTS synthesizers are given below. 

3.1 Speaker 

TTS synthesizers are widely used for the people who have speech difficulty due 
to disability, therefore they use speech synthesizers as a speaker to communicate. 
The implication of TTS synthesizers in small devices help them to improve their 
lifestyle without using sign language. Moreover, the English language is utilized as 
a medium in the most of these devices by service providers. 

3.2 Screen Reader 

The TTS synthesizers may be employed as screen readers for the people who have 
reading difficulties. Moreover, the people with visual impairment are not able to 
read screens from a specific distance, therefore TTS synthesizers work as an aid for 
these type of people. These screen readers are developed for various languages such 
as Urdu, Hindi, and English. They are very helpful for the people having dyslexia.
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The TTS based screen reader may be used as listening any document while working, 
cooking or driving. The old age people can also use them if they have vision 
issues without any dependency. Various screen readers are available developed 
by different companies as web portals such as the IBM TTS (https://www.ibm. 
com/watson/services/text-to-speech/), and VoiceReader (https://www.linguatec.de/ 
en/text-to-speech/voice-reader-home-15/). However, these screen recorders are 
mostly based on foreign languages, and lack Urdu language as a medium. Therefore, 
an effort is required to be done for Urdu screen recorder. 

3.3 Language Teaching 

The TTS synthesizers may be combined with a learning algorithm to develop helpful 
systems to learn new language by listening the words pronunciations. For example 
Capti-Voice is a TTS synthesizer system based on cloud platform supporting various 
foreign languages. However, there is still room for general language learning and 
teaching that may be able to teach and educate all existing natural languages. 

3.4 Multimedia Applications and Telecommunication 

The combination of speech synthesis and speech identification provide a significant 
user interface for mobile devices. The latest applications of TTS synthesizers 
include multimedia domain and internet search engines where a person is able 
to interact in his native language. The synthesized speeches are employed in call 
inquiry systems as well. Moreover, people who are unable to understand English 
language become able to understand the scenario in their native language using 
various TTS synthesized applications. 

3.5 Entertainment 

The synthesized speech is widely used in various games and talking robots or toys. 
Initially, the voice was not of good quality in talking calculators, however it has 
been improved in various 3D applications i.e. talking heads. Aiming to improve the 
learning process in kids, TTS synthesis can be incorporated in kid’s toys easily. 
The IBM TTS [35] also provides the services for interactive toy development for 
kids. However, those toys mostly understand or speak English language which is a 
big challenge for illiterate people who are unable to understand English language. 
Therefore, the work is required for TTS synthesizers which can generate audios of 
different languages in toy industry.
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3.6 Human-Machine Interaction 

Various computer-machine interactive systems such as kiosks and automated tellers 
employ TTS synthesizers. Moreover, TTS systems may be used in alarms due to 
more accurate information delivery through TTS synthesis. The response due to 
warning speech is faster instead of warning light or signal from different room or 
place. Additionally, the activity log of printer devices can be heard on connected 
computer. However, all these applications mostly employ English language only. 

3.7 Other Applications 

Other than above-mentioned applications, the TTS synthesizers have been used in 
browsing, as reader in mails and SMS, dictionary, pronunciation, and PDF readers. 
Although, all of these applications use English language, however the work is yet 
to be done for other natural languages as well. The browser plug-ins and SMS 
reader application on android exist for Indian languages as well. During the last 
decade, the communication methods have been formed for 3 dimensional audio-
visuals techniques. The vast applications of speech synthesis in different domains 
bring more funds and ideas. TTS synthesizers may also be employed in language 
interpreters, or talking mobile devices. 

4 The Proposed Solution 

Deep learning architectures are composed of various layers such as input, hidden, 
and classification layer. These hidden layers have various types i.e. convolutional, 
batch normalization, pooling, activation etc. The deep learning models extracts 
features utilizing various filters convolving over the input images. Moreover, when 
the filters are convolved over all the data then feature map is formed. These 
feature maps are reduced in dimensions employing pooling layers minimizing 
the computational power of the system. These feature maps can be fed again to 
convolutional layers repeating the above steps again. Numerous applications exist 
for various purposes such as facial feature recognition [36], speech identification 
[37], and emotion detection [38]. The basic architecture of deep network is shown 
in Fig. 3. 

There exist various possibilities for flow of data in TTS synthesizers such as 
shown in Fig. 4. 

