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Abstract

Deepfakes represent the generation of synthetic/fake images or videos using deep neural networks. As the techniques used
for the generation of deepfakes are improving, the threats including social media disinformation, defamation, impersona-
tion, and fraud are becoming more prevalent. The existing deepfakes detection models, including those that use convolution
neural networks, do not generalize well when subjected to multiple deepfakes generation techniques and cross-corpora
setting. Therefore, there is a need for the development of effective and efficient deepfakes detection methods. To explicitly
model part-whole hierarchical relationships by using groups of neurons to encode visual entities and learn the relationships
between real and fake artifacts, we propose a novel deep learning model efficient-capsule network (E-Cap Net) for classifying
the facial images generated through different deepfakes generative techniques. More specifically, we introduce a low-cost
max-feature-map (MFM) activation function in each primary capsule of our proposed E-Cap Net. The use of MFM activa-
tion enables our E-Cap Net to become light and robust as it suppresses the low activation neurons in each primary capsule.
Performance of our approach is evaluated on two standard, largescale and diverse datasets i.e., Diverse Fake Face Dataset
(DFFD) and FaceForensics++ (FF++), and also on the World Leaders Dataset (WLRD). Moreover, we also performed a
cross-corpora evaluation to show the generalizability of our method for reliable deepfakes detection. The AUC of 99.99%
on DFFD, 99.52% on FF++, and 98.31% on WLRD datasets indicate the effectiveness of our method for detecting the
manipulated facial images generated via different deepfakes techniques.
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1 Introduction

Deepfakes refer to the generation of synthetic images or vid-
eos via deep neural networks. The term deepfake is a mix-
ture of two words, “deep learning” and “fake” [1] and origi-
nated after a Reddit user named “deepfakes”, who swapped
celebrities’ faces in pornographic videos using deep learning
techniques [2]. Autoencoders and generative adversarial net-
works (GANs) are the deep learning models that are mostly
used to generate deepfakes with the aim of creating more
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realistic images or videos [2]. Deep learning models based
on the autoencoders use the autoencoder—decoder pairing
structure where autoencoders extract the latent features from
the face images and decoders are used to reconstruct the
images [3]. But, in GAN-based deep learning techniques,
two models (named generative model and discriminative
model) are trained simultaneously. The generative model
also known as the generator is used to generate fake images
whereas the discriminative model known as the discrimina-
tor plays the role of detecting the fake images generated via
the generator. The objective of a generator (G) is to capture
the data distribution while the discriminator (D) estimates
the probability of whether the incoming data is either from
the training or the sample from G [4]. The availability of a
variety of deepfakes apps (including ReFace, FaceApp, Face
Swap Live, DeepFace Lab) has made it easy even for the
less tech-savvy people to generate the deepfakes. Fake App
introduced in 2017 was the first attempt at deepfake crea-
tion. ZAO is another app that can swap the user faces onto
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movie star bodies and insert them into movies or TV clips
[3]. Using the StyleGAN approach, the website [5] generates
synthetic facial images with high-level realism. The com-
mercially available deepfakes applications enable everyone
to generate fake images and videos, which has increased
concerns about circulating disinformation on social media,
defamation, frauds, and hoaxes [2]. Besides the drawbacks,
deepfakes also have productive and creative benefits includ-
ing video dubbing of films, virtual try-on outfits, and educa-
tion via reanimating the historical characters [1]. However,
the excessive malicious usages of deepfakes suppress its
positivity [3]. Therefore, reliable detection of deepfakes is
very important and necessitates the development of tools
that can effectively detect deepfakes images.

Deepfakes can be categorized as (1) face swap, (2) entire
face synthesis, (3) face attribute manipulation, and (4)
expression swapping [2].

¢ In face swapping, fake images or videos are created by
swapping the face of a person with another person in the
target image or a video retaining the background, expres-
sions, and lighting [2]. The available models to create
the swapped faces include FaceSwap [6], DeepFakes [7],
and FaceShifter [8]. This type of manipulation can aid
the film industry but can also be utilized for the wrong
reasons such as financial fraud, hoaxes, etc. [3].

e Entire face synthesis includes the generation of realis-
tic non-existing faces with high quality and is generated
using the GANSs. Recently, the StyleGAN approach is
introduced to generate high-quality synthetic facial
images that have a high level of realism. Such manipu-
lation can be used for the creation of fake personas to
spread disinformation on social media [1]. In the future,
there exists a possibility that restoration methods such
as GFP-GAN [9] can be used to suppress the appearance
of forged content in GAN-generated images, thus, may
make the detector job more difficult.

e In attribute manipulation, some face attributes (i.e., hair
or skin color, gender, age, etc.) are modified. It is also
known as face editing or retouching and can be used to
try glasses, hairstyles, or makeup in a virtual environ-
ment [2].

e Expression swap involves the replacement of one per-
son’s facial expression with another in a video or image.
An expression swap can be used to impersonate an iden-
tity as it allows one to animate the individual according
to the attacker’s desires [1].

In the last few years, many researchers introduced the
methods and approaches that can detect fake facial images
generated through deepfakes techniques. Marra et al. [10]
presented an incremental learning model that can discrimi-
nate new GANs generated images without degrading the

@ Springer

performance of previous ones. The disadvantage of this
model [10] is that it performs well when various GAN
models are available in the training phase. OC-FakeDect
introduced in [11] was a one-class classification model based
on variational autoencoder (VAE). The model was trained
only on the real images, whereas tested on both the real and
fake facial images. This approach [11] is only evaluated on
FaceForensics++ (FF++) dataset and can be extended for
images generated via GANs. Yuyang et al. [12] introduced
a frequency in face forgery network (F>-Net) that learned
forgery clues via frequency-aware decomposition (FAD) and
then extracted unusual frequency statistics among real and
fake images through local frequency statistics (LFS). FAD
and LFS features were then gradually fused to a module
named as MixBlock. F>-Net was evaluated on a challeng-
ing FF++ dataset and achieved an accuracy of 90% on the
low-quality images. Most of the existing works focused on
the detection of some specific manipulation techniques to
determine the trustworthiness of facial images but failed to
generalize their models on cross-corpora evaluation. Fur-
thermore, most existing approaches for detecting deepfakes
images are based on convolution neural networks (CNN)
models and thus contain the drawbacks such as losing the
features orientation and spatial information and not being
equivariant, which means that CNNs cannot detect the
images from different angles and rotated images if they are
not trained on such images. Moreover, CNNs are unable
to handle the Picasso problem (subject image with all the
right components but not at the correct position) and often
mislabeled such images.

