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Abstract
Deepfakes represent the generation of synthetic/fake images or videos using deep neural networks. As the techniques used 
for the generation of deepfakes are improving, the threats including social media disinformation, defamation, impersona-
tion, and fraud are becoming more prevalent. The existing deepfakes detection models, including those that use convolution 
neural networks, do not generalize well when subjected to multiple deepfakes generation techniques and cross-corpora 
setting. Therefore, there is a need for the development of effective and efficient deepfakes detection methods. To explicitly 
model part-whole hierarchical relationships by using groups of neurons to encode visual entities and learn the relationships 
between real and fake artifacts, we propose a novel deep learning model efficient-capsule network (E-Cap Net) for classifying 
the facial images generated through different deepfakes generative techniques. More specifically, we introduce a low-cost 
max-feature-map (MFM) activation function in each primary capsule of our proposed E-Cap Net. The use of MFM activa-
tion enables our E-Cap Net to become light and robust as it suppresses the low activation neurons in each primary capsule. 
Performance of our approach is evaluated on two standard, largescale and diverse datasets i.e., Diverse Fake Face Dataset 
(DFFD) and FaceForensics++ (FF++), and also on the World Leaders Dataset (WLRD). Moreover, we also performed a 
cross-corpora evaluation to show the generalizability of our method for reliable deepfakes detection. The AUC of 99.99% 
on DFFD, 99.52% on FF++, and 98.31% on WLRD datasets indicate the effectiveness of our method for detecting the 
manipulated facial images generated via different deepfakes techniques.
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1  Introduction

Deepfakes refer to the generation of synthetic images or vid-
eos via deep neural networks. The term deepfake is a mix-
ture of two words, “deep learning” and “fake” [1] and origi-
nated after a Reddit user named “deepfakes”, who swapped 
celebrities’ faces in pornographic videos using deep learning 
techniques [2]. Autoencoders and generative adversarial net-
works (GANs) are the deep learning models that are mostly 
used to generate deepfakes with the aim of creating more 

realistic images or videos [2]. Deep learning models based 
on the autoencoders use the autoencoder–decoder pairing 
structure where autoencoders extract the latent features from 
the face images and decoders are used to reconstruct the 
images [3]. But, in GAN-based deep learning techniques, 
two models (named generative model and discriminative 
model) are trained simultaneously. The generative model 
also known as the generator is used to generate fake images 
whereas the discriminative model known as the discrimina-
tor plays the role of detecting the fake images generated via 
the generator. The objective of a generator (G) is to capture 
the data distribution while the discriminator (D) estimates 
the probability of whether the incoming data is either from 
the training or the sample from G [4]. The availability of a 
variety of deepfakes apps (including ReFace, FaceApp, Face 
Swap Live, DeepFace Lab) has made it easy even for the 
less tech-savvy people to generate the deepfakes. FakeApp 
introduced in 2017 was the first attempt at deepfake crea-
tion. ZAO is another app that can swap the user faces onto 
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movie star bodies and insert them into movies or TV clips 
[3]. Using the StyleGAN approach, the website [5] generates 
synthetic facial images with high-level realism. The com-
mercially available deepfakes applications enable everyone 
to generate fake images and videos, which has increased 
concerns about circulating disinformation on social media, 
defamation, frauds, and hoaxes [2]. Besides the drawbacks, 
deepfakes also have productive and creative benefits includ-
ing video dubbing of films, virtual try-on outfits, and educa-
tion via reanimating the historical characters [1]. However, 
the excessive malicious usages of deepfakes suppress its 
positivity [3]. Therefore, reliable detection of deepfakes is 
very important and necessitates the development of tools 
that can effectively detect deepfakes images.

Deepfakes can be categorized as (1) face swap, (2) entire 
face synthesis, (3) face attribute manipulation, and (4) 
expression swapping [2].

•	 In face swapping, fake images or videos are created by 
swapping the face of a person with another person in the 
target image or a video retaining the background, expres-
sions, and lighting [2]. The available models to create 
the swapped faces include FaceSwap [6], DeepFakes [7], 
and FaceShifter [8]. This type of manipulation can aid 
the film industry but can also be utilized for the wrong 
reasons such as financial fraud, hoaxes, etc. [3].

•	 Entire face synthesis includes the generation of realis-
tic non-existing faces with high quality and is generated 
using the GANs. Recently, the StyleGAN approach is 
introduced to generate high-quality synthetic facial 
images that have a high level of realism. Such manipu-
lation can be used for the creation of fake personas to 
spread disinformation on social media [1]. In the future, 
there exists a possibility that restoration methods such 
as GFP-GAN [9] can be used to suppress the appearance 
of forged content in GAN-generated images, thus, may 
make the detector job more difficult.

•	 In attribute manipulation, some face attributes (i.e., hair 
or skin color, gender, age, etc.) are modified. It is also 
known as face editing or retouching and can be used to 
try glasses, hairstyles, or makeup in a virtual environ-
ment [2].

•	 Expression swap involves the replacement of one per-
son’s facial expression with another in a video or image. 
An expression swap can be used to impersonate an iden-
tity as it allows one to animate the individual according 
to the attacker’s desires [1].

In the last few years, many researchers introduced the 
methods and approaches that can detect fake facial images 
generated through deepfakes techniques. Marra et al. [10] 
presented an incremental learning model that can discrimi-
nate new GANs generated images without degrading the 

performance of previous ones. The disadvantage of this 
model [10] is that it performs well when various GAN 
models are available in the training phase. OC-FakeDect 
introduced in [11] was a one-class classification model based 
on variational autoencoder (VAE). The model was trained 
only on the real images, whereas tested on both the real and 
fake facial images. This approach [11] is only evaluated on 
FaceForensics++ (FF++) dataset and can be extended for 
images generated via GANs. Yuyang et al. [12] introduced 
a frequency in face forgery network (F3-Net) that learned 
forgery clues via frequency-aware decomposition (FAD) and 
then extracted unusual frequency statistics among real and 
fake images through local frequency statistics (LFS). FAD 
and LFS features were then gradually fused to a module 
named as MixBlock. F3-Net was evaluated on a challeng-
ing FF++ dataset and achieved an accuracy of 90% on the 
low-quality images. Most of the existing works focused on 
the detection of some specific manipulation techniques to 
determine the trustworthiness of facial images but failed to 
generalize their models on cross-corpora evaluation. Fur-
thermore, most existing approaches for detecting deepfakes 
images are based on convolution neural networks (CNN) 
models and thus contain the drawbacks such as losing the 
features orientation and spatial information and not being 
equivariant, which means that CNNs cannot detect the 
images from different angles and rotated images if they are 
not trained on such images. Moreover, CNNs are unable 
to handle the Picasso problem (subject image with all the 
right components but not at the correct position) and often 
mislabeled such images.

