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Abstract
Due to the advancements in cutting-edge generative AI algorithms, generating hyper realis-
tic deepfake videos has become easier for the public. This hyperrealism consequently fails 
contemporary methods to reliably discriminate between original and fake videos. There-
fore, to counter any threat caused by these next-generation artificially generated videos, 
dependable approaches are required to address this classification challenge. To achieve this 
objective this paper presents an interdisciplinary approach that integrates game theory with 
deep learning to bring a novel solution to the problem of deepfake detection and protect 
the detectors against anti-forensics attack. To the best of our knowledge, there does not 
exist any other work dedicated to video deepfake detection using the integrated approach 
of game theory and deep learning. The game is designed for two players to distinguish 
between pristine and deepfake videos. The game utilizes different strategies for the data 
manipulator as a player P1 and the deepfake detector as P2. Strategies used for P1 involve 
the formation of the subsets like open and close-set, combined subsets, imbalanced dataset, 
and post-processing attacks to create challenging strategies for P2. To counter the strate-
gies of P1, we propose a novel Regularized Forensic Efficient Net (RFE Net) that employs 
regularization techniques, such as batch normalization, dropout, augmentation, and early 
stopping. Based on the P1 move, the detector chooses the regularization techniques by 
considering factors such as generalizability and efficiency. Regularization-based strategies 
improve the performance of our model when compared to contemporary methods. Compu-
tation of the Nash equilibrium with the proposed zero-sum game helps to effectively detect 
deepfakes and leads the game to maximum payoff. Performance of the proposed game the-
ory-based RFE Net was measured on standard and diverse datasets of FaceForensic++, 
DFDC preview, CelebDF, DFFD, and the World leader’s dataset, including cross-set and 
cross-corpus evaluation. Additionally, we also performed the post-processing attacks eval-
uation and explainability analysis. Experimental results demonstrate that the proposed RFE 
Net outperforms state-of-the-art methods for deepfakes detection in the defined premises.
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1  Introduction

Recent years have witnessed the exponential growth of multimedia content such as images, 
videos, and audio, on the internet due to the easy availability of economical gadgets like 
smartphones and digital cameras. According to a survey [1], up to 4 to 5 billion posts are 
shared on social media platforms daily, and most of these are images and videos. With the 
introduction of sophisticated AI algorithms that can easily manipulate vast quantities of 
multimedia content, spurred by considerable progress in the field of generative AI, fake 
images and videos can be created in minutes. AI-based algorithms like generative adver-
sarial networks (GANs) [2], diffusion models [2], and automatic image and video editing 
tools such as Photoshop have made it convenient to modify and generate fake social media 
content in a noticeably short time. The massive increase in fake content leads to the spread 
of disinformation and misinformation online via social media platforms.

In the last few years, the term “Deepfake” has become more familiar because of social 
and electronic media platforms. Deepfakes are videos or audio generated from deep learn-
ing algorithms to create synthesized content, usually with the intent to deceive. Deepfakes 
can be used to spread disinformation and misinformation around the world and pose a 
serious new threat in the form of falsified “evidence”. The use of robust and easy-to-use 
manipulation tools, like REFACE [3], DeepFaceLab [4], and others, makes the authentica-
tion and integrity verification of electronic media even more difficult. Identity and expres-
sion swapping, and lip-syncing are a few of the diverse types of deepfakes. Identity swap-
ping (Faceswap, Face shifter, and DeepFakes) [5] exchanges the faces of the source and 
target person using a deep learning-based or graphics-based manipulation like graphic ren-
dering [6]. Deepfakes with face swapping are frequently used to harm someone’s reputa-
tion. In lip-sync-based [7] deepfakes, the lip movement of the targeted person is adjusted 
to match a specific audio recording. Attackers use lip-syncing to give the impression that 
their target is speaking the falsified audio that accompanies such clips. Expression swap-
ping [8] includes the face2face [9] and neural texture methods. In this form of deepfake, 
an impersonator may manipulate the source person’s expression, but also, in more extreme 
examples, complete body movements during image or video modification. Society is at 
risk because malicious actors use deepfakes to create false profiles to disseminate disin-
formation on social media. In addition to bolstering belief in deepfake-created content, the 
development of compelling deepfake apps has frustrated world leaders and celebrities who 
are often the targets of such attacks. Deepfakes are becoming increasingly difficult to spot 
on social media because modern-day sophisticated techniques are good enough to fool an 
uninformed public.