The human brain analyzes the visual images through
whole-part hierarchies such that it learns the features of
the individual component and detects the orientation and
relationship of the components in the whole subject image.
To mimic the human brain’s learning, Capsule Networks
have been proposed that build the whole-part hierarchies
using the neurons to encode the part and learn the relation-
ship between the parts to detect the entire subject image,
thus make the network interpretable and transparent. To
address the aforementioned limitations of CNNs and exist-
ing deepfakes detection methods, we proposed a novel deep
learning model efficient-capsule network (E-Cap Net) to
efficiently and reliably detect the synthetic facial images
generated through different deepfakes generative techniques.
For shallow and deepfakes oriented synthetic facial images
detection, the probability of object in the image and the
orientation representing the parameters such as size, skin
tone, object (i.e., nose, eyes, lips) orientation, and location
in an image are important aspects that differentiate the fake
face image from real one. In contrast to CNNs, our pro-
posed E-Cap Net has the ability to learn these aspects for
the classification of synthetic facial images. E-Cap Net can
detect the rotated images taken from different viewpoints
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and also solves the Picasso problem. In our proposed model,
we customized a capsule network and embedded a low-cost
activation function max-feature-map (MFM) in its primary
capsules. The embedded MFM activation function provides
the compact representation of the features and enables our
model to become light and computationally efficient. Moreo-
ver, our proposed model is capable of detecting multiple
manipulation techniques including face swap, entire face
synthesis, expression swapping, and face attribute manipu-
lation. We also evaluated our approach for binary and mul-
ticlass classification problems. The major contributions of
this work are:

1. We propose a robust Efficient-Capsule deep learning
model containing the low-cost MFM activation function
for accurate detection of shallow and deepfakes oriented
synthetic images.

2. Our proposed model detects multiple types of deep-
fakes and is robust against varied deepfakes generation
algorithms, different illumination conditions, ethnicity,
age, images captured from different viewpoints, rotated
images, and the Picasso problem.

3. We performed extensive experimentation on multiple
datasets (covering multiple types of deepfakes) and also
showed the efficacy of the proposed model against the
existing state-of-the-art methods.

4. We also conducted the cross-corpora evaluation to show
the generalization aptitude of the proposed E-Cap Net
while detecting the shallow and deepfakes oriented syn-
thetic images.

The remaining paper is organized as follows. In Sect. 2,
we summarize the related work, while Sect. 3 presents our
methodology for classifying the facial images either as real
or fake. Experimental results are reported in Sect. 4. In
Sect. 5, we provide the discussion. Finally, Sect. 6 presents
the conclusion.

2 Related work

We reviewed the existing deepfake image detection tech-
niques in Sect. 2.1, while Sect. 2.2 outlines the deepfake
video detection. We also highlighted the limitations of exist-
ing deepfakes detection methods to present the knowledge
gap in deepfakes detection.

2.1 Fake images detection

Initially, handcrafted features were commonly used to detect
the discrepancies and artifacts in the fake images/video’s
synthesis process [2]. For example, Kim et al. [13] intro-
duced a method that used local speed pattern (LSP) features

to train the SVM classifier to detect fake and real facial
images. Similarly, Xiaoqing et al. [14] utilized the universal
steganalytic features in order to detect the images altered
by various image processing operations. The extraction of
meaningful, distinctive, and most appropriate handcrafted
features is a difficult task as these features are constructed
by domain experts and demand strong domain knowledge.
With the evolution of CNN, many researchers have
applied deep learning techniques to extract the salient fea-
tures automatically for image forensics. Bayar et al. [15]
introduced convolution network architecture that detected
different image manipulations and copy-editing operations
without depending on the pre-selected features. In the same
way, Rahmouni et al. [16] used a convolution network with
a custom pooling layer to differentiate between the real and
computer-generated visuals. The increasing use of CNNs
has significantly enhanced the performance of deepfakes
creation and detection, where models like autoencoders
and GANs have made it possible to create photorealistic
images and videos [17, 18]. In response to such photorealis-
tic manipulated content, efforts have been made to develop
effective methods to detect face forgery in images/videos
[2]. Mo et al. [19] presented a CNN-based model that can
identify progressive growing GAN (PGGAN) generated fake
images and achieved an accuracy of 99.4% on the image
size of 256 X 256. The accuracy of this model decreases to
96%, while reducing the image size to 128 x 128. Tariq et al.
[20] introduced an ensemble ShallowNet classifier consist-
ing of shallow layers to detect the fake face images created
via the GAN. This model [20] was evaluated on different
image sizes and performed well on small image resolution
i.e., 64 X 64. These GAN detection models [19, 20] show
good results when tested on images that are homogeneous to
the training set images. In other words, the generalizability
of these models is unknown. Nataraj et al. [21] presented a
model that detected the manipulated images by extracting
pixel co-occurrence matrices and then passed them to the
CNN. To show the generalizability of the model [21], cross-
validation was also performed. For this purpose, the cycle-
GAN images dataset (containing 35,302 images) was used to
train the model, and then the trained model was tested on the
StarGAN image dataset (containing 19,990 images) and vice
versa. The lowest accuracy of 93.4% was attained with the
model trained on the StarGAN image dataset as the classes
were not uniformly distributed in the StarGAN dataset.
Besides the GAN-generated images dataset, researchers
have also utilized other available datasets including FF++,
DeepFake Detection, and Celeb-DF to evaluate their detec-
tion models. Zi et al. [22] presented an attention-based deep-
fake detection network ADDNet-2D for the detection of fake
images. This model [22] consisted of ADD block followed
by a 2D CNN network and a classification layer. Perfor-
mance of this model was evaluated on 6 datasets including
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the DFD, DF-TIMIT (LQ, HQ), FF++ (LQ, HQ), and Wild-
Deepfake. The highest accuracy of 99.82% was achieved on
the FF++ HQ dataset, whereas achieved the lowest accuracy
of 76.25% on the WildDeepfake dataset [22]. This model
[22] is only evaluated on the DeepFakes subset of the FF++
dataset. AMTENDnet introduced in [23] was a combination
of AMTEN and CNN for detecting the manipulated facial
images. AMTEN performed the preprocessing task to high-
light discriminatory manipulated traces in the fake facial
images. The manipulated traces were extracted by finding
the difference between an input image and feature maps.
Performance of this model [23] was evaluated on two data-
sets i.e., Hybrid Fake Face Dataset (HFF) and FF++. This
work[23] performed the spatial filtering and lossy com-
pression on the HFF dataset and then cross-validated those
images but did not perform the cross-corpora evaluation
on different facial manipulation techniques to evaluate the
generalizability of their model. For the detection of forgery
in facial images, Li et al. [24] introduced a detector that
used a face X-ray (grayscale image) to find the discrepan-
cies around the blending regions. The face X-ray detector is
unable to perform well on the entire synthetic face as it relies
on the presence of blending [24].