Our proposed TTS synthesizer, consists of four different trained CNNs such as: 
(1) An encoder that generates a feature vector of speech from dataset [39], (2) A 
synthesizer that predicts a mel-spectrogram from grapheme sequences, conditioned 
on the vector from speaker embedding [34], (3) A Vocoder based on autoregressive
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Fig. 3 The architecture of Deep network 

Fig. 4 A taxonomy of data flow from character to waveforms 

WaveNet that generates the waveforms from spectrograms [40], (4) an additional 
RL block. The RL block consists of a neural network and make our proposed TTS 
model an agent which learns on the basis of reward. The accuracy of the network is 
computed and considered as a reward to give feedback to the main model comprising 
of Encoder, Synthesizer, and Vocoder.
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4.1 Dataset 

In the first phase of our proposed idea, we gathered data for English language from 
[41] i.e. LibriSpeech. The dataset comprises of 1000 hours having 16,000 Hz read 
English speech. The data was gathered from the LibriVox project’s audio books. For 
French language based synthesis, we employed the SIWIS French speech synthesis 
database [42] having speech recordings of high quality along with text files. The 
database has been designed mainly for TTS synthesis systems. There exist 9750 
utterances attained from numerous sources i.e. parliament speeches and speech 
talent by French professionals. The database is available freely, and comprised of 
10 hours of speech in total. Moreover, for Chinese TTS synthesis, we employed 
Mandarin Chinese Speech Corpus [43]. It is comprised of 30 hours of annotated 
speeches. The speeches were collected using a single carbon microphone, and 
mostly participants were young speaking Mandarin with fluency. 

4.2 The Proposed Encoder 

The encoder is employed to form a condition for synthesizer block on a speech 
input by dataset. For the good generalization of the model, feature representations 
from various speakers are essential to capture without considering the background 
noise and phonetic content. These requirements are attained utilizing a speaker-
discriminative technique that is trained employing a speaker verification task 
independent of text. We utilized [39], a very reliable neural network for the speaker 
verification. This network matches log mel-spectrograms sequentially attained 
from the speeches having an arbitrary length to an embedding vector of fixed 
dimensions, known as d-vector [44, 45]. The network’s training is optimized based 
on generalized end-to-end loss for speaker verifications, so the same speaker’s 
embedding exhibit the high similarity between cosine, whereas varying speaker 
utterances are far apart in embedding space. The training data utilized for the 
network comprises of speech that are segmented as 1.6 seconds audios having 
corresponding speaker identity labels. The mel-spectrograms of 40-channel are fed 
to the network comprising of a 3 LSTM layers with 768 cells, each individual is 
followed through a projection to 256 dimensions. The last embedding is produced 
using L2-normalization of the output at top layer in the final frame. Moreover, 
through the inference, an utterance of arbitrary length is divided into 800 ms 
windows, overlapping by half (50%). 

The network get trains for each window, and the outputs are combined to com-
pute average, and normalized for final utterance embedding formation. However, 
the encoder network was not directly optimized during training that could extract 
features relevant to speaker identification.
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Fig. 5 The proposed model’s architecture 

4.3 The Proposed Synthesizer 

In this section, we discuss the synthesizer’s network which is based on Tacotron 
2 architecture [34] using recurrent sequence to sequence model for supporting 
multiple speakers as described in [46]. At each time step, the synthesizer encoder’s 
output is combined with an embedding vector. We analyzed that passing embedding 
to an attention layer as shown in Fig. 5, is better and network converges significantly 
across multiple speakers. We trained synthesizer over target audios and pairs of 
text transcripts. We mapped the text to phonemes at the input, which lead to 
improved pronunciation of difficult words and fast convergence. The proposed 
network is trained in a transfer learning manner, utilizing a pre-trained encoder 
(frozen parameters) to extract embedding from the target audios such as the target 
speech should be same to the speaker’s reference signal. The features from target 
spectrograms are extracted from 50 ms windows along with 12.5 ms step, passed 
through 80 channel mel-scale filter bank followed by logs compression of dynamic 
range. We improved [34] by applying augmentation of the L2 loss on the computed 
spectrogram with an additional L1 loss. We concluded that the combined loss is 
more robust towards noisy training data. Moreover, we didn’t employ an additional 
loss term for speaker embedding as in [47]. 

4.4 The Proposed Vocoder 

We employed autoregressive WaveNet [40] vocoder sample-by-sample to transform 
the mel-spectrograms generated by synthesized network into time-domain wave-



298 R. Mahum et al.

forms. The architecture applied for the proposed vocoder is same as [34] comprising 
30 dilated convolutional layers. The proposed network is not directly conditioned 
on the encoder’s output. The mel-spectrograms generated via synthesizer network 
extract all of the details for high quality synthesis of various voices, which allow a 
vocoder to act as multi-speaker voice generator based on training data. 