The human brain analyzes the visual images through 
whole-part hierarchies such that it learns the features of 
the individual component and detects the orientation and 
relationship of the components in the whole subject image. 
To mimic the human brain’s learning, Capsule Networks 
have been proposed that build the whole-part hierarchies 
using the neurons to encode the part and learn the relation-
ship between the parts to detect the entire subject image, 
thus make the network interpretable and transparent. To 
address the aforementioned limitations of CNNs and exist-
ing deepfakes detection methods, we proposed a novel deep 
learning model efficient-capsule network (E-Cap Net) to 
efficiently and reliably detect the synthetic facial images 
generated through different deepfakes generative techniques. 
For shallow and deepfakes oriented synthetic facial images 
detection, the probability of object in the image and the 
orientation representing the parameters such as size, skin 
tone, object (i.e., nose, eyes, lips) orientation, and location 
in an image are important aspects that differentiate the fake 
face image from real one. In contrast to CNNs, our pro-
posed E-Cap Net has the ability to learn these aspects for 
the classification of synthetic facial images. E-Cap Net can 
detect the rotated images taken from different viewpoints 
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and also solves the Picasso problem. In our proposed model, 
we customized a capsule network and embedded a low-cost 
activation function max-feature-map (MFM) in its primary 
capsules. The embedded MFM activation function provides 
the compact representation of the features and enables our 
model to become light and computationally efficient. Moreo-
ver, our proposed model is capable of detecting multiple 
manipulation techniques including face swap, entire face 
synthesis, expression swapping, and face attribute manipu-
lation. We also evaluated our approach for binary and mul-
ticlass classification problems. The major contributions of 
this work are:

1.	 We propose a robust Efficient-Capsule deep learning 
model containing the low-cost MFM activation function 
for accurate detection of shallow and deepfakes oriented 
synthetic images.

2.	 Our proposed model detects multiple types of deep-
fakes and is robust against varied deepfakes generation 
algorithms, different illumination conditions, ethnicity, 
age, images captured from different viewpoints, rotated 
images, and the Picasso problem.

3.	 We performed extensive experimentation on multiple 
datasets (covering multiple types of deepfakes) and also 
showed the efficacy of the proposed model against the 
existing state-of-the-art methods.

4.	 We also conducted the cross-corpora evaluation to show 
the generalization aptitude of the proposed E-Cap Net 
while detecting the shallow and deepfakes oriented syn-
thetic images.

The remaining paper is organized as follows. In Sect. 2, 
we summarize the related work, while Sect. 3 presents our 
methodology for classifying the facial images either as real 
or fake. Experimental results are reported in Sect. 4. In 
Sect. 5, we provide the discussion. Finally, Sect. 6 presents 
the conclusion.

2 � Related work

We reviewed the existing deepfake image detection tech-
niques in Sect. 2.1, while Sect. 2.2 outlines the deepfake 
video detection. We also highlighted the limitations of exist-
ing deepfakes detection methods to present the knowledge 
gap in deepfakes detection.

2.1 � Fake images detection

Initially, handcrafted features were commonly used to detect 
the discrepancies and artifacts in the fake images/video’s 
synthesis process [2]. For example, Kim et al. [13] intro-
duced a method that used local speed pattern (LSP) features 

to train the SVM classifier to detect fake and real facial 
images. Similarly, Xiaoqing et al. [14] utilized the universal 
steganalytic features in order to detect the images altered 
by various image processing operations. The extraction of 
meaningful, distinctive, and most appropriate handcrafted 
features is a difficult task as these features are constructed 
by domain experts and demand strong domain knowledge.

With the evolution of CNN, many researchers have 
applied deep learning techniques to extract the salient fea-
tures automatically for image forensics. Bayar et al. [15] 
introduced convolution network architecture that detected 
different image manipulations and copy-editing operations 
without depending on the pre-selected features. In the same 
way, Rahmouni et al. [16] used a convolution network with 
a custom pooling layer to differentiate between the real and 
computer-generated visuals. The increasing use of CNNs 
has significantly enhanced the performance of deepfakes 
creation and detection, where models like autoencoders 
and GANs have made it possible to create photorealistic 
images and videos [17, 18]. In response to such photorealis-
tic manipulated content, efforts have been made to develop 
effective methods to detect face forgery in images/videos 
[2]. Mo et al. [19] presented a CNN-based model that can 
identify progressive growing GAN (PGGAN) generated fake 
images and achieved an accuracy of 99.4% on the image 
size of 256 × 256. The accuracy of this model decreases to 
96%, while reducing the image size to 128 × 128. Tariq et al. 
[20] introduced an ensemble ShallowNet classifier consist-
ing of shallow layers to detect the fake face images created 
via the GAN. This model [20] was evaluated on different 
image sizes and performed well on small image resolution 
i.e., 64 × 64. These GAN detection models [19, 20] show 
good results when tested on images that are homogeneous to 
the training set images. In other words, the generalizability 
of these models is unknown. Nataraj et al. [21] presented a 
model that detected the manipulated images by extracting 
pixel co-occurrence matrices and then passed them to the 
CNN. To show the generalizability of the model [21], cross-
validation was also performed. For this purpose, the cycle-
GAN images dataset (containing 35,302 images) was used to 
train the model, and then the trained model was tested on the 
StarGAN image dataset (containing 19,990 images) and vice 
versa. The lowest accuracy of 93.4% was attained with the 
model trained on the StarGAN image dataset as the classes 
were not uniformly distributed in the StarGAN dataset.

Besides the GAN-generated images dataset, researchers 
have also utilized other available datasets including FF++, 
DeepFake Detection, and Celeb-DF to evaluate their detec-
tion models. Zi et al. [22] presented an attention-based deep-
fake detection network ADDNet-2D for the detection of fake 
images. This model [22] consisted of ADD block followed 
by a 2D CNN network and a classification layer. Perfor-
mance of this model was evaluated on 6 datasets including 
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the DFD, DF-TIMIT (LQ, HQ), FF++ (LQ, HQ), and Wild-
Deepfake. The highest accuracy of 99.82% was achieved on 
the FF++ HQ dataset, whereas achieved the lowest accuracy 
of 76.25% on the WildDeepfake dataset [22]. This model 
[22] is only evaluated on the DeepFakes subset of the FF++ 
dataset. AMTENnet introduced in [23] was a combination 
of AMTEN and CNN for detecting the manipulated facial 
images. AMTEN performed the preprocessing task to high-
light discriminatory manipulated traces in the fake facial 
images. The manipulated traces were extracted by finding 
the difference between an input image and feature maps. 
Performance of this model [23] was evaluated on two data-
sets i.e., Hybrid Fake Face Dataset (HFF) and FF++. This 
work[23] performed the spatial filtering and lossy com-
pression on the HFF dataset and then cross-validated those 
images but did not perform the cross-corpora evaluation 
on different facial manipulation techniques to evaluate the 
generalizability of their model. For the detection of forgery 
in facial images, Li et al. [24] introduced a detector that 
used a face X-ray (grayscale image) to find the discrepan-
cies around the blending regions. The face X-ray detector is 
unable to perform well on the entire synthetic face as it relies 
on the presence of blending [24].