2.2 Fake videos detection

The detection methods used to identify fake images are not
adequate to expose fake videos due to the frame data deg-
radation and variable temporal characteristics between the
set of frames [3]. Since digitally manipulated videos have
temporal and intra-frame inconsistencies among the frames,
Guera et al. [25] introduced a model that extracted frame
features of a given video sequence using CNN and then
passed the features to a long short-term memory (LSTM)
network for analysis. Finally, a fully connected network
was used to classify the video either as fake or real. For
the evaluation of this model [25], 600 videos were gathered
from different websites. Similarly, Sabir et al. [26] presented
a pipeline consisting of two steps i.e., preprocessing and
detection steps. Preprocessing step involved the detection,
cropping, and alignment of faces in the frames while in the
detection step, a recurrent convolution model (RCN) was
used to identify the temporal artifacts between the set of
frames. Along with the identification of temporal artifacts
among video frames, researchers have also developed meth-
ods that detect the visual artifacts between the video frames
to decide whether a given video sequence is manipulated
or a real one [3]. Yang et al. [27] introduced a method that
utilized 3D head poses to identify errors in a landmark loca-
tion. Head poses were extracted using 68 facial landmarks.
Difference between the estimated head poses was treated
as a feature vector and passed to the SVM classifier for the
detection of deepfakes. Matern et al. [28] presented a simple
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pipeline to exploit the artifacts that arise from the lack of
global consistency, imprecise geometry, and illumination
estimation. Missing reflections, eye color differences, and
missing details in mouth and eye areas were used to detect
the manipulated videos. Facial landmarks features were used
with the logistic regression and neural network. Using this
pipeline [28], this work detected the deepfakes, face2face
manipulations, and synthetic faces and achieved the AUC
values of up to 86.6%. The shortcoming of this pipeline is
that it requires the images to have some specific prerequisites
such as visible teeth and open eyes. The overview of the
related work for fake images and videos detection is pre-
sented in Table 1.

2.3 Limitations of existing models

¢ Existing approaches are often evaluated on datasets with
limited manipulation types, for instance, the FF++ data-
set is limited to two fake types: expression and identity
swap. Similarly, the Celeb-DF dataset only contains the
identity swap fake images.

e Most existing approaches are based on CNNs and have
some limitations including viewpoint variance problems
and not being able to overcome the Picasso problem [29].
The reason is the use of Maxpooling layer for conveying
the information from one layer to another. Therefore, the
use of Maxpooling results in the loss of pose-aware and
spatial information, thus hinders them to discover more
about the image.

e Most of the work on the detection of synthetic facial
images does not study the generalization capability of
the models. So largely, existing detection methods fail
to generalize well on cross-corpora evaluation which
is an important requirement while developing a syn-
thetic facial image detection considering the availability
of multiple datasets and other repositories available in
cyberspace.

3 Proposed method

This section presents the architectural details of our pro-
posed deep learning model E-Cap Net. As an alternative to
CNNs, Hinton et al. [30] first introduced the Capsule Net-
work which is viewpoint invariant and identifies the whole
entity via identifying its parts first. Capsule Network builds
the whole-part hierarchies, represents the subject image
as parts, and captures the relationships between the parts,
thus making it more robust to the viewpoint variations of
the input image. Capsule Network consists of low-level
(primary) and high-level (output) capsules. The primary
capsules in the network encode the information about the
pose, scale, orientation, and other properties of the parts
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Table 1 Overview of related work

Limitations

References Model/classifier Dataset

Fake images detection

Mo et al. [19] CNN PGGAN

Tariq et al. [20] ShallowNet classifier CelebA
PGGAN

Nataraj et al. [21]  Co-occurrence matrices + CNN CycleGAN
StarGAN

Ziet al. [22] CNN DFD

DE-TIMIT (LQ, HQ)
FF++ (LQ, HQ)

Poor results when reducing the image size

Generalizability of model is unknown

Performance degrades on jpeg compressed images

Poor performance on WildDeepfake dataset
Only consider the DeepFakes subset of FF++ dataset

WildDeepfake
AMTENnet [23] AMTEN +CNN HFF Not perform the cross-corpora evaluation on different facial
FF++ manipulation techniques
Face X-ray [24] CNN FF++ Unable to perform well on entire synthetic faces
Fake videos detection
Guera et al. [25] CNN+LSTM Private Not robust against manipulated videos unseen during training
Sabir et al. [26] CNN+RNN FF++ Reported results only for static images
Yang et al. [27] Landmarks+SVM UADFV Performance degraded in case of blurry images
DARPA MediFor GAN
image/video chal-
lenge
Matern et al. [28]  MLP +logreg FF++ Applicable to the images having specific prerequisites e.g.,

open eyes, visible teeth etc.

in the subject image while the output capsules contain the
information about the prediction. The output vector of the
low-level capsules is routed to the appropriate high-level
capsule through dynamic routing. The capsules in Capsule
Network output a vector with the length representing the
probability of object in the image and the orientation repre-
senting the parameters such as size, object (i.e., nose, eyes,
lips) orientation, and location in an image. Therefore, unlike
CNNeE, there is no loss of orientation and spatial information
in Capsule Network, as along with the feature detection, it
also detects the orientation of features, texture, and color.
Therefore, keeping in view the benefits of Capsule Network
over the CNNs, we present a customized Capsule Network
for the detection of manipulated facial images generated
through different deepfakes techniques.

3.1 Architecture details

In our proposed E-Cap Net, after resizing the input image,
the features are extracted from the resized image by utiliz-
ing a pre-trained VGG19 model. The extracted features are
passed to the primary capsules in the customized Capsule
Network and the outcome of the primary capsules is then
passed to the output capsules through dynamic routing.
Finally, the end results are calculated by computing the mean
of activations of the output capsules. We customize Cap-
sule Network via embedding the MFM activation function
in each primary capsule, for the classification of shallow and

deepfakes oriented facial images. The detailed architecture
of our proposed model is shown in Fig. 1. The whole pipe-
line includes the input image, custom VGG19 to extract the
features, Capsule Network, and final output.

3.1.1 CustomVGG19

The size of the input image is set to 300 x 300. The input
image is passed to the custom VGG19 for extracting the
features. The VGG19 is pre-trained using the ILSVRC data-
base [31]. VGG19 has a total of 16 convolution layers that
are used for feature extraction and 3 fully connected lay-
ers used for classification. The feature extraction layers are
divided into five groups each followed by the max-pooling
layer. We used the VGG19 to the third max-pooling layer for
feature extraction with the hypothesis that lower level layers
can preserve more information about the image. We used
only the first eight convolutions layers of VGG19 for fea-
ture extraction. The benefit of using the custom pre-trained
VGG19 network is that it aids in moderating the problem of
overfitting. The summary of the used custom VGG19 model
is shown in Table 2.

3.1.2 Efficient-capsule network
After the feature extraction, the extracted features are fed to

the Capsule Network for the classification task. Our Capsule
Network is comprised of primary and output capsules. It has
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Input Image