4.5 The Proposed RL Block 

The RL block and our proposed model works together as an agent. The parameters 
of the proposed model are known as policy. Furthermore, the purpose of the policy 
is to predict the audio features at each instant. The features of speech describe 
the actions of agent. After the features prediction, the reward value is computed 
which gives feedback on accuracy. We employed policy gradient method for back-
propagation that optimizes the model for maximum reward gain. As shown in Fig. 5, 
left block is TTS synthesizer based on Tacotron. Moreover, we utilized Griffin-Lim 
[48] technique for rebuilding the speech signals. Our proposed text editor is based 
on same structure as Tacortron2 that take input of text embedding and form output 
for encoder embedding. Whereas, the decoder based on attention module takes the 
output from encoder and embedding as input. Then, decoder predicts frame by frame 
speech features. 

Reward The reward function is utilized for the computation of more natural speech 
that is based on a network as shown in Fig. 5. The network consists of a CNN 
layer, an attention layer, BiLSTM layer, a fully connected layer (FC) and softmax 
layer. The extracted features proved better efficiency for the natural speech synthesis 
using a neural network. The network takes the mel-spectrogram first as input, and 
then give output in the form of constant size latent output. Then, BiLSTM takes the 
temporal information and transform it into modified form. Whereas, an attention 
layer gets training for each frame’s weight. 

Let us suppose an input is xi and the speech is ỳi having speaker type as ti, and 
the goal is to form a natural speech yi having desired emotion lyi. To update the 
model, we employed accuracy as the reward value. To form the end of sequence 
(EOS) token, the proposed RL network is employed to evaluate how accurate a mel-
spectrogram feature yi matches with the original speech label. The probability p i for 
target speech with emotion lyi of yi is computed as below: 

pi = RL (lyi | yi ; Ჵ), (1)
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Here, represents the parameters of RL network, and the value of probability varies 
from 0 to 1. The RL reward is computed as: 

.R = N

K
=

∑K
i=1 1 (pi > !)

K
(2) 

Here, R is reward of spectrum features yi. The reward value also varies from 0 to 
1. K refers the size of sample, and ! is a threshold number that is set to 0.5. N 
represents the total samples. 

5 Experimental Evaluation 

The generated speeches from our proposed TTS synthesizer are evaluated using 
Mean Opinion Score (MOS) for similarity with real speech and naturalness, based 
on subjective listening tests. The MOS score varies according to Absolute Category 
Rating scale [49] from 1 to 5 such as Excellent, Good, Fair, Poor, and Bad 
respectively. In total, 100 participants were included to assign MOS for naturalness 
and similarity, separately from 1 to 5 including 80 males and 20 females. 100 audios 
for each language, ranging from 20 to 35 seconds were generated and reviewed 
by participants. Then, the average score was computed to evaluate the quality of 
the synthesized audios. We attained 4.67 average MOS for similarity and 4.70 for 
naturalness for synthesized speech through our proposed model that is a significant 
number. More particularly, we achieved best MOS for naturalness as 4.75 and MOS 
for similarity as 4.71 for Chinese language as shown in Table 2. 

5.1 Environmental Setup 

We performed the experiments using a GPU NVIDIA card i.e. GEFORCE GTX 
with 4 GB memory. The details of employed hardware are shown in Table 1. The  
operating system was Windows 10 having a RAM of 16 GB. The experiment was 
performed on the Matlab 2021a. 

Table 1 System 
specifications for the 
employed model 

Hardware Specifications 

Computer GPU Server 
CPU Intel Core i5 
RAM 16 GB 
GPU NVIDIA GEFORCE GTX × 4
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Table 2 Results over French, 
Chinese, and English datasets 

Dataset MOS Similarity MOS Naturalness 

French 4.6 4.64 
Chinese 4.71 4.75 
English 4.7 4.72 
Average 4.67 4.70 

MOS Similarity 
MOS Naturalness 

4.5 

4.55 

4.6 

4.65 

4.7 

4.75 

French Chinese English Average 

MOS Similarity MOS Naturalness 

Fig. 6 The comparison plot for French, Chinese, and English Dataset 

5.2 Assessment Over All Datasets 

As mentioned in section of datasets, we have described the details of three datasets 
such as for English language: LibriSpeech, French language: SIWIS French speech 
synthesis database, and Chinese language: Mandarin Chinese Speech Corpus. In 
this section, we assess the individual results for our proposed TTS synthesizer as 
shown in Table 2. We employed the similar protocol for all three datasets i.e. average 
MOS for naturalness and similarity from group of 100 people. We achieved MOS 
similarity as 4.7 for English, 4.54 for Chinese, and 4.6 for French language dataset 
and average MOS similarity is 4.67. Whereas, MOS naturalness for French dataset 
is 4.64, for Chinese 4.75, and for English 4.72. Moreover, average MOS naturalness 
is 4.70. The comparison plot for all three datasets is shown in Fig. 6. 