Different approaches for video deepfake detection have been used, including hand-
crafted features-based with back-end ML or DL classifiers, end-to-end DL, and DL fea-
tures extractor-based with conventional ML classifiers. ELA [10], SURF [11], MDHFD 
[12] techniques are used in pre-processing. These descriptors extract useful features to train 
a traditional ML classifier like an SVM, but they are computationally expensive. End-to-
end learning uses DL to extract and train features between input and output layers. Con-
volutional neural networks (CNN) train all parts simultaneously. Pre-trained models like 
ResNet, Inception Net, etc., extract deep features and train conventional ML algorithms 
during DL feature extraction. DL-based deepfake detectors like fused models [13] and 
vision transformers [14] are computationally complex. Few research [13–15] employs vari-
ous regularisation techniques for deepfake detection; however, we present an integrated 
approach of game theory and deep learning. Although various regularisation techniques 
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are effective in deepfake detection, a game theory approach that incorporates regularization 
has the potential to provide more comprehensive and resilient detection capabilities. All 
the above-mentioned deepfake detection techniques need further improvements in effec-
tiveness, efficiency, robustness to different postprocessing attacks, and generalizability.

In recent years, game theory has received considerable attention in the field of com-
puter science [16], particularly in its application to artificial intelligence, neural networks 
[17], and deep learning [18]. Game theory is a method of analyzing strategic interactions 
between players with self-interest. Because of this, it has significant applications in eco-
nomics and a variety of other fields, as well as computer science. All these disciplines 
share an interest in strategic decision-making and determining the optimal structure for 
these interactions. Game theory is the study of strategies to explain the interaction between 
players to find an optimal solution to achieve a specific outcome. Emile Borel was perhaps 
the first mathematician to organize a system for playing games. The concept of probabil-
istic game theory in strategic games of chance was then properly introduced by Jhon Von 
Neumann and Oskar Morgenstern in 1928 [19]. Together they made advances in the field 
of research based on game theory. Based on Neumann’s research, the min-max theorem 
for a two-player, zero-sum game with pure strategies was introduced. Min-max specified 
a required outcome and a payoff in the form of a win or a loss. In a zero-sum game, only 
these two outcomes are defined. Game theory investigates how intelligent players should 
act in a given scenario to maximize their payoffs. One player receives an input, which is 
the current state of the other player. The strategy then chooses an action that changes the 
present state, and the value of the state transition is communicated to the player, called a 
payoff. The players learn the policy through continuous trial and error.

The motivation of this research is to devise an interdisciplinary approach involving 
game theory with deep learning. The existing deepfake detectors mostly used hand-engi-
neered or deep learning techniques, which are not robust and lack generalizability in sev-
eral conditions like cross-set scenarios. The contemporary methods are sensitive to post-
processing attacks like noise and blurriness. In addition, the existing methods used DL 
techniques as a black box model, which lacks the explainability factor. To tackle all these 
problems, the proposed research aims to provide a generalizable and explainable deepfake 
video detection approach based on a game theory idea in which the data manipulator and 
detector are considered as two players in a zero-sum game. The game is designed for two 
players to distinguish between pristine and deepfake videos. The game utilizes different 
strategies for the data manipulator as a player P1 and the deepfake detector as P2. Strate-
gies used for P1 involve the formation of subsets like open and close-set, combined subsets, 
imbalanced datasets, and post-processing attacks to create challenging strategies for P2. To 
counter the strategies of player P1, we propose player P2, a novel Regularized Forensic Effi-
cient Net (RFE Net) a game theory-based deepfake detector that employs various regulari-
zation techniques, such as batch normalization, dropout, augmentation, and early stopping, 
with a deep neural network. Players follow mixed random strategies to achieve better out-
comes and maximize the Nash equilibrium (NE), a state where players reach their desired 
goal. Strategy plays a pivotal role in achieving the optimal outcome. To overcome limita-
tions in the existing approaches, the proposed model can detect several types of video for-
geries, such as identity swapping (face-swap, deepfakes), expression swapping (face2face, 
neural textures), lip-syncing, and the comedic impersonator. To maximize the payoff of 
the Nash state, the proposed RFE Net architecture uses regularization-based strategies. To 
our knowledge, this unique approach utilizes the principles of game theory to analyze and 
identify deepfake videos accurately. The proposed research improves the generalizability of 
the model in contrast to contemporary CNN-based deep fake detection algorithms.
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The following are the main contributions of this research:

•	 We propose a novel Regularized Forensic Efficient Net model, a combination of 
supervised learning and game theory for video deepfake detection.

•	 Proposed RFE Net can accurately identify several types of deepfakes, including 
expression, identity swap, and lip-syncing. Using regularization techniques in the 
proposed model improves the robustness and generalizability of the model and helps 
combat post-processing attacks. Moreover, we employ the ELU activation function 
to prevent neurons from dying, regularity for better gradient flow and accelerated 
learning.

•	 We employ a zero-sum game for two players, with different strategies for both play-
ers (P1 and P2) to check the generalizability of the proposed RFE Net (P2). The game 
achieves a payoff by maximizing the Nash equilibrium based on P2 results.

•	 Using mixed strategies leads our model to classify between a deepfake and a pristine 
video and assign rewards to players on NE using two-player game scenarios.

•	 We performed rigorous experimentation on benchmark datasets and compared the pro-
posed method against contemporary methods, including cross-set and cross-corpus 
experiments, imbalanced datasets, and post-processing attacks evaluation to show the 
generalizability and robustness of the proposed method.

The paper is organized into the following sections: Section 2 discusses contemporary 
methods for deep fake detection and game theory. Section  3 presents the details of the 
game theory-based RFE Net. The details of datasets and experimentation results are pro-
vided in Section 4, and Section 5 presents the conclusion and future directions.

2 � Literature review

This section provides a comprehensive discussion of contemporary methods to identify 
video deepfakes and game theory approaches based on classification and detection. Video 
deepfake manipulation techniques fall into two major types: (i) graphic-based methods, 
and (ii) learning-based methods [20]. Faceswap and face2face are graphic-based manipula-
tion methods; learning-based methods include the deepfake, neural textures, lip-sync, and 
face shifter. According to deepfake detection: a systematic literature review [21], deepfake 
detection techniques are grouped into the following types: hand-crafted features-based with 
back-end ML or DL classifiers, end-to-end DL-based, and DL feature extractor-based with 
the conventional ML classifiers. We divided the literature into sub-sections for a detailed 
review of deepfake detection and a discussion of the techniques, and the limitations associ-
ated with the existing methods.

2.1 � Contemporary methods for deepfake detection

This section reviews the deepfake manipulation types discussed above along with their 
detection strategies in detail, but we further group detection techniques into two subcatego-
ries: deepfake detection based on hand-engineered features [10–12, 19–34] and deepfake 
detection based on ML and DL [28–45].
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2.1.1 � Deepfake detection based on hand‑engineered features and traditional 
machine learning‑based classifiers

In [10–12, 19–34], hand-engineered deepfake detection techniques are discussed. Zhang 
et  al. [11] used SURF for feature extraction and trained these features using an SVM 
for face swap deepfake detection. This method [11], however, is only robust to static 
frames as it is unable to detect frames with sudden changes. Yang et al. [22] proposed 
a method for detecting facial landmark features of AI-generated faces that used these 
extracted features to train the SVM. This technique is unable to achieve better deepfakes 
detection performance on blurred and fuzzy facial frames. Jack et al. [23] employ multi-
media stream descriptors for feature extraction and used them to train an SVM with the 
extracted features for face swap detection but this method is ineffective for operations 
related to video re-encoding. Ciftci et al. [24] proposed a method using biological sig-
nals for face swap detection by computing forensic changes in facial expressions, which 
were then used with a CNN and SVM. Performance of this technique degrades when the 
image dimensions are reduced. Jung et al. [25] proposed a method for detecting deep-
fake inconsistencies from video samples based on time, repetition, and eye-blinking, 
using Fast-HyperFace and EAR, however, this technique fails to detect frames with fre-
quent eye blinking. McCloskey et al. [26] presented image color key-point features for 
the detection of GAN-generated images and used them to train an SVM classifier. This 
approach discriminates between real and fake images accurately based on color, but the 
performance of this method degrades on blurred images. In our prior work [10], we 
used both handcrafted and DL techniques. Error Level Analysis was used for feature 
extraction and different DL models were trained on these features. The models include 
VGG-16, VGG-19, Inception-V3, and Resnet 50 for synthetic face detection but this 
method [10] needs improvement in terms of accuracy.