Resized Image

Custom VGG19 For Feature Extraction

300 x 300
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3x3 5x5 5x5 3x3 5x5 3x3
Stride 1 Stride 2 Stride 1 Stride 1 Stride 1 Stride 1
Final Output Capsule Network Extracted Features
Fig. 1 Detailed architecture of proposed model
Table 3 Summary of primary capsule
Layer (type) Output shape Param #
Table2 Summary of custom VGG19 Conv2d—1 [— 1, 128, 224, 224] 295,040
Layer (type) Output shape Param # BatchNorm2d—2 [— 1, 128, 224, 224] 256
Conv2d—3 [— 1, 128, 224, 224] 409,728
Conv2d—1 [— 1, 64,224, 224] 1792 MFM—4 [— 1, 64,224, 224] 0
ReLU—2 (=1, 64,224,224 0 Conv2d—S5 [ 1,32,224,224] 18,464
Conv2d—3 (=1, 64,224,224 36,928 BatchNorm2d—6 [ 1,32,224,224] 64
ReLU—4 (=1, 64,224,224 0 Conv2d—7 [ 1,32,224,224] 25,632
MaxPool2d—5 [—1,64,112,112] 0 MFM—8 [- 1, 16, 224,224] 0
Conv2d—6 [— 1,128,112, 112] 73,856 StatsNet—9 [-1,2,16] 0
ReLU—7 [— 1,128, 112, 112] 0 Convld—10 [-1,8,8] 38
Conv2d—38 [— 1,128,112, 112] 147,584 BatchNorm1d—11 [-1,8,8] 16
ReLU—9 [— 1,128,112, 112] 0 Convld—12 [-1,1,8] 25
MaxPool2d—10 [— 1, 128, 56, 56] 0 BatchNorm1d—13 [-1,1,8] 2
Conv2d—11 [— 1, 256, 56, 56] 295,168 View—14 - 1,8] 0
ReLU—12 [— 1,256, 56, 56] 0
Conv2d—13 [— 1,256, 56, 56] 590,080
ReLU—I14 [= 1,256, 56, 56] 0 ten primary capsules, each having the same architecture. The
Conv2d—I5 [= 1,256, 56, 56] 590,080 summary of the internal architecture of a primary capsule
ReLU—16 [— 1,256, 56, 56] 0 . . .
is shown in Table 3. Each primary capsule further has five
Conv2d—17 [— 1, 256, 56, 56] 590,080 .
parts. The first two parts of each primary capsule encom-
ReLU—I8 [=1,256.56.56] 0 pass the convolution layer (Conv2d), batch normalization
MaxPool2d—19 [— 1, 256, 28, 28] 0
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comprises statistical pooling while the last two parts include
the convolution layer (Conv1ld) and batch normalization
layer (BatchNorm1d). For the convolution layers, we set the
kernel size equal to 3 and stride of 1 except for the convolu-
tion layer after the statistical pooling layer for which we use
a stride of 2 and kernel size is set to 5. Whereas for the MFM
activation function, kernel size is set to 5, and a stride of 1 is
used. MFM represses the activations of the neurons and thus
enables the model to become robust and light [32], which
helps to develop a computationally efficient model. Statisti-
cal pooling layer enables the network to extract the statistical
properties by calculating the mean and standard deviation
of frame-level features, which further helps in distinguish-
ing the real and manipulated facial images. For statistical
pooling calculation, we computed the mean and standard
deviation as follows:

m n

1
1= 2 2 F M
i=0 j=0
1 O X 2
E \ ey (F’j —H) &

where p denotes the mean, ¢ indicates the standard devia-
tion, m X n represents the filter size and F represents the filter
array.

There are two output capsules namely fake and real, for
binary classification, whereas for multiclass classification,
number of capsules depends on the number of classes avail-
able for classification. The outcomes of the primary cap-
sules are routed to the output capsules via a dynamic routing
[33]. Dynamic routing computes the agreement between out-
comes of primary capsules and routed the obtained results
to the appropriate output capsule (real or fake). Then the
agreement for output capsules (real or fake) is calculated
and the strength of the agreement determines the certainty
of the label. The label is more certain if the agreement is
stronger for an output capsule. The final output probabilities
are determined based on the activations of neurons within
output capsules. Finally, the softmax layer is applied to the
output capsule vector to calculate the predicted label.

3.1.3 MFM activation function

To improve the classification performance and make the
model computationally efficient, we implemented an acti-
vation function called MFM in each primary capsule of our
E-Cap Net, instead of the traditional activation function (i.e.,
ReLU, Tanh). MFM is a variant of the Maxout activation
function and delivers competitive feature maps rather than
approximating convex activation from various feature maps.
MFM has a sparse gradient and compact representation, thus

allowing the model to become lighter. The sparse gradient
can speed up the model convergence whereas compact repre-
sentation can reduce the data dimensionality. This activation
function divides the input layer feature map into two neurons
unit at random and then output the element-wise maximum
between the two units, which could reduce the non-relevant
part of the feature map and can eliminate the redundancy in
feature representation. The structure of the MFM activation
function is shown in Fig. 2.

For an input convolution layer ¢” € R"*H#, where n={1,
2, ..., 2N}, H is the height, and W represents the width of
the feature map, the MFM can be calculated as:

f<c’;y) = max <c’;y, ci;fN), 3)

where 1 <k<N, 1 <x<W, 1<y<H, and 2N denotes the
channels of the input layer.

4 Experimental results

In this section, we introduced the datasets and discussed the
measures used to evaluate the performance of our proposed
approach. We have performed extensive experimentation on
the standard and diverse datasets for the evaluation of our
model. The details of the experiments and their results are
also discussed in the subsequent sections.

4.1 Datasets

We evaluated the performance of the proposed model on the
World Leader Dataset (WLRD) [34] and on two standard,
largescale and diverse datasets that are FF++ [35] and the
Diverse Fake Face Dataset (DFFD) [36]. The details of these
datasets are presented in the subsequent sections.

4.1.1 FaceForensics++ dataset

FaceForensics++ dataset is one of the largest deepfakes
datasets and comprises 1000 original videos. These

spi, /—»
]

Fig.2 Structure of MFM activation function
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original videos are manipulated using different techniques
including DeepFakes, FaceSwap, Face2Face, and Neural-
Textures. The source of original videos is YouTube, and
all the videos contain the frontal face of a person without
any occlusions. The videos in FF++ dataset is available in
three compression levels, i.e., raw (without compression),
high quality (HQ, low compression), and low quality (LQ,
heavy compression) [35].

To evaluate our model, we need an image dataset. For
this purpose, we split the FF++ video dataset into train-
ing, testing, and validation sets. Training set contains 720
videos, while the testing and validation set comprises 140
videos each. Afterward, we extracted the faces from the
available video’s sequences (real and manipulated) to gen-
erate our image FF+4 dataset. To generate our training
set, we extract the first 100 frames of input video while for
validation and testing, we extract only the first 10 frames.
Shown in Fig. 3 are a few images from the FF++ dataset.

4.1.2 World leader dataset

WLRD comprises the videos having the FaceSwap manip-
ulated images of different political leaders i.e., Obama,
Hillary Clinton, Joe Bidden, Elizabeth Warren, and Bernie
Sanders. Real videos are gathered from YouTube having
only one person facing the camera. The comedic imper-
sonator of the leaders is used to create the swapped faces.
This dataset is highly imbalanced as it contains a very
small number of fake videos as compared to real videos
of each leader. The dataset is splitted into training, valida-
tion, and testing set. A few images from WLRD are shown
in Fig. 4.
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Fig.4 World leader dataset

4.1.3 Diverse fake face dataset

DFFD as the name suggests comprises diverse types of
fake faces which might be critical for the detection of face
manipulations. DFFD comprises faces generated through
StyleGAN, StarGAN, and PGGAN. DFFD also includes the
real facial images of the FFHQ dataset. For real and each
type of manipulated facial images, the dataset is splitted into
50% for training, 45% for testing, and 5% for validation. In
DFFD, 47.7% images are of male subjects, while 52.3% of
images are of female subjects and the age range of the sub-
jects is 21-50 years [36]. Shown in Fig. 5 are a few images
from the DFFD.