2.2 � Fake videos detection

The detection methods used to identify fake images are not 
adequate to expose fake videos due to the frame data deg-
radation and variable temporal characteristics between the 
set of frames [3]. Since digitally manipulated videos have 
temporal and intra-frame inconsistencies among the frames, 
Guera et al. [25] introduced a model that extracted frame 
features of a given video sequence using CNN and then 
passed the features to a long short-term memory (LSTM) 
network for analysis. Finally, a fully connected network 
was used to classify the video either as fake or real. For 
the evaluation of this model [25], 600 videos were gathered 
from different websites. Similarly, Sabir et al. [26] presented 
a pipeline consisting of two steps i.e., preprocessing and 
detection steps. Preprocessing step involved the detection, 
cropping, and alignment of faces in the frames while in the 
detection step, a recurrent convolution model (RCN) was 
used to identify the temporal artifacts between the set of 
frames. Along with the identification of temporal artifacts 
among video frames, researchers have also developed meth-
ods that detect the visual artifacts between the video frames 
to decide whether a given video sequence is manipulated 
or a real one [3]. Yang et al. [27] introduced a method that 
utilized 3D head poses to identify errors in a landmark loca-
tion. Head poses were extracted using 68 facial landmarks. 
Difference between the estimated head poses was treated 
as a feature vector and passed to the SVM classifier for the 
detection of deepfakes. Matern et al. [28] presented a simple 

pipeline to exploit the artifacts that arise from the lack of 
global consistency, imprecise geometry, and illumination 
estimation. Missing reflections, eye color differences, and 
missing details in mouth and eye areas were used to detect 
the manipulated videos. Facial landmarks features were used 
with the logistic regression and neural network. Using this 
pipeline [28], this work detected the deepfakes, face2face 
manipulations, and synthetic faces and achieved the AUC 
values of up to 86.6%. The shortcoming of this pipeline is 
that it requires the images to have some specific prerequisites 
such as visible teeth and open eyes. The overview of the 
related work for fake images and videos detection is pre-
sented in Table 1.

2.3 � Limitations of existing models

•	 Existing approaches are often evaluated on datasets with 
limited manipulation types, for instance, the FF++ data-
set is limited to two fake types: expression and identity 
swap. Similarly, the Celeb-DF dataset only contains the 
identity swap fake images.

•	 Most existing approaches are based on CNNs and have 
some limitations including viewpoint variance problems 
and not being able to overcome the Picasso problem [29]. 
The reason is the use of Maxpooling layer for conveying 
the information from one layer to another. Therefore, the 
use of Maxpooling results in the loss of pose-aware and 
spatial information, thus hinders them to discover more 
about the image.

•	 Most of the work on the detection of synthetic facial 
images does not study the generalization capability of 
the models. So largely, existing detection methods fail 
to generalize well on cross-corpora evaluation which 
is an important requirement while developing a syn-
thetic facial image detection considering the availability 
of multiple datasets and other repositories available in 
cyberspace.

3 � Proposed method

This section presents the architectural details of our pro-
posed deep learning model E-Cap Net. As an alternative to 
CNNs, Hinton et al. [30] first introduced the Capsule Net-
work which is viewpoint invariant and identifies the whole 
entity via identifying its parts first. Capsule Network builds 
the whole-part hierarchies, represents the subject image 
as parts, and captures the relationships between the parts, 
thus making it more robust to the viewpoint variations of 
the input image. Capsule Network consists of low-level 
(primary) and high-level (output) capsules. The primary 
capsules in the network encode the information about the 
pose, scale, orientation, and other properties of the parts 
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in the subject image while the output capsules contain the 
information about the prediction. The output vector of the 
low-level capsules is routed to the appropriate high-level 
capsule through dynamic routing. The capsules in Capsule 
Network output a vector with the length representing the 
probability of object in the image and the orientation repre-
senting the parameters such as size, object (i.e., nose, eyes, 
lips) orientation, and location in an image. Therefore, unlike 
CNNs, there is no loss of orientation and spatial information 
in Capsule Network, as along with the feature detection, it 
also detects the orientation of features, texture, and color. 
Therefore, keeping in view the benefits of Capsule Network 
over the CNNs, we present a customized Capsule Network 
for the detection of manipulated facial images generated 
through different deepfakes techniques.

3.1 � Architecture details

In our proposed E-Cap Net, after resizing the input image, 
the features are extracted from the resized image by utiliz-
ing a pre-trained VGG19 model. The extracted features are 
passed to the primary capsules in the customized Capsule 
Network and the outcome of the primary capsules is then 
passed to the output capsules through dynamic routing. 
Finally, the end results are calculated by computing the mean 
of activations of the output capsules. We customize Cap-
sule Network via embedding the MFM activation function 
in each primary capsule, for the classification of shallow and 

deepfakes oriented facial images. The detailed architecture 
of our proposed model is shown in Fig. 1. The whole pipe-
line includes the input image, custom VGG19 to extract the 
features, Capsule Network, and final output.

3.1.1 � Custom VGG19

The size of the input image is set to 300 × 300. The input 
image is passed to the custom VGG19 for extracting the 
features. The VGG19 is pre-trained using the ILSVRC data-
base [31]. VGG19 has a total of 16 convolution layers that 
are used for feature extraction and 3 fully connected lay-
ers used for classification. The feature extraction layers are 
divided into five groups each followed by the max-pooling 
layer. We used the VGG19 to the third max-pooling layer for 
feature extraction with the hypothesis that lower level layers 
can preserve more information about the image. We used 
only the first eight convolutions layers of VGG19 for fea-
ture extraction. The benefit of using the custom pre-trained 
VGG19 network is that it aids in moderating the problem of 
overfitting. The summary of the used custom VGG19 model 
is shown in Table 2.

3.1.2 � Efficient‑capsule network

After the feature extraction, the extracted features are fed to 
the Capsule Network for the classification task. Our Capsule 
Network is comprised of primary and output capsules. It has 

Table 1   Overview of related work

References Model/classifier Dataset Limitations

Fake images detection
Mo et al. [19] CNN PGGAN Poor results when reducing the image size
Tariq et al. [20] ShallowNet classifier  CelebA

 PGGAN
Generalizability of model is unknown

Nataraj et al. [21] Co-occurrence matrices + CNN  CycleGAN
 StarGAN

Performance degrades on jpeg compressed images

Zi et al. [22] CNN  DFD
 DF-TIMIT (LQ, HQ)
 FF++ (LQ, HQ)
 WildDeepfake

Poor performance on WildDeepfake dataset
Only consider the DeepFakes subset of FF++ dataset

AMTENnet [23] AMTEN + CNN  HFF
 FF++

Not perform the cross-corpora evaluation on different facial 
manipulation techniques

Face X-ray [24] CNN FF++ Unable to perform well on entire synthetic faces
Fake videos detection
Guera et al. [25] CNN + LSTM Private Not robust against manipulated videos unseen during training
Sabir et al. [26] CNN + RNN FF++ Reported results only for static images
Yang et al. [27] Landmarks + SVM  UADFV

 DARPA MediFor GAN 
image/video chal-
lenge

Performance degraded in case of blurry images

Matern et al. [28] MLP + logreg FF++ Applicable to the images having specific prerequisites e.g., 
open eyes, visible teeth etc.
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ten primary capsules, each having the same architecture. The 
summary of the internal architecture of a primary capsule 
is shown in Table 3. Each primary capsule further has five 
parts. The first two parts of each primary capsule encom-
pass the convolution layer (Conv2d), batch normalization 
layer (BatchNorm2d), Conv2d, and MFM. The third part 