Guarnera et al. [27] proposed an Exception Maximization method for feature extrac-
tion and use these features to train a KNN and an SVM for deepfake detection but this 
method shows degraded performance when applied to compressed images. Nataraj et al. 
[28] proposed a feature extraction method based on pixel co-occurrence matrices. A 
CNN was trained on extracted features for the determination of real and deepfake sam-
ples, but this method fails to detect noisy samples. Zhang et al. [29] proposed a GAN-
generated deepfake detection method using 2D DFT key-point extracted features from 
the frequency domain. This method is unable to perform well on some GAN-generated 
images, like GuaGAN-generated realistic images. Amerini et al. [30] proposed a face-
2face (F2F) deepfake detection approach based on optical flow features and trained with 
a CNN, but the accuracy of this method needs improvement. Agarwal et al. [31] used 
the OpenFace2 toolbox [32] for the 2D/3D identification of facial and head landmarks 
and trained an SVM with those features. This approach, however, is unable to detect the 
face of an individual looking off-camera. Korshunov et  al. [33] proposed a technique 
for lip-syncing deepfake detection with different classifiers, an SVM, LSTM, multilayer 
perceptron (MLP), and a Gaussian mixed model (GMM), trained using Mel-scale Fre-
quency Cepstral Coefficients (MFCC). Performance of this method varies on different 
datasets and is poor on datasets with fewer training samples. Boutellaa et al. [34] used 
DNN-based phonetic features for lip-sync-based speaker identification but the perfor-
mance of this method degrades when detecting on a GAN-generated dataset. In our pre-
vious research [12], we developed MDHFD, which combined LHeXDP and LANMP to 
extract directional and magnitude details from adjacent pixels used to classify deepfake 
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videos as original or face-swapped. This method [12] performed better than existing 
techniques in detecting face-swap, but it is computationally more complex.