It is worth noticing that we performed our experiments on
high-quality or low compression levels of the FF++ dataset.
Moreover, for all the datasets (FF++, WLRD, and DFFD),
training and validation images have never appeared in the test

DeepFakes  FaceSwap NeuralTextures Real

StyleGAN-FFHQ PGGAN  StyleGAN-Celeba  StarGAN Real

Fig.3 FaceForensics++ dataset
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set. Thus, we tested our model on completely unseen images to
show its effectiveness for manipulated facial image detection.

4.2 Implementation details

For the video dataset such as FF++ and WLRD, we used
multi-task cascaded convolution neural network (MTCNN)
[37] to extract the faces from the video frames. The extrac-
tion of faces from the video frames is a preprocessing step
in the case of a video dataset. The proposed model imple-
mentation is based on PyTorch. All the images are resized
to 300 x 300 resolution. The model is trained using an Adam
optimizer with beta=0.9 and learning rate =0.0005. Other
parameters are: batch size =32, epochs =25 and drop-
out =0.05. For model implementation and execution, we
used the high-performance computing machine with the fol-
lowing specifications: 4 NVIDIA Tesla V100 16G GPUs,
192 GB RAM, and 48 CPU Cores at 2.10 GHz.

4.3 Evaluation measures

To evaluate the performance of our proposed model, we use
the following three evaluation metrics:

Accuracy represents the ratio of correctly predicted fake
and real facial images to the total number of fake and real
images in the test set. Accuracy is calculated as follows:

TP + TN

Accuracy = PN

) “)
where TP represents the correctly predicted fake facial
images and TN indicates the correctly detected real face
images. P and N represent the total number of fake and real
images, respectively.

Equal error rate (EER) represents the value at the point
where the false acceptance rate (FAR) and false rejection
rate (FRR) are equal. FRR represents the rate at which the
model incorrectly classifies the fake images as real ones
while the FAR refers to the rate at which the model incor-
rectly classifies the real facial images as manipulated ones.
The lower value of EER represents the good detection per-
formance of the model.

Area under curve (AUC) measures the classifier’s ability
to discriminate between the two classes (i.e., real and fake).
It summarizes the classifier’s performance by calculating
the area under the receiver operating characteristic (ROC)
curve. The higher AUC indicates better model performance
in distinguishing between the two classes.

4.4 Performance evaluation of proposed method
for real vs fake classification

To evaluate the performance of our method for the detec-
tion of real and fake/synthetic images, we designed an

experiment to classify the real and fake images on FF++,
DFFD, and WLRD datasets. In this experiment, we have
a binary classification problem where we have two classes
i.e., real and fake. The real class consists of pristine images
while the fake class contains one type of manipulated images
at a time. We split our datasets into three sets i.e., training,
validation, and testing. For the training of our model, we
used the training and validation sets. After that, the trained
model is evaluated on the testing set to obtain the detec-
tion results. The results of this experiment in terms of AUC,
EER, and accuracy on DFFD, FF++, and WLRD datasets
are presented in Table 4.

Table 4 shows that our proposed model performs remark-
ably well on the DFFD dataset and achieved accuracy in
excess of 99% for each type of GAN-generated fake facial
images. Moreover, our model is able to detect the fake
images generated through the StarGAN technique with 100%
accuracy and AUC. These results indicate the effectiveness
of the proposed model for accurately detecting the facial
images having attribute manipulation. Overall, we can say
that the proposed model can detect GAN-generated fake
facial images with higher accuracy and less error rate. For
the WLRD dataset, it can be seen that our proposed E-Cap
Net accurately classifies the faceswap of the leaders with the
AUC closer to 99% excluding Clinton for which the AUC is
93%. It can be observed from Fig. 4 that Clinton’s imposter
is closer to Hillary Clinton resulting in a more realistic
swapped face, increasing the possibility of lower detection
results compared to other leaders. We can observe that for
the FF++ dataset, our proposed model detects the images
generated through different deepfakes techniques with good
accuracy and AUC. The AUC of DeepFakes and FaceSwap
subset of FF++ is 98.61% and 99.51%, respectively. This
remarkable performance on the faceswap manipulation

Table 4 Binary classification

Dataset Face manipulation AUC Accuracy EER
generation techniques

DFFD StyleGAN-FFHQ 99.96 99.59 0.24
StyleGAN-Celeba 99.99 99.66 0.32
PGGAN 99.92 99.99 0.08
StarGAN 100 100 0.01

FF++ DeepFakes 98.61 97.17 2.50
FaceSwap 99.51 98.68 1.50
Face2Face 99.68 98.75 1.29
NeuralTextures 95.14 91.61 8.25

WLRD Hillary Clinton 93.05 92.29 16.08
Joe Bidden 99.97 99.96 0.16
Obama 98.87 98.28 2.16
Bernie Sander 99.75 99.73 0.91
Elizabeth Warren 99.91 98.51 0.45
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indicates that our model has a strong capability of detecting
swapped faces generated via different techniques. The detec-
tion accuracy of our proposed model is lowest on NeuralTex-
tures images which is 91.61%. After a detailed investigation,
we found that the NeuralTextures generate fake faces with
very few semantic changes which are quite difficult to detect.
This gives an indication that the detection of this type of
manipulation is a challenging task.

Overall, it can be inferred from the results in Table 4,
that the proposed E-Cap Net can accurately detect different
types of manipulated images generated using different gen-
erative algorithms. This could be due to the fact that E-Cap
Net captures the relative position and hierarchal relation-
ship between different features in the facial image (such as
eyes, nose, and mouth). Additionally, the MFM activation
function can help the model to focus on the salient features
in the given input image and reduce the impact of noisy or
irrelevant information. Therefore, the proposed E-Cap Net
can help to capture the compact and fine-grained details of
input image allowing the network to better detect subtle dif-
ferences between real and fake faces.

4.5 Performance evaluation of proposed method
for multiclass classification

To examine the ability of our method for classifying multiple
types of deepfakes, we designed an experiment to evalu-
ate the performance of our model for multiclass classifica-
tion problems on DFFD and FF++ datasets. In the case of
FF++ multiclass classification, we have five classes named
as DeepFakes, FaceSwap, Face2Face, NeuralTextures,
and Real whereas, for DFFD multiclass classification, the
classes are: StyleGAN-FFHQ, StyleGAN-Celeba, StarGAN,
PGGAN and Real. We split both datasets into three sets i.e.,
training, validation, and testing. For the classification of the
real and fake images, we trained our model using training
and validation sets and then evaluated its performance on the
testing set. For the FF++ dataset, the test set contains 1400
images, whereas for DFFD there are 9000 images in each
class. The results of this experiment in terms of accuracy
for each class on DFFD and FF++ datasets are presented
in Table 5.