Fig. 1   Detailed architecture of proposed model

Table 2   Summary of custom VGG19

Layer (type) Output shape Param #

Conv2d—1 [− 1, 64, 224, 224] 1792
ReLU—2 [− 1, 64, 224, 224] 0
Conv2d—3 [− 1, 64, 224, 224] 36,928
ReLU—4 [− 1, 64, 224, 224] 0
MaxPool2d—5 [− 1, 64, 112, 112] 0
Conv2d—6 [− 1, 128, 112, 112] 73,856
ReLU—7 [− 1, 128, 112, 112] 0
Conv2d—8 [− 1, 128, 112, 112] 147,584
ReLU—9 [− 1, 128, 112, 112] 0
MaxPool2d—10 [− 1, 128, 56, 56] 0
Conv2d—11 [− 1, 256, 56, 56] 295,168
ReLU—12 [− 1, 256, 56, 56] 0
Conv2d—13 [− 1, 256, 56, 56] 590,080
ReLU—14 [− 1, 256, 56, 56] 0
Conv2d—15 [− 1, 256, 56, 56] 590,080
ReLU—16 [− 1, 256, 56, 56] 0
Conv2d—17 [− 1, 256, 56, 56] 590,080
ReLU—18 [− 1, 256, 56, 56] 0
MaxPool2d—19 [− 1, 256, 28, 28] 0

Table 3   Summary of primary capsule

Layer (type) Output shape Param #

Conv2d—1 [− 1, 128, 224, 224] 295,040
BatchNorm2d—2 [− 1, 128, 224, 224] 256
Conv2d—3 [− 1, 128, 224, 224] 409,728
MFM—4 [− 1, 64, 224, 224] 0
Conv2d—5 [− 1, 32, 224,224] 18,464
BatchNorm2d—6 [− 1, 32, 224,224] 64
Conv2d—7 [− 1, 32, 224,224] 25,632
MFM—8 [− 1, 16, 224,224] 0
StatsNet—9 [− 1, 2, 16] 0
Conv1d—10 [− 1, 8, 8] 88
BatchNorm1d—11 [− 1, 8, 8] 16
Conv1d—12 [− 1, 1, 8] 25
BatchNorm1d—13 [− 1, 1, 8] 2
View—14 [− 1, 8] 0
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comprises statistical pooling while the last two parts include 
the convolution layer (Conv1d) and batch normalization 
layer (BatchNorm1d). For the convolution layers, we set the 
kernel size equal to 3 and stride of 1 except for the convolu-
tion layer after the statistical pooling layer for which we use 
a stride of 2 and kernel size is set to 5. Whereas for the MFM 
activation function, kernel size is set to 5, and a stride of 1 is 
used. MFM represses the activations of the neurons and thus 
enables the model to become robust and light [32], which 
helps to develop a computationally efficient model. Statisti-
cal pooling layer enables the network to extract the statistical 
properties by calculating the mean and standard deviation 
of frame-level features, which further helps in distinguish-
ing the real and manipulated facial images. For statistical 
pooling calculation, we computed the mean and standard 
deviation as follows:

where � denotes the mean, � indicates the standard devia-
tion, m × n represents the filter size and F represents the filter 
array.

There are two output capsules namely fake and real, for 
binary classification, whereas for multiclass classification, 
number of capsules depends on the number of classes avail-
able for classification. The outcomes of the primary cap-
sules are routed to the output capsules via a dynamic routing 
[33]. Dynamic routing computes the agreement between out-
comes of primary capsules and routed the obtained results 
to the appropriate output capsule (real or fake). Then the 
agreement for output capsules (real or fake) is calculated 
and the strength of the agreement determines the certainty 
of the label. The label is more certain if the agreement is 
stronger for an output capsule. The final output probabilities 
are determined based on the activations of neurons within 
output capsules. Finally, the softmax layer is applied to the 
output capsule vector to calculate the predicted label.

3.1.3 � MFM activation function

To improve the classification performance and make the 
model computationally efficient, we implemented an acti-
vation function called MFM in each primary capsule of our 
E-Cap Net, instead of the traditional activation function (i.e., 
ReLU, Tanh). MFM is a variant of the Maxout activation 
function and delivers competitive feature maps rather than 
approximating convex activation from various feature maps. 
MFM has a sparse gradient and compact representation, thus 
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allowing the model to become lighter. The sparse gradient 
can speed up the model convergence whereas compact repre-
sentation can reduce the data dimensionality. This activation 
function divides the input layer feature map into two neurons 
unit at random and then output the element-wise maximum 
between the two units, which could reduce the non-relevant 
part of the feature map and can eliminate the redundancy in 
feature representation. The structure of the MFM activation 
function is shown in Fig. 2.

For an input convolution layer cn ∈ RW×H , where n = {1, 
2, …, 2N}, H is the height, and W represents the width of 
the feature map, the MFM can be calculated as:

where 1 ≤ k ≤ N, 1 ≤ x ≤ W, 1 ≤ y ≤ H, and 2N denotes the 
channels of the input layer.

4 � Experimental results

In this section, we introduced the datasets and discussed the 
measures used to evaluate the performance of our proposed 
approach. We have performed extensive experimentation on 
the standard and diverse datasets for the evaluation of our 
model. The details of the experiments and their results are 
also discussed in the subsequent sections.

4.1 � Datasets

We evaluated the performance of the proposed model on the 
World Leader Dataset (WLRD) [34] and on two standard, 
largescale and diverse datasets that are FF++ [35] and the 
Diverse Fake Face Dataset (DFFD) [36]. The details of these 
datasets are presented in the subsequent sections.

4.1.1 � FaceForensics++ dataset

FaceForensics++ dataset is one of the largest deepfakes 
datasets and comprises 1000 original videos. These 
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Fig. 2   Structure of MFM activation function
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original videos are manipulated using different techniques 
including DeepFakes, FaceSwap, Face2Face, and Neural-
Textures. The source of original videos is YouTube, and 
all the videos contain the frontal face of a person without 
any occlusions. The videos in FF++ dataset is available in 
three compression levels, i.e., raw (without compression), 
high quality (HQ, low compression), and low quality (LQ, 
heavy compression) [35].

To evaluate our model, we need an image dataset. For 
this purpose, we split the FF++ video dataset into train-
ing, testing, and validation sets. Training set contains 720 
videos, while the testing and validation set comprises 140 
videos each. Afterward, we extracted the faces from the 
available video’s sequences (real and manipulated) to gen-
erate our image FF++ dataset. To generate our training 
set, we extract the first 100 frames of input video while for 
validation and testing, we extract only the first 10 frames. 
Shown in Fig. 3 are a few images from the FF++ dataset.

4.1.2 � World leader dataset

WLRD comprises the videos having the FaceSwap manip-
ulated images of different political leaders i.e., Obama, 
Hillary Clinton, Joe Bidden, Elizabeth Warren, and Bernie 
Sanders. Real videos are gathered from YouTube having 
only one person facing the camera. The comedic imper-
sonator of the leaders is used to create the swapped faces. 
This dataset is highly imbalanced as it contains a very 
small number of fake videos as compared to real videos 
of each leader. The dataset is splitted into training, valida-
tion, and testing set. A few images from WLRD are shown 
in Fig. 4.

4.1.3 � Diverse fake face dataset

DFFD as the name suggests comprises diverse types of 
fake faces which might be critical for the detection of face 
manipulations. DFFD comprises faces generated through 
StyleGAN, StarGAN, and PGGAN. DFFD also includes the 
real facial images of the FFHQ dataset. For real and each 
type of manipulated facial images, the dataset is splitted into 
50% for training, 45% for testing, and 5% for validation. In 
DFFD, 47.7% images are of male subjects, while 52.3% of 
images are of female subjects and the age range of the sub-
jects is 21–50 years [36]. Shown in Fig. 5 are a few images 
from the DFFD.