2.1.2 � Deepfake detection based on deep features

In works [13–15, 35–61], deepfake detection techniques based on deep learning are dis-
cussed. Li et  al. [35] used DLib [36] facial landmark features and trained different pre-
trained deep learning models like VGG-16, ResNet, etc., with extracted features, for fac-
eswap deepfake detection. This technique attains good results, but performance degrades 
on compressed videos. Guera et al. [37] proposed a CNN model for feature extraction and 
used the extracted features to train an RNN but this technique fails to detect face swap 
frames from longer video samples. Nirkin et  al. [38] developed a technique to identify 
identity manipulation using face recognizer confidence scores. The model was trained on 
cropped images to get face recognition scores. A deep XceptionNet detected the facial iden-
tity modifications after scoring. The XceptionNet is incapable of identifying deepfake arti-
facts. Face recognition makes the model resource-intensive and inapplicable to unknown 
images. In [39], videos are considered to be time-series data to capture the interconnections 
of individual frames. The depth-separable convolution layers of the Xception network are 
utilized to train the model. Liy et al. [40] proposed a CNN/RNN-based method to capture 
spatiotemporal features to detect deepfakes through eye-blinking in AI, or machine-gener-
ated, faces. This technique fails to detect deepfakes in videos with persistent eye blinking 
or closed eyes. Montserrat et al. [41] proposed a method for video face-swap detection that 
uses the Automatic Face Weighting (AFW) technique to delete non-face frames. Extracted 
AFW features were then used to train a CNN and an RNN for deepfake detection, but the 
accuracy of this method needs to be improved. Lima et  al. [42] proposed a method for 
face swap detection through the computation of spatial features extracted from a VGG-11 
and temporal features using an LSTM. Different models, CNN, R3D, ResNet, and I3D, 
were trained on the extracted features, but this method [42] is computationally more com-
plex. Guarnera et  al. [27] proposed a technique for identifying deepfakes using a deep 
learning-based Exception-minimization model for feature extraction. Then, this method 
used the extracted features to train a Naïve Bayes classifier. The method is only robust on 
static images, and the performance of this method degrades on compressed frames. Agar-
wal et  al. [43] proposed a method for detecting face-swap-based manipulations, detect-
ing facial traits using VGG-16 and behavioral biometrics through Facial Attributes-Net 
[44]. This method is imprecise when detecting unseen samples. Jian et al. [44] proposed 
a CNN-based, key points feature extractor with an SVM classifier for deepfake detection. 
This technique fails to accurately identify deepfakes on noisy and blurred samples. Rath-
geb et al. [45] proposed a Photo-Response Non-Uniformity (PRNU) technique to extract 
spatial features for the detection of facial attribute manipulation samples but this method 
experiences reduced performance in unseen scenarios. Tariq et al. [46] used different deep 
learning models, such as VGG-19, VGG-16, ResNet, and XeceptionNet, for video facial 
attribute manipulation detection but this model failed to detect real-world samples. Heidari 
et al. [47] proposed a new federated learning system based on blockchain that protects the 
privacy of data sources and uses techniques like SegCaps, CNN, capsule network training, 
transfer learning, and preprocessing. Experiments show a 6.6% accuracy increase and 5.1% 
AUC improvement, requiring further research for practical use.

Marra et  al. [48] proposed a deep learning model called XceptionNet for the identi-
fication of facial manipulation. Although this method has shown good performance it 
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has a higher computational cost, and the system fails to detect forgeries in cases where 
source manipulation information is missing. Afchar et al. [49] proposed CNN-based mod-
els named MesoNet, Meso-4, and the fusion of Inception Net and Meso-4. The Meso-
Inception-4 model was trained for detection on the face2face and deepfake subsets of 
FaceForensic++(FF++), but the performance of this technique degrades when used on 
the low-quality video. Sabir et al. [50] used an RNN to deal with temporal distortion for 
synthetic face detection but this technique is limited to the detection of static images only. 
Nguyen et  al. [51] introduced a CNN network for recognizing and localizing changed 
video content that is multitasking and based on machine learning. Using an autoencoder 
to classify forgery and a y-shaped decoder to forward the extracted information for clas-
sification and reconstruction. Despite being resistant to deepfake detection, this model’s 
accuracy decreases when presented with an unanticipated scenario. Seraj et al. [52] intro-
duce a deep domain adaptation framework for detecting deepfakes using labelled data from 
faking techniques. It optimizes loss and trains the network using a novel loss function and 
stochastic gradient descent. However, it relies on annotated data and struggles to identify 
emerging techniques. Matern et al. [53] proposed a CNN strategy for detecting deepfake 
based on visual anomalies. Due to the large size of the feature space, this method experi-
ences a high computational cost. Haliassos et al. [54] proposed a spatiotemporal network-
based model for detecting lip-sync deepfakes. For lip-reading, 3D-CNN and ResNet18 
models were used, and a multiscale temporal convolutional network was employed to 
extract deep features. The model is then fine-tuned and effective in the presence of post-
processing techniques such as blurring, noise, compression, etc. It performs substantially 
worse, however, when mouth movement is restricted, such as during pauses in speech. Das 
et al. [15] proposed dynamic face augmentation, which may not capture the full diversity 
of real-world scenarios, leading to potential issues in generalization. Additionally, the com-
putational demands of the deep learning techniques might limit practical applicability, and 
the model could struggle with detecting advanced or novel deepfake methods not covered 
in the training data. Generalization of deep Q-network DQN is proposed in [13], where 
regularization prevents overfitting to training data. Balancing these aspects is challenging, 
as over or under-applying regularization affects the model’s learning ability. Achieving this 
balance often requires extensive hyperparameter tuning and domain expertise. The inher-
ent limitations in DQN’s adaptability to vastly different environments from training data 
remain a significant challenge. Cheng et  al. [14] presented a concept of primary region 
regularization, which involves identifying and analyzing specific regions within a video 
frame that are most likely to contain manipulated content or artifacts. However, this tech-
nique is limited to other forms of synthetic media manipulation, such as audio deepfakes or 
manipulated images.