For the multiclass classification of DFFD, the proposed
model achieves an overall detection accuracy above 99%,
indicating its ability to detect GAN-generated images accu-
rately. Table 5 shows that for multiclass classification of
DFFD, the detection accuracy for StyleGAN-FFHQ and
StyleGAN-Celeba falls to some extent as compared to the
binary classification. The reason is that the images are gen-
erated through the same technique that is StyleGAN, the
only difference between the two (StyleGAN-FFHQ and
StyleGAN-Celeba) is the real images used to generate fake
faces. So, there is a probability of misclassifying fake images
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Table 5 Multiclass classification

Datasets Classes Accuracy

DFFD Real 98.69
StyleGAN-FFHQ 99.07
StyleGAN-Celeba 97.69
PGGAN 99.99
StarGAN 100

FF++ Real 89.07
DeepFakes 95.76
FaceSwap 98.71
Face2Face 96
NeuralTextures 92.21

generated via StyleGAN-FFHQ and StyleGAN-Celeba, in
the case of multiclass classification. The overall detection
accuracy for the FF++ dataset is 94% which indicates the
good performance of our model in the case of multiclass
classification. For the FF++ dataset, the accuracy of Deep-
Fakes and Face2Face falls whereas the accuracy of Fac-
eSwap and NeuralTextures increases slightly as compared
to the binary classification. The reason is that in multiclass
classification, there are more fake classes so the probabil-
ity of misclassifying a fake image increases which have an
impact on the detection accuracy.

4.6 Performance evaluation of proposed method
on rotation attack

To check the effectiveness of our proposed E-Cap Net on the
unseen rotated images, we designed an experiment, where
we rotate the testing set images of different subsets of DFFD
dataset at 11 different rotation configurations (30°, 45°, 90°,
120°, 135°, 180°, 210°, 225°, 270°, 300°, 315°). Then, the
model trained on the respective subset of DFFD dataset is
used to evaluate the rotated images. For this experiment, we
also compared the performance of E-Cap Net with our exist-
ing CNN-based model namely InceptionResNet-BiLSTM
(IR-BiLSTM) [38]. The results of the experiment in terms
of average accuracy are shown in Table 6. It is important
to note that the models are trained only on straight images,
the rotated images are not included in the training. From
Table 6, it can be observed that a decrease in the detection
accuracy occurs for the rotated images when compared with
the results of straight images. E-Cap Net classifies rotated
images of different subsets of the DFFD dataset with an
accuracy equal to or greater than 75%. This indicates the
fairly good robustness of our model against the rotation
attack. It is also inferred that E-Cap Net performs better
than IR-BiLSTM on both rotated and straight images. E-Cap
Net attained such reasonable detection results for the rotated
images, because the proposed model builds the whole-part
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Table 6 Performance of E-Cap
Net on rotation attack

Subsets of DFFD dataset

StyleGAN-FFHQ StyleGAN-  PGGAN StarGAN
Celeba
E-Cap Net Straight images 99.59 99.66 99.99 100
Rotated images 75 7791 80.45 78
IR-BiLSTM [38] Straight images 90 97.86 97.86 99.52
Rotated images 60.88 64.5 72.66 74.4
Table 7 Ablation study Table 8 Comparison with existing methods using DFFD
Activation function in pro- Accuracy Training time Models AUC EER
posed model
Xception+ Reg. [36] 99.64 2.23
Sigmoid 99.49 2h 40 min VGG16+MAM [36] 99.67 2.66
LeakyReLU 99.53 2h 30 min Representative forgery mining (RFM)  99.96 -
ReLU 99.84 3h [39]
MFM 99.96 2h E-Cap Net (proposed) 99.99 0.41

The best results are in bold

hierarchies, represents the subject image as parts, and cap-
tures the relationships between the parts. Which enables the
model to become robust to the variations of the input image,
not seen during the training time.

4.7 Ablation study

We conducted an ablation study to investigate the impact
of various activation functions on the performance and
efficiency of our proposed model in terms of accuracy and
training time. We conducted this experiment to show that
our proposed E-Cap Net model is more effective and com-
putationally efficient than its variants. This experiment is
performed on the StyleGAN-FFHQ subset of the DFFD
dataset and experimental protocols are kept the same as
mentioned in Sect. 4.4 for the DFFD dataset. We employed
four activation functions i.e., ReLU, LeakyReLU, Sigmoid,
and MFM in Capsule Network to compare the performance
and computational cost. The results of this ablation study
are presented in Table 7.

It can be observed from the results that the MFM activa-
tion function has the least training time and achieved the
highest accuracy as compared to other activation functions
i.e., ReLU, LeakyReLU, and Sigmoid. Our proposed E-Cap
Net outperforms all its variants by achieving the accuracy
of 99.96% and attained the accuracy gain of 0.12 from the
second-best performing activation function i.e., ReLU. How-
ever, ReLU has the most computational cost since its train-
ing time is the longest of all. From the results in Table 7, it
can be concluded that MFM is a low-cost activation function
that makes the model light and more robust while detecting
fake images. Thus, we can summarize that our proposed

The best results are in bold

E-Cap Net with MFM activation function can accurately
detect synthetic fake faces and is more efficient and robust
compared to its other variants.

4.8 Comparison with existing state-of-the-art
methods

To evaluate the performance and effectiveness of our pro-
posed approach against existing state-of-the-art methods,
we designed a two-stage experiment. In the first stage of
this experiment, we compared the overall detection results
of classification on two datasets (DFFD and FF++) as the
existing methods only provide the overall classification
results. To conduct the experiment, experimental settings are
kept the same as mentioned in Sect. 4.5. For the DFFD data-
set, we reported the overall AUC and EER of our proposed
model for multiclass classification as done in the existing
works. Likewise, for the FF++ dataset, we only reported the
overall detection accuracy for comparing our model with the
existing methods. In Table 8, we compared the results of our
approach on DFFD with existing methods whereas Table 9
shows the comparison of results on the FF++ dataset.
From Table 8, it is noticeable that our proposed model
achieved the best performance on DFFD than any other
stated model. Thus, our proposed approach is able to detect
entirely synthetic facial images with almost 100% AUC. In
other words, our model outperforms in detecting the GAN-
generated facial images with an accuracy of 99.92%. Moreo-
ver, the EER value of our model is lowest than the other
stated methods, which also indicates a good detection per-
formance. From Table 9, we can see that our proposed model
achieved an accuracy of 94.51% which is the highest among
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Table 9 Comparison with existing methods using FF++

Models Accuracy
fCNN [40] 78.3
OC-FakeDectl [11] 84.25
OC-FakeDect2 [11] 85.8
AMTENnet [23] 90.11
E-Cap Net (proposed) 94.51

The best results are in bold

the stated methods. As compared to the previous model [23],
our approach increases the detection accuracy by 4%.

In the second stage of this experiment, we compared the
results of our proposed E-Cap Net with [34] on the WLRD
dataset. The experimental protocols are kept the same as
mentioned in Sect. 4.4. Results in terms of AUC are dem-
onstrated in Table 10. It can be noticed that our model out-
performs in detecting swapped faces of Obama, Sanders,
and Warren compared to [34] with the AUC gain of 3.87%,
3.75%, and 1.91%, respectively. However, for faceswap of
Clinton, our AUC is slightly less than [34].