It is worth noticing that we performed our experiments on 
high-quality or low compression levels of the FF++ dataset. 
Moreover, for all the datasets (FF++, WLRD, and DFFD), 
training and validation images have never appeared in the test 

Fig. 3   FaceForensics++ dataset

Fig. 4   World leader dataset

Fig. 5   Diverse fake face dataset
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set. Thus, we tested our model on completely unseen images to 
show its effectiveness for manipulated facial image detection.

4.2 � Implementation details

For the video dataset such as FF++ and WLRD, we used 
multi-task cascaded convolution neural network (MTCNN) 
[37] to extract the faces from the video frames. The extrac-
tion of faces from the video frames is a preprocessing step 
in the case of a video dataset. The proposed model imple-
mentation is based on PyTorch. All the images are resized 
to 300 × 300 resolution. The model is trained using an Adam 
optimizer with beta = 0.9 and learning rate = 0.0005. Other 
parameters are: batch size = 32, epochs = 25 and drop-
out = 0.05. For model implementation and execution, we 
used the high-performance computing machine with the fol-
lowing specifications: 4 NVIDIA Tesla V100 16G GPUs, 
192 GB RAM, and 48 CPU Cores at 2.10 GHz.

4.3 � Evaluation measures

To evaluate the performance of our proposed model, we use 
the following three evaluation metrics:

Accuracy represents the ratio of correctly predicted fake 
and real facial images to the total number of fake and real 
images in the test set. Accuracy is calculated as follows:

where TP represents the correctly predicted fake facial 
images and TN indicates the correctly detected real face 
images. P and N represent the total number of fake and real 
images, respectively.

Equal error rate (EER) represents the value at the point 
where the false acceptance rate (FAR) and false rejection 
rate (FRR) are equal. FRR represents the rate at which the 
model incorrectly classifies the fake images as real ones 
while the FAR refers to the rate at which the model incor-
rectly classifies the real facial images as manipulated ones. 
The lower value of EER represents the good detection per-
formance of the model.

Area under curve (AUC) measures the classifier’s ability 
to discriminate between the two classes (i.e., real and fake). 
It summarizes the classifier’s performance by calculating 
the area under the receiver operating characteristic (ROC) 
curve. The higher AUC indicates better model performance 
in distinguishing between the two classes.

4.4 � Performance evaluation of proposed method 
for real vs fake classification

To evaluate the performance of our method for the detec-
tion of real and fake/synthetic images, we designed an 

(4)Accuracy =
TP + TN

P + N
,

experiment to classify the real and fake images on FF++, 
DFFD, and WLRD datasets. In this experiment, we have 
a binary classification problem where we have two classes 
i.e., real and fake. The real class consists of pristine images 
while the fake class contains one type of manipulated images 
at a time. We split our datasets into three sets i.e., training, 
validation, and testing. For the training of our model, we 
used the training and validation sets. After that, the trained 
model is evaluated on the testing set to obtain the detec-
tion results. The results of this experiment in terms of AUC, 
EER, and accuracy on DFFD, FF++, and WLRD datasets 
are presented in Table 4.

Table 4 shows that our proposed model performs remark-
ably well on the DFFD dataset and achieved accuracy in 
excess of 99% for each type of GAN-generated fake facial 
images. Moreover, our model is able to detect the fake 
images generated through the StarGAN technique with 100% 
accuracy and AUC. These results indicate the effectiveness 
of the proposed model for accurately detecting the facial 
images having attribute manipulation. Overall, we can say 
that the proposed model can detect GAN-generated fake 
facial images with higher accuracy and less error rate. For 
the WLRD dataset, it can be seen that our proposed E-Cap 
Net accurately classifies the faceswap of the leaders with the 
AUC closer to 99% excluding Clinton for which the AUC is 
93%. It can be observed from Fig. 4 that Clinton’s imposter 
is closer to Hillary Clinton resulting in a more realistic 
swapped face, increasing the possibility of lower detection 
results compared to other leaders. We can observe that for 
the FF++ dataset, our proposed model detects the images 
generated through different deepfakes techniques with good 
accuracy and AUC. The AUC of DeepFakes and FaceSwap 
subset of FF++ is 98.61% and 99.51%, respectively. This 
remarkable performance on the faceswap manipulation 

Table 4   Binary classification

Dataset Face manipulation 
generation techniques

AUC​ Accuracy EER

DFFD StyleGAN-FFHQ 99.96 99.59 0.24
StyleGAN-Celeba 99.99 99.66 0.32
PGGAN 99.92 99.99 0.08
StarGAN 100 100 0.01

FF++ DeepFakes 98.61 97.17 2.50
FaceSwap 99.51 98.68 1.50
Face2Face 99.68 98.75 1.29
NeuralTextures 95.14 91.61 8.25

WLRD Hillary Clinton 93.05 92.29 16.08
Joe Bidden 99.97 99.96 0.16
Obama 98.87 98.28 2.16
Bernie Sander 99.75 99.73 0.91
Elizabeth Warren 99.91 98.51 0.45
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indicates that our model has a strong capability of detecting 
swapped faces generated via different techniques. The detec-
tion accuracy of our proposed model is lowest on NeuralTex-
tures images which is 91.61%. After a detailed investigation, 
we found that the NeuralTextures generate fake faces with 
very few semantic changes which are quite difficult to detect. 
This gives an indication that the detection of this type of 
manipulation is a challenging task.

Overall, it can be inferred from the results in Table 4, 
that the proposed E-Cap Net can accurately detect different 
types of manipulated images generated using different gen-
erative algorithms. This could be due to the fact that E-Cap 
Net captures the relative position and hierarchal relation-
ship between different features in the facial image (such as 
eyes, nose, and mouth). Additionally, the MFM activation 
function can help the model to focus on the salient features 
in the given input image and reduce the impact of noisy or 
irrelevant information. Therefore, the proposed E-Cap Net 
can help to capture the compact and fine-grained details of 
input image allowing the network to better detect subtle dif-
ferences between real and fake faces.

4.5 � Performance evaluation of proposed method 
for multiclass classification

To examine the ability of our method for classifying multiple 
types of deepfakes, we designed an experiment to evalu-
ate the performance of our model for multiclass classifica-
tion problems on DFFD and FF++ datasets. In the case of 
FF++ multiclass classification, we have five classes named 
as DeepFakes, FaceSwap, Face2Face, NeuralTextures, 
and Real whereas, for DFFD multiclass classification, the 
classes are: StyleGAN-FFHQ, StyleGAN-Celeba, StarGAN, 
PGGAN and Real. We split both datasets into three sets i.e., 
training, validation, and testing. For the classification of the 
real and fake images, we trained our model using training 
and validation sets and then evaluated its performance on the 
testing set. For the FF++ dataset, the test set contains 1400 
images, whereas for DFFD there are 9000 images in each 
class. The results of this experiment in terms of accuracy 
for each class on DFFD and FF++ datasets are presented 
in Table 5.

For the multiclass classification of DFFD, the proposed 
model achieves an overall detection accuracy above 99%, 
indicating its ability to detect GAN-generated images accu-
rately. Table 5 shows that for multiclass classification of 
DFFD, the detection accuracy for StyleGAN-FFHQ and 
StyleGAN-Celeba falls to some extent as compared to the 
binary classification. The reason is that the images are gen-
erated through the same technique that is StyleGAN, the 
only difference between the two (StyleGAN-FFHQ and 
StyleGAN-Celeba) is the real images used to generate fake 
faces. So, there is a probability of misclassifying fake images 

generated via StyleGAN-FFHQ and StyleGAN-Celeba, in 
the case of multiclass classification. The overall detection 
accuracy for the FF++ dataset is 94% which indicates the 
good performance of our model in the case of multiclass 
classification. For the FF++ dataset, the accuracy of Deep-
Fakes and Face2Face falls whereas the accuracy of Fac-
eSwap and NeuralTextures increases slightly as compared 
to the binary classification. The reason is that in multiclass 
classification, there are more fake classes so the probabil-
ity of misclassifying a fake image increases which have an 
impact on the detection accuracy.