5.3 Time Complexity of Existing Techniques 

In this section, we analyse various existing TTS synthesizers in terms of time 
complexity for training and inference time. In Table 3, T refers to the number of 
steps or iterations in the algorithm. Whereas, N represents the sequence length. Our 
proposed model attained O(N) computational time as it is based on Tacotron 2 and 
inference time is also O(N). Although, some algorithms take constant time such
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Table 3 Comparative 
analysis of existing TTS 
models in context of time 
complexity 

Model Training Inference 

Tacotron 2 O(N) O(N) 
Deep Voice 3 O(1) O(N) 
FastSpeech 2 O(1) O(1) 
WaveGlow O(T) O(T) 
WaveNet O(1) O(1) 
Flowtron O(1) O(1) 
Our proposed TTS O(N) O(N) 

Table 4 Comparison with 
existing TTS synthesizers 

Model MOS Inference Time(ms) 

Tacotron 2 4.46 538 
Fast Speech 2 3.83 374 
VARA-TTS 3.88 33 
BVAE-TTS 4.1 19.1 
Our proposed TTS 4.67 13.5 

as O(1), however the resulting MOS is not considerable for these techniques as 
reported in Table 4. The details of complexities for training and inference time are 
reported in Table 3. 

5.4 Comparison with Existing Techniques 

In this section, we perform an experiment to compare our proposed TTS syn-
thesizers with some existing models such as Tacotron2 [50], FastSpeech 2 [51], 
VARA-TTS [52], and BVAE-TTS [53] based on MOS and Inference Time. We 
utilized LibriSpeech dataset for assessment of all the mentioned systems in Table 4. 
It is exhibited from the table that MOS for Tacotron 2 is 4.46 that is maximum after 
our proposed TTS synthesizer. However, inference time for Tacotron 2 is maximum 
than other existing models i.e. 538 ms. Furthermore, Fast Speech 2 achieved 3.83 
MOS, VARA-TTS attained 3.88 MOS, and BVAE-TTS obtained 4.1 MOS that is 
significant than former models. Moreover, the minimum inference time is attained 
by our proposed TTS synthesizer i.e. 13.5 ms. The Fast Speech 2 utilized 374 ms, 
VARA-TTS used 33 ms, and BVAE-TTS produced speech in 19.1 ms. Therefore, we 
believe that our proposed TTS synthesizer, achieved maximum MOS than existing 
models exhibiting significant naturalness. A comparison plot with existing TTS 
synthesizers is shown in Fig. 7.
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Fig. 7 A comparison plot of proposed model with existing TTS synthesizers 

6 Conclusion 

In this chapter, we have presented an efficient TTS synthesizer employing an 
encoder, synthesizer, decoder, and an additional reinforcement learning-based 
network. We utilized an existing structure of Tacotron2 for the synthesis of speech 
from text. More specifically, our proposed TTS synthesizer is comprised of three 
main stages such as (1) An encoder that generates a feature vector of speech 
from the dataset, (2) A synthesizer that predicts a Mel-spectrogram from grapheme 
sequences, conditioned on the vector from speaker embedding, and (3) A Vocoder 
based on autoregressive WaveNet that generates the waveforms from spectrograms. 
Furthermore, the RL block is attached consisting of CNN, BiLSTM, attention, FC, 
and softmax layer. Then, the accuracy of the RL network is considered as a reward 
value for the training. The proposed TTS synthesizer is based on a reference audio 
signal being fed to the encoder. Additionally, the quality of the synthesized speech 
varies according to the length, therefore short utterances provide better naturalness. 
We assessed our proposed algorithm using MOS, which vary from 1 to 5 such as 
Excellent, Good, Fair, Poor, and Bad respectively. In total, 100 participants were 
assigned the task to listen the audio and assign MOS to a generated speech by our 
proposed synthesizer. We attained 4.67 MOS overall which is a significant number 
than achieved from existing TTS synthesizers.
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Although, our proposed synthesizer is significant for three languages i.e. English, 
Chinese, and French, however, we aim in the future to make it more generalized TTS 
synthesizer which can generate maximum natural languages exhibiting naturalness 
and similarity to human speech. 
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