In general, our proposed method provides remarkable
detection results on all datasets against the existing state-
of-the-art methods, which shows its ability to detect dif-
ferent types of facial image manipulation. As we used two
diverse datasets (DFFD and FF++) and a WLRD dataset
for the evaluation of our proposed methodology, which
are completely different from each other and contain the
facial images generated through different deepfakes tech-
niques. These datasets encompass fake facial images that
cover categories of deepfakes (i.e., entire face synthesis,
face swap, attribute manipulation, and expression swap).
The good detection performance of our proposed model on
all datasets reveals its ability to identify manipulated facial
images generated through widely used deepfakes methods.
Therefore, it is obvious that our model is not limited to the
detection of specific deepfake technique but is able to detect
various face manipulation techniques. This shows that our
proposed model is generalizable and has the capability to
detect manipulated facial images generated via several fake
face generation techniques.

Table 10 Comparison with the existing method using WLRD

Models AUC
Clinton Joe Bidden Obama Sander Warren
Agarwal et al. [34] 95 - 95 96 98
E-Cap Net (pro- 93.05 99.97 98.87 99.75 99.91
posed)

4.9 Cross-corpora evaluation

To assess the generalizability of our proposed method, we
also performed the cross-corpora evaluation. The main pur-
pose of cross-corpora evaluation is to analyze the potential
of the proposed method in real-world applications. We cross-
validated the fake facial images generated through different
deepfakes techniques. For this purpose, we designed two
experiments, cross-set and cross-dataset. The details of the
experiments are provided in the subsequent sections.

49.1 Cross-set

To evaluate the generalizability of our proposed model for
subsets of the FF++ and DFFD dataset, we designed a cross-
set experiment. This experiment is carried out in different
phases for both datasets based on the combination of manip-
ulated images subsets during training. There are four com-
binations of fake class for both datasets (DFFD and FF++).
For FF++, the four combinations are: (1) DeepFakes + Fac-
eSwap + Face2Face (DF + FS + F2F), (2) DeepFakes + Fac-
eSwap + NeuralTextures (DF +FS + NT), (3) Deep-
Fake + Face2Face + NeuralTextures (DF + F2F + NT), (4)
FaceSwap + Face2Face + NeuralTextures (FS +F2F + NT).
Whereas the four fake class combinations for DFFD dataset
are: (1) StyleGAN-Celeba + StyleGAN-FFHQ + PGGAN
(SGC + SGF + PGQG), (2) StyleGAN-Celeba + StyleGAN-
FFHQ + StarGAN (SGC + SGF + SG), (3) StyleGAN-Cel-
eba+ PGGAN + StarGAN (SGC + PGG + SG), (4) Style-
GAN-FFHQ + PGGAN + StarGAN (SGF + PGG + SG).
We trained the model on real and fake images where the
fake class contains images from three subsets. The trained
model is then evaluated on the remaining unseen subset.
For instance, considering the DFFD dataset, in the first
phase, we trained the model on real and fake images where
the fake class contains three types of manipulated images
(i.e., StyleGAN-Celeba, StyleGAN-FFHQ, and PGGAN).
After that, an unseen subset i.e., StarGAN is used to evalu-
ate the trained model and so on. The results of cross-set
experiments for the DFFD dataset are shown in Table 11.
Likewise, for the FF++ dataset, during the first phase, we
trained the model on real and fake classes (containing fake
images of FaceSwap, Face2Face, and NeuralTextures) and

Table 11 Cross-set evaluation on DFFD dataset

Training Testing Results

Accuracy AUC
SGC +SGF+PGG SG 96.62 99.31
SGC+SGF+SG PGG 99.24 99.94
SGF+PGG+SG SGC 99.63 99.96
SGC+PGG+SG SGF 51.70 83.43

The best results are in bold
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Table 12 Cross-set evaluation on FF++ dataset

Training Testing Results

Accuracy AUC
FS+F2F+NT DF 75.30 82.24
DF+FS+NT F2F 63.46 70.93
DF+FS +F2F NT 56.46 64.58
DF+F2F+NT FS 48.50 45.98

then evaluated it on the unseen subset DeepFakes. The cross-
set experimental results on the FF++ dataset are reported
in Table 12.

As noted from Table 11, our proposed method outper-
forms with an AUC of 99% on the unseen subset of the
DFFD dataset except for StyleGAN-FFHQ. Therefore, it is
concluded that our proposed model trained on GAN-gener-
ated fake images outperforms in accurately detecting other
unseen entire synthetic faces and attribute manipulated fake
images. From Table 12, it can be observed that AUC drops
when E-Cap Net is evaluated for totally unseen subsets of
the FF++ dataset. The highest achieved AUC is 82% for
detecting the DeepFakes subset as an unknown class while
the lowest achieved AUC is 45.98% on the FaceSwap subset.
The fact that only a small number of frames are manipu-
lated in the FaceSwap subset could be the possible reason for
lower AUC. All generative approaches utilized to create the
fake faces in the FF++ dataset are completely distinct. For
instance, Face2Face and FaceSwap are computer graphics-
based methods for generating the manipulated facial images
while DeepFakes and NeuralTextures are the deep learn-
ing-based approaches. Moreover, DeepFakes and FaceSwap
include the face swap manipulation while Face2Face and
NeuralTextures comprise expression swap manipulation.
The unsatisfactory results in the case of FF++ dataset are
attributed to the fact that the training and testing set in the
cross-set examination use the synthetic faces generated via
distinct and diverse fake face creation techniques. Thus, we
can conclude that, in the case of cross-set experiments, our
proposed model is capable of accurately detecting unseen
synthetic facial images generated through other GAN-based
techniques. This proves that our proposed approach has good
generalization ability, especially for GAN-generated fake
facial images.

4.9.2 Cross-dataset

To analyze the generalizability of our proposed E-Cap Net
over distinct datasets, we performed a cross-dataset experi-
ment using FF+4 and WLRD datasets. The cross-dataset
experiment has the following scenarios: (1) training on all
subsets of FF++ dataset and testing on WLRD, (2) training

on all subsets of FF+-+ dataset and testing on the Celeb-DF
dataset [41], (3) training on all the subsets of WLRD and
testing on FF++ dataset and (4) training on all the subsets
of WLRD and testing on Celeb-DF dataset. The results are
demonstrated in Table 13.

It can be observed from Table 13 that the proposed model
trained on the FF++ dataset provides incredible results
while detecting face swap manipulation of different leaders
in WLRD. The highest achieved AUC is 99.39% and the
lowest AUC is 76%, while detecting the swapped faces of
different leaders. However, for the comedic imposter of dif-
ferent leaders, the results are slightly lower than face swap
manipulation detection. The highest AUC of 87% is attained
on the imposter of Joe Bidden. As the comedic imposter is
a real person impersonating himself as the leader and not
a synthetic content, this could be the possible reason for
lower accuracy and AUC on the imposter subsets of dif-
ferent leaders. Likewise, E-Cap Net trained on the FF++
dataset when evaluated on the Celeb-DF dataset provides
an accuracy of 83.65% and AUC of 67.94%. Additionally,
testing accuracy of 69.38% and AUC of 57.24% are achieved
on the Celeb-DF dataset for the model trained on the WLRD
dataset. Celeb-DF dataset contains the high-quality realistic
swapped faces with no color mismatch and decreased tempo-
ral flickering making the detection task more difficult. The
dataset is highly imbalanced which can be the reason for low
AUC value as compared to the accuracy. From Table 13, it
is clear that the model trained on the WLRD dataset when
evaluated on the FF4+ dataset shows acceptable detection
results except for the FaceSwap subset. The WLRD dataset
contains the swapped faces generated through GAN-based
algorithm. However, in the FF++ dataset, DeepFakes and
FaceSwap are the subsets that contain swapped faces, the