4.6 � Performance evaluation of proposed method 
on rotation attack

To check the effectiveness of our proposed E-Cap Net on the 
unseen rotated images, we designed an experiment, where 
we rotate the testing set images of different subsets of DFFD 
dataset at 11 different rotation configurations (30°, 45°, 90°, 
120°, 135°, 180°, 210°, 225°, 270°, 300°, 315°). Then, the 
model trained on the respective subset of DFFD dataset is 
used to evaluate the rotated images. For this experiment, we 
also compared the performance of E-Cap Net with our exist-
ing CNN-based model namely InceptionResNet-BiLSTM 
(IR-BiLSTM) [38]. The results of the experiment in terms 
of average accuracy are shown in Table 6. It is important 
to note that the models are trained only on straight images, 
the rotated images are not included in the training. From 
Table 6, it can be observed that a decrease in the detection 
accuracy occurs for the rotated images when compared with 
the results of straight images. E-Cap Net classifies rotated 
images of different subsets of the DFFD dataset with an 
accuracy equal to or greater than 75%. This indicates the 
fairly good robustness of our model against the rotation 
attack. It is also inferred that E-Cap Net performs better 
than IR-BiLSTM on both rotated and straight images. E-Cap 
Net attained such reasonable detection results for the rotated 
images, because the proposed model builds the whole-part 

Table 5   Multiclass classification

Datasets Classes Accuracy

DFFD Real 98.69
StyleGAN-FFHQ 99.07
StyleGAN-Celeba 97.69
PGGAN 99.99
StarGAN 100

FF++ Real 89.07
DeepFakes 95.76
FaceSwap 98.71
Face2Face 96
NeuralTextures 92.21
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hierarchies, represents the subject image as parts, and cap-
tures the relationships between the parts. Which enables the 
model to become robust to the variations of the input image, 
not seen during the training time.

4.7 � Ablation study

We conducted an ablation study to investigate the impact 
of various activation functions on the performance and 
efficiency of our proposed model in terms of accuracy and 
training time. We conducted this experiment to show that 
our proposed E-Cap Net model is more effective and com-
putationally efficient than its variants. This experiment is 
performed on the StyleGAN-FFHQ subset of the DFFD 
dataset and experimental protocols are kept the same as 
mentioned in Sect. 4.4 for the DFFD dataset. We employed 
four activation functions i.e., ReLU, LeakyReLU, Sigmoid, 
and MFM in Capsule Network to compare the performance 
and computational cost. The results of this ablation study 
are presented in Table 7.

It can be observed from the results that the MFM activa-
tion function has the least training time and achieved the 
highest accuracy as compared to other activation functions 
i.e., ReLU, LeakyReLU, and Sigmoid. Our proposed E-Cap 
Net outperforms all its variants by achieving the accuracy 
of 99.96% and attained the accuracy gain of 0.12 from the 
second-best performing activation function i.e., ReLU. How-
ever, ReLU has the most computational cost since its train-
ing time is the longest of all. From the results in Table 7, it 
can be concluded that MFM is a low-cost activation function 
that makes the model light and more robust while detecting 
fake images. Thus, we can summarize that our proposed 

E-Cap Net with MFM activation function can accurately 
detect synthetic fake faces and is more efficient and robust 
compared to its other variants.

4.8 � Comparison with existing state‑of‑the‑art 
methods

To evaluate the performance and effectiveness of our pro-
posed approach against existing state-of-the-art methods, 
we designed a two-stage experiment. In the first stage of 
this experiment, we compared the overall detection results 
of classification on two datasets (DFFD and FF++) as the 
existing methods only provide the overall classification 
results. To conduct the experiment, experimental settings are 
kept the same as mentioned in Sect. 4.5. For the DFFD data-
set, we reported the overall AUC and EER of our proposed 
model for multiclass classification as done in the existing 
works. Likewise, for the FF++ dataset, we only reported the 
overall detection accuracy for comparing our model with the 
existing methods. In Table 8, we compared the results of our 
approach on DFFD with existing methods whereas Table 9 
shows the comparison of results on the FF++ dataset.

From Table 8, it is noticeable that our proposed model 
achieved the best performance on DFFD than any other 
stated model. Thus, our proposed approach is able to detect 
entirely synthetic facial images with almost 100% AUC. In 
other words, our model outperforms in detecting the GAN-
generated facial images with an accuracy of 99.92%. Moreo-
ver, the EER value of our model is lowest than the other 
stated methods, which also indicates a good detection per-
formance. From Table 9, we can see that our proposed model 
achieved an accuracy of 94.51% which is the highest among 

Table 6   Performance of E-Cap 
Net on rotation attack

Subsets of DFFD dataset

StyleGAN-FFHQ StyleGAN-
Celeba

PGGAN StarGAN

E-Cap Net Straight images 99.59 99.66 99.99 100
Rotated images 75 77.91 80.45 78

IR-BiLSTM [38] Straight images 90 97.86 97.86 99.52
Rotated images 60.88 64.5 72.66 74.4

Table 7   Ablation study

The best results are in bold

Activation function in pro-
posed model

Accuracy Training time

Sigmoid 99.49 2 h 40 min
LeakyReLU 99.53 2 h 30 min
ReLU 99.84 3 h
MFM 99.96 2 h

Table 8   Comparison with existing methods using DFFD

The best results are in bold

Models AUC​ EER

Xception + Reg. [36] 99.64 2.23
VGG16 + MAM [36] 99.67 2.66
Representative forgery mining (RFM) 

[39]
99.96 –

E-Cap Net (proposed) 99.99 0.41
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the stated methods. As compared to the previous model [23], 
our approach increases the detection accuracy by 4%.

In the second stage of this experiment, we compared the 
results of our proposed E-Cap Net with [34] on the WLRD 
dataset. The experimental protocols are kept the same as 
mentioned in Sect. 4.4. Results in terms of AUC are dem-
onstrated in Table 10. It can be noticed that our model out-
performs in detecting swapped faces of Obama, Sanders, 
and Warren compared to [34] with the AUC gain of 3.87%, 
3.75%, and 1.91%, respectively. However, for faceswap of 
Clinton, our AUC is slightly less than [34].

In general, our proposed method provides remarkable 
detection results on all datasets against the existing state-
of-the-art methods, which shows its ability to detect dif-
ferent types of facial image manipulation. As we used two 
diverse datasets (DFFD and FF++) and a WLRD dataset 
for the evaluation of our proposed methodology, which 
are completely different from each other and contain the 
facial images generated through different deepfakes tech-
niques. These datasets encompass fake facial images that 
cover categories of deepfakes (i.e., entire face synthesis, 
face swap, attribute manipulation, and expression swap). 
The good detection performance of our proposed model on 
all datasets reveals its ability to identify manipulated facial 
images generated through widely used deepfakes methods. 
Therefore, it is obvious that our model is not limited to the 
detection of specific deepfake technique but is able to detect 
various face manipulation techniques. This shows that our 
proposed model is generalizable and has the capability to 
detect manipulated facial images generated via several fake 
face generation techniques.