Demir et al. [55] developed a deepfake source detector that outperforms previous mod-
els by 4.08% in identifying fake videos and their source generators but faces limitations 
in identifying advanced deepfakes. Bonettini et al. [56] investigated how utilizing several 
different CNN models impacted the performance of an ensemble classifier. Ilyas et  al. 
[57] proposed a novel efficient-capsule network (E-Cap Net) for forgery detection. Cap-
sule network architecture improves image and video deepfake detection, however, this 
technique is computationally more complex. Khalid et al. [58] proposed a fused truncated 
DenseNet121 model to detect deepfakes through transfer learning, truncation, and fea-
ture fusion. The model accurately detects deepfakes in diverse datasets. Ilyas et  al. [59] 
proposed a combined Swish and ReLU activation functions to improve the representation 
capabilities of the Efficient-Net architecture for deepfakes detection. The model achieved 
good performance on deepfake detection, however, it lacks a comprehensive discussion 

29627Multimedia Tools and Applications (2025) 84:29621–29664



on the generalization of the model to unseen deepfake variations. These two methods [58, 
59] lack generalizability in cross-corpus experiments. In our previous research [60], we 
proposed DFGNN, an interpretable and generalized GNN for deepfake detection. It uses 
facial landmarks to create a graph, improving interpretability and generalizability. How-
ever, advanced deepfakes may affect DFGNN’s performance. More research is needed to 
evaluate its effectiveness in detecting complex deepfakes. Structurally regular advanced 
deepfakes may affect DFGNN’s performance. However, there is a need for a more robust 
and generalizable method to detect complex synthetic content. Raza et al. [61] proposed a 
method that combined spatiotemporal transformer embeddings with a CNN architecture to 
detect deepfake videos with high accuracy. The method included long-range dependencies 
and contextual information, making it resistant to sophisticated deepfake manipulations. 
However, a notable limitation was the computational complexity of the spatiotemporal 
transformer embeddings, which could have hindered real-time deployment on resource-
constrained platforms.

2.2 � Existing methods based on game theory

This section provides an overview of state-of-the-art techniques [62–72] in the field of 
computer science based on game theory, specifically machine learning-based approaches. 
Several investigations [62, 63] have examined the game-theoretic concept underlying Deep 
Neural Network (DNN) representations. However, there is a lack of research in the field 
of detecting deepfakes using game theory. Dong et al. [64] provided a hypothesis through 
the evaluation of visual concepts on images using image matching from a new perspective 
based on Shapley values. Fernandes et al. [65] presented an adversarial attack on the deep-
fake detection system using a reinforcement learning-based texture patch attack method. 
To examine the complete potential of game theory in the context of deepfakes, however, 
additional research is required. In one of the recent works, Hazra et  al. [18] provided a 
survey of the applications of game theory based on deep learning approaches. In this paper, 
the authors covered two major domains: GAN and reinforcement learning with aspects 
of game theory. Tembine proposed a game theory-based algorithm named Bregman [66] 
to show the relationship between GANs and game theory, in which the generator acts as 
one player and the discriminator as another, however, this method lacks explainability. 
Yasodharan et al. [67] introduced hypothesis testing of adversarial classification based on 
a non-zero-sum game theory approach. This work still needs further improvement when it 
comes to detection. Sanchez [68] proposed a strategic game, linked with binary classifica-
tion, based on a zero-sum game using the min-max principle. Wu et al. [69] proposed a 
zero-sum game using the min-max phenomena for the binary classification of two play-
ers. The outcome of the method was calculated using GAP and mean. Couellan et al. [70] 
proposed a binary and multiclass classification technique introducing Nash and generalized 
Nash with an SVM. Georgiou et al. [71] proposed a cooperative and collation game using 
an ensemble of different classifiers, an SVM, KNN, and a Decision tree, for binary classi-
fication. Behpour et al. [72] presented a game-theoretic model for data augmentation using 
adversarial picture perturbation annotations. Experiments on the method [72] show that 
this model is capable of learning strong predictions under a wide range of augmentation 
sets for resistance to adversarial conditions, but the accuracy of this method needs to be 
improved.