Table 13 Cross-dataset evaluation

Training Testing Results
Accuracy AUC
FF++ Clinton Faceswap 92.32 99.14
Imposter  55.60 67.27
JB Faceswap 97.71 99.39
Imposter  84.59 87.06
Obama Faceswap 92.96 97.64
Imposter 71.04 74.77
Sander Faceswap 73.03 74.09
Imposter  74.03 84.36
Warren Faceswap 87.97 96.07
Imposter  76.16 76.86
WLRD DeepFakes 70.72 68.35
FaceSwap 4491 38.94
Face2Face 51.32 52.48
Neural Textures 67.65 60.69
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other two subsets (Face2Face and NeuralTextures) contain
expression-swapped faces. The trained model shows good
detection results for the DeepFakes subset, however, the
poor detection result on the FaceSwap subset could be due
to the reason that it involves the graphics-based method to
generate the fake face. Moreover, the WLRD dataset is not
diverse as it only contains the videos of five leaders, there-
fore, the model trained on this dataset is not robust enough
to detect fake faces of diverse FF++ and Celeb-DF datasets.
The remarkable detection results on the Faceswap subsets
of WLRD and Celeb-DF dataset in the case of cross-dataset
setting demonstrate the strong generalization ability of our
proposed E-Cap Net especially when the fake face genera-
tion techniques are quite different from each other.

5 Discussion

The development of a robust model for detecting the shal-
low and deepfakes oriented synthetic facial images on
diverse datasets and on cross-corpus settings is crucial to
combat future viral disinformation campaigns. Moreover,
lightweight deepfakes detectors are essential to deploy on
resource constraint portable devices for real-time applica-
tions. Therefore, we introduced an E-Cap Net embedded
with an MFM activation function that can detect fake facial
images generated via diverse techniques (like DeepFakes,
FaceSwap, Face2Face, NeuralTextures, StyleGAN, PGGAN,
and StarGAN) with good accuracy. On the other hand, the
MEM activation function provides sparse gradient and com-
pact feature representation, resulting in a model that is light
and converges quickly. The MFM activation function also
makes the model efficient by reducing training and test-
ing time as compared to other activation functions such as
ReLU, LeakyReLU, and Sigmoid. We used only 25 epochs
to train our model which is less than the number of epochs
used in these methods [11, 40] indicating that less training
time is required to train our proposed model E-Cap Net.
Therefore, our model is more efficient than existing methods
[11,40].

Detailed analysis of the literature shows that the existing
models are frequently evaluated on limited face manipula-
tion types and also are not well generalized for the other
manipulation types. For instance, the ADDNet-2D model
in [22] was only evaluated on the DeepFakes subset of the
FF++ dataset and does not provide better detection perfor-
mance for other subsets included in the FF++ dataset. More-
over, the model in [23] is cross-validated for fake images
altered using the image operations such as mean filtering
and JPEG compression but not for fake images generated
via diverse and different facial manipulation techniques.
Our proposed model is evaluated on all the subsets of the
FF++ dataset (i.e., DeepFakes, FaceSwap, Face2Face, and
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NeuralTextures) and also cross-validated for the detection of
face images generated through different and diverse facial
manipulation techniques (Sect. 4.9), thus solving the limi-
tations of these models [22, 23]. It is important to mention
that the proposed model demonstrates remarkable detection
results for cross-set and cross-dataset evaluation. Especially,
E-Cap Net trained on FF++ dataset provides remarkable
detection performance in detecting the face swap manipu-
lated images of WLRD and Celeb-DF datasets. However,
the model trained on the WLRD dataset gives unsatisfactory
results while detecting the fake images of FF++ and Celeb-
DF datasets. This might be due to the fact that the WLRD
dataset is small and not diverse as compared to FF++ and
Celeb-DF in terms of manipulation techniques, age, and
ethnicity.

Our proposed E-Cap Net is also robust towards the rota-
tion attacks even though the model is not trained on such
images (Sect. 4.6). The usage of the Capsule Network in
our E-Cap Net model eliminates the problem of viewpoint
variance, orientation and spatial information loss, and the
Picasso problem that exists in the CNN. Capsule Network
can handle viewpoint variance and Picasso problem since it
models the hierarchical spatial relations between the differ-
ent features of the image, rather than just detecting the fea-
tures like CNNs. For instance, the network can recognize the
relationship between facial features such as shape, position,
and size of the eyes and nose, curvature of the mouth, etc. As
the proposed model is based on Capsule Network, therefore,
our E-Cap Net also learns the orientation and location of
the parts (nose, eyes, lips, etc.) of real and fake faces. Thus,
our model can capture the inconsistency in the orientation,
position, and size of the components of the facial image,
which enables the model to handle the images having all the
mandatory parts but in the wrong place (Picasso problem).
It is also important to note that our model provides good
detection performance in the presence of varying illumina-
tion conditions, angled faces, and different ethnicities, ages,
and gender.

Multiclass classification is another important aspect of
deepfakes detection methods as it is more challenging than
the binary classification problem. Besides the binary classifi-
cation, our proposed E-Cap Net model also performed excep-
tionally well for multiclassification problem. Performance
evaluation of our model for binary and multiclass classifica-
tion (Tables 4, 5) shows remarkable results while detecting
the GAN-generated images in both the binary and multiclass
classification problems and thus overcomes the limitation of
Face X-ray [24], which is unable to detect the entire synthetic
faces. From Table 8, we can see that our proposed model
brings a 2.25% decrease in EER over the model introduced in
[36] for the DFFD dataset. On average, our proposed E-Cap
Net model increases the detection accuracy by 10% on FF++
than the comparative methods shown in Table 9. Therefore, in
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general, we can say that our proposed model achieves remark-
able results in detecting the manipulated facial images on all
the datasets (FF++, DFFD, and WLRD), which proves that
our model has the capability of detecting images generated
through different facial manipulation techniques and is not
limited towards the detection of specific fake face generation
technique.

6 Conclusion

This paper has presented a novel and robust deep learning
model E-Cap Net to detect the synthetic facial images gener-
ated through a variety of deepfakes algorithms. Our proposed
E-Cap Net model has implemented MFM as an activation
function which enabled it to become light and computationally
efficient. Our model is capable of reliable detection of manipu-
lated facial images in case of both binary and multiclass clas-
sification problems. We evaluated our proposed framework on
DFFD, WLRD, and FF++ datasets and showed that the pro-
posed model can effectively identify all types of manipulated
facial images including face swap, expression swap, entire
synthetic face and attribute manipulation. Extensive experi-
mentation has also been accomplished to exhibit the general-
izability of our model. We also demonstrate the effectiveness
of our proposed model against rotation attacks. Experimental
results indicated the great generalization aptitude of our pro-
posed E-Cap Net for cross-set and cross-dataset evaluation. In
the future, we plan to further improve the generalizability of
the proposed model by making it more robust for all types of
synthetic images. Additionally, we also intend to expand the
model for the detection of deepfakes videos.
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