4.9 � Cross‑corpora evaluation

To assess the generalizability of our proposed method, we 
also performed the cross-corpora evaluation. The main pur-
pose of cross-corpora evaluation is to analyze the potential 
of the proposed method in real-world applications. We cross-
validated the fake facial images generated through different 
deepfakes techniques. For this purpose, we designed two 
experiments, cross-set and cross-dataset. The details of the 
experiments are provided in the subsequent sections.

4.9.1 � Cross‑set

To evaluate the generalizability of our proposed model for 
subsets of the FF++ and DFFD dataset, we designed a cross-
set experiment. This experiment is carried out in different 
phases for both datasets based on the combination of manip-
ulated images subsets during training. There are four com-
binations of fake class for both datasets (DFFD and FF++). 
For FF++, the four combinations are: (1) DeepFakes + Fac-
eSwap + Face2Face (DF + FS + F2F), (2) DeepFakes + Fac-
eSwap + NeuralTextures (DF + FS + NT), (3) Deep-
Fake + Face2Face + NeuralTextures (DF + F2F + NT), (4) 
FaceSwap + Face2Face + NeuralTextures (FS + F2F + NT). 
Whereas the four fake class combinations for DFFD dataset 
are: (1) StyleGAN-Celeba + StyleGAN-FFHQ + PGGAN 
(SGC + SGF + PGG), (2) StyleGAN-Celeba + StyleGAN-
FFHQ + StarGAN (SGC + SGF + SG), (3) StyleGAN-Cel-
eba + PGGAN + StarGAN (SGC + PGG + SG), (4) Style-
GAN-FFHQ + PGGAN + StarGAN (SGF + PGG + SG). 
We trained the model on real and fake images where the 
fake class contains images from three subsets. The trained 
model is then evaluated on the remaining unseen subset. 
For instance, considering the DFFD dataset, in the first 
phase, we trained the model on real and fake images where 
the fake class contains three types of manipulated images 
(i.e., StyleGAN-Celeba, StyleGAN-FFHQ, and PGGAN). 
After that, an unseen subset i.e., StarGAN is used to evalu-
ate the trained model and so on. The results of cross-set 
experiments for the DFFD dataset are shown in Table 11. 
Likewise, for the FF++ dataset, during the first phase, we 
trained the model on real and fake classes (containing fake 
images of FaceSwap, Face2Face, and NeuralTextures) and 

Table 9   Comparison with existing methods using FF++

The best results are in bold

Models Accuracy

fCNN [40] 78.3
OC-FakeDect1 [11] 84.25
OC-FakeDect2 [11] 85.8
AMTENnet [23] 90.11
E-Cap Net (proposed) 94.51

Table 10   Comparison with the existing method using WLRD

The best results are in bold

Models AUC​

Clinton Joe Bidden Obama Sander Warren

Agarwal et al. [34] 95 – 95 96 98
E-Cap Net (pro-

posed)
93.05 99.97 98.87 99.75 99.91

Table 11   Cross-set evaluation on DFFD dataset

Training Testing Results

Accuracy AUC​

SGC + SGF + PGG SG 96.62 99.31
SGC + SGF + SG PGG 99.24 99.94
SGF + PGG + SG SGC 99.63 99.96
SGC + PGG + SG SGF 51.70 83.43
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then evaluated it on the unseen subset DeepFakes. The cross-
set experimental results on the FF++ dataset are reported 
in Table 12.

As noted from Table 11, our proposed method outper-
forms with an AUC of 99% on the unseen subset of the 
DFFD dataset except for StyleGAN-FFHQ. Therefore, it is 
concluded that our proposed model trained on GAN-gener-
ated fake images outperforms in accurately detecting other 
unseen entire synthetic faces and attribute manipulated fake 
images. From Table 12, it can be observed that AUC drops 
when E-Cap Net is evaluated for totally unseen subsets of 
the FF++ dataset. The highest achieved AUC is 82% for 
detecting the DeepFakes subset as an unknown class while 
the lowest achieved AUC is 45.98% on the FaceSwap subset. 
The fact that only a small number of frames are manipu-
lated in the FaceSwap subset could be the possible reason for 
lower AUC. All generative approaches utilized to create the 
fake faces in the FF++ dataset are completely distinct. For 
instance, Face2Face and FaceSwap are computer graphics-
based methods for generating the manipulated facial images 
while DeepFakes and NeuralTextures are the deep learn-
ing-based approaches. Moreover, DeepFakes and FaceSwap 
include the face swap manipulation while Face2Face and 
NeuralTextures comprise expression swap manipulation. 
The unsatisfactory results in the case of FF++ dataset are 
attributed to the fact that the training and testing set in the 
cross-set examination use the synthetic faces generated via 
distinct and diverse fake face creation techniques. Thus, we 
can conclude that, in the case of cross-set experiments, our 
proposed model is capable of accurately detecting unseen 
synthetic facial images generated through other GAN-based 
techniques. This proves that our proposed approach has good 
generalization ability, especially for GAN-generated fake 
facial images.

4.9.2 � Cross‑dataset

To analyze the generalizability of our proposed E-Cap Net 
over distinct datasets, we performed a cross-dataset experi-
ment using FF++ and WLRD datasets. The cross-dataset 
experiment has the following scenarios: (1) training on all 
subsets of FF++ dataset and testing on WLRD, (2) training 

on all subsets of FF++ dataset and testing on the Celeb-DF 
dataset [41], (3) training on all the subsets of WLRD and 
testing on FF++ dataset and (4) training on all the subsets 
of WLRD and testing on Celeb-DF dataset. The results are 
demonstrated in Table 13.

It can be observed from Table 13 that the proposed model 
trained on the FF++ dataset provides incredible results 
while detecting face swap manipulation of different leaders 
in WLRD. The highest achieved AUC is 99.39% and the 
lowest AUC is 76%, while detecting the swapped faces of 
different leaders. However, for the comedic imposter of dif-
ferent leaders, the results are slightly lower than face swap 
manipulation detection. The highest AUC of 87% is attained 
on the imposter of Joe Bidden. As the comedic imposter is 
a real person impersonating himself as the leader and not 
a synthetic content, this could be the possible reason for 
lower accuracy and AUC on the imposter subsets of dif-
ferent leaders. Likewise, E-Cap Net trained on the FF++ 
dataset when evaluated on the Celeb-DF dataset provides 
an accuracy of 83.65% and AUC of 67.94%. Additionally, 
testing accuracy of 69.38% and AUC of 57.24% are achieved 
on the Celeb-DF dataset for the model trained on the WLRD 
dataset. Celeb-DF dataset contains the high-quality realistic 
swapped faces with no color mismatch and decreased tempo-
ral flickering making the detection task more difficult. The 
dataset is highly imbalanced which can be the reason for low 
AUC value as compared to the accuracy. From Table 13, it 
is clear that the model trained on the WLRD dataset when 
evaluated on the FF++ dataset shows acceptable detection 
results except for the FaceSwap subset. The WLRD dataset 
contains the swapped faces generated through GAN-based 
algorithm. However, in the FF++ dataset, DeepFakes and 
FaceSwap are the subsets that contain swapped faces, the 

Table 12   Cross-set evaluation on FF++ dataset

Training Testing Results

Accuracy AUC​

FS + F2F + NT DF 75.30 82.24
DF + FS + NT F2F 63.46 70.93
DF + FS + F2F NT 56.46 64.58
DF + F2F + NT FS 48.50 45.98

Table 13   Cross-dataset evaluation

Training Testing Results

Accuracy AUC​

FF++ Clinton Faceswap 92.32 99.14
Imposter 55.60 67.27

JB Faceswap 97.71 99.39
Imposter 84.59 87.06

Obama Faceswap 92.96 97.64
Imposter 71.04 74.77

Sander Faceswap 73.03 74.09
Imposter 74.03 84.36

Warren Faceswap 87.97 96.07
Imposter 76.16 76.86

WLRD DeepFakes 70.72 68.35
FaceSwap 44.91 38.94
Face2Face 51.32 52.48
NeuralTextures 67.65 60.69
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other two subsets (Face2Face and NeuralTextures) contain 
expression-swapped faces. The trained model shows good 
detection results for the DeepFakes subset, however, the 
poor detection result on the FaceSwap subset could be due 
to the reason that it involves the graphics-based method to 
generate the fake face. Moreover, the WLRD dataset is not 
diverse as it only contains the videos of five leaders, there-
fore, the model trained on this dataset is not robust enough 
to detect fake faces of diverse FF++ and Celeb-DF datasets. 
The remarkable detection results on the Faceswap subsets 
of WLRD and Celeb-DF dataset in the case of cross-dataset 
setting demonstrate the strong generalization ability of our 
proposed E-Cap Net especially when the fake face genera-
tion techniques are quite different from each other.

5 � Discussion

The development of a robust model for detecting the shal-
low and deepfakes oriented synthetic facial images on 
diverse datasets and on cross-corpus settings is crucial to 
combat future viral disinformation campaigns. Moreover, 
lightweight deepfakes detectors are essential to deploy on 
resource constraint portable devices for real-time applica-
tions. Therefore, we introduced an E-Cap Net embedded 
with an MFM activation function that can detect fake facial 
images generated via diverse techniques (like DeepFakes, 
FaceSwap, Face2Face, NeuralTextures, StyleGAN, PGGAN, 
and StarGAN) with good accuracy. On the other hand, the 
MFM activation function provides sparse gradient and com-
pact feature representation, resulting in a model that is light 
and converges quickly. The MFM activation function also 
makes the model efficient by reducing training and test-
ing time as compared to other activation functions such as 
ReLU, LeakyReLU, and Sigmoid. We used only 25 epochs 
to train our model which is less than the number of epochs 
used in these methods [11, 40] indicating that less training 
time is required to train our proposed model E-Cap Net. 
Therefore, our model is more efficient than existing methods 
[11, 40].

Detailed analysis of the literature shows that the existing 
models are frequently evaluated on limited face manipula-
tion types and also are not well generalized for the other 
manipulation types. For instance, the ADDNet-2D model 
in [22] was only evaluated on the DeepFakes subset of the 
FF++ dataset and does not provide better detection perfor-
mance for other subsets included in the FF++ dataset. More-
over, the model in [23] is cross-validated for fake images 
altered using the image operations such as mean filtering 
and JPEG compression but not for fake images generated 
via diverse and different facial manipulation techniques. 
Our proposed model is evaluated on all the subsets of the 
FF++ dataset (i.e., DeepFakes, FaceSwap, Face2Face, and 

NeuralTextures) and also cross-validated for the detection of 
face images generated through different and diverse facial 
manipulation techniques (Sect. 4.9), thus solving the limi-
tations of these models [22, 23]. It is important to mention 
that the proposed model demonstrates remarkable detection 
results for cross-set and cross-dataset evaluation. Especially, 
E-Cap Net trained on FF++ dataset provides remarkable 
detection performance in detecting the face swap manipu-
lated images of WLRD and Celeb-DF datasets. However, 
the model trained on the WLRD dataset gives unsatisfactory 
results while detecting the fake images of FF++ and Celeb-
DF datasets. This might be due to the fact that the WLRD 
dataset is small and not diverse as compared to FF++ and 
Celeb-DF in terms of manipulation techniques, age, and 
ethnicity.

Our proposed E-Cap Net is also robust towards the rota-
tion attacks even though the model is not trained on such 
images (Sect. 4.6). The usage of the Capsule Network in 
our E-Cap Net model eliminates the problem of viewpoint 
variance, orientation and spatial information loss, and the 
Picasso problem that exists in the CNN. Capsule Network 
can handle viewpoint variance and Picasso problem since it 
models the hierarchical spatial relations between the differ-
ent features of the image, rather than just detecting the fea-
tures like CNNs. For instance, the network can recognize the 
relationship between facial features such as shape, position, 
and size of the eyes and nose, curvature of the mouth, etc. As 
the proposed model is based on Capsule Network, therefore, 
our E-Cap Net also learns the orientation and location of 
the parts (nose, eyes, lips, etc.) of real and fake faces. Thus, 
our model can capture the inconsistency in the orientation, 
position, and size of the components of the facial image, 
which enables the model to handle the images having all the 
mandatory parts but in the wrong place (Picasso problem). 
It is also important to note that our model provides good 
detection performance in the presence of varying illumina-
tion conditions, angled faces, and different ethnicities, ages, 
and gender.

Multiclass classification is another important aspect of 
deepfakes detection methods as it is more challenging than 
the binary classification problem. Besides the binary classifi-
cation, our proposed E-Cap Net model also performed excep-
tionally well for multiclassification problem. Performance 
evaluation of our model for binary and multiclass classifica-
tion (Tables 4, 5) shows remarkable results while detecting 
the GAN-generated images in both the binary and multiclass 
classification problems and thus overcomes the limitation of 
Face X-ray [24], which is unable to detect the entire synthetic 
faces. From Table 8, we can see that our proposed model 
brings a 2.25% decrease in EER over the model introduced in 
[36] for the DFFD dataset. On average, our proposed E-Cap 
Net model increases the detection accuracy by 10% on FF++ 
than the comparative methods shown in Table 9. Therefore, in 
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general, we can say that our proposed model achieves remark-
able results in detecting the manipulated facial images on all 
the datasets (FF++, DFFD, and WLRD), which proves that 
our model has the capability of detecting images generated 
through different facial manipulation techniques and is not 
limited towards the detection of specific fake face generation 
technique.

6 � Conclusion

This paper has presented a novel and robust deep learning 
model E-Cap Net to detect the synthetic facial images gener-
ated through a variety of deepfakes algorithms. Our proposed 
E-Cap Net model has implemented MFM as an activation 
function which enabled it to become light and computationally 
efficient. Our model is capable of reliable detection of manipu-
lated facial images in case of both binary and multiclass clas-
sification problems. We evaluated our proposed framework on 
DFFD, WLRD, and FF++ datasets and showed that the pro-
posed model can effectively identify all types of manipulated 
facial images including  face swap, expression swap, entire 
synthetic face and attribute manipulation. Extensive experi-
mentation has also been accomplished to exhibit the general-
izability of our model. We also demonstrate the effectiveness 
of our proposed model against rotation attacks. Experimental 
results indicated the great generalization aptitude of our pro-
posed E-Cap Net for cross-set and cross-dataset evaluation. In 
the future, we plan to further improve the generalizability of 
the proposed model by making it more robust for all types of 
synthetic images. Additionally, we also intend to expand the 
model for the detection of deepfakes videos.
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