There are many state-of-the-art methods dedicated to detecting deepfakes, and the 
concept of game theory has been employed in many fields of deep learning and CNN for 
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reinforcement and segmentation, among others. However, no attempt has been made, until 
now, to apply the game theory concept to deepfake detection. Game theory, which provides 
a decision-making framework, allows players to decide using multiple strategies. Combin-
ing the concepts of game theory and deepfake detection for video sample classification 
produces significantly more accurate results.

3 � Proposed method

This section provides a comprehensive overview of game theory, and the Regularized 
Forensic Efficient Net model proposed for video deepfake detection. The subsequent sec-
tions present the details of our method.

3.1 � Game theory

In this section, we illustrate the proposed method by designing a two-player game for 
detecting deepfakes. The game proposed for deepfake detection is an iterative zero-sum 
game. In a game, the data manipulator is considered one player and the deepfake detec-
tor the other. During the game, players can apply a variety of strategies to maximize the 
net NE. Therefore, the game can be modeled as an iterative or repeated game where each 
player learns and adapts their strategies over multiple interactions. A payoff matrix with 
“True Positive” (TP), “True Negative” (TN), “False Positive” (FP), and “False Negative” 
(FN) values represents the player’s reward. Maximum TP and TN enable the game to attain 
NE.

The following terms are used regarding game theory:

•	 Players: P1 : Data Manipulator
	   P2 : Deepfake Detector
•	 Strategy: Mixed Strategy (Detector Parameters).
•	 Payoff matrix: (max = TP, TN, min = FN, FP)
•	 Nash equilibrium: Best response.
•	 Game Type: Zero-sum game.

3.1.1 � Players

In a game, players participate to achieve a reward. In our strategic game, the players are 
represented as Pi where i = (1, . . . , n) . Each player Pi has a set of available actions Ai . In 
game theory, matrices are generally used to represent the game, and in the proposed game, 
the first player’s actions are represented in rows, player two’s actions are the columns of 
the matrix, and each cell in the matrix represents a possible resultant value. The utility 
of players for every outcome is recorded in the corresponding cell. In a generic game, the 
players can take a finite or infinite number of actions, but in the proposed strategic game, 
each player has a finite set of actions. The goal of each player is to maximize the payoff, 
and players Pichange their strategies during the game to reach their optimal outcomes. We 
define the proposed game as follows:

•	 We introduce a 2-player finite game, represented as 
(

Pi,Ai, ui
)

 , where:
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•	  Pi is a set of two players P1 and P2 indexed by (i = 1, 2) . Where P1 is data manipu-
lator and P2 is deepfake detector.

•	 ai is a finite set of actions available for Pi . Each vector ai =
(

a1,… , an
)

∈ A, where 
A is an action profile, such as manipulation of datasets and use of regularization 
etc. are the representative actions.

•	 u =
(

u1,… , un
)

 , where ui is payoff function created on bases of ai.

3.1.2 � Strategies

Strategy is defined as the series of actions specified by each player. Depending on the 
objectives of the players, there are two types of strategies, pure and mixed. A pure 
strategy mandates the player to select any action from the available set, while in a 
mixed strategy, a player can select a random action. In the proposed game, players use 
randomly available actions based on probability distribution.

A mixed strategy for a normal-form game is defined as follows: Let 
(

Pi, Ai , ui
)

 be a 
game for any set Y , let 

∏

(Y) be the set of all probability distributions. For Pi, the set 
of mixed strategies is defined as Si =

∏

(Ai) . The Cartesian product of the mixed-strat-
egy sets provides the collection of strategies, 

(

s1 × ⋅ ⋅ ⋅ × sn
)

 . Any action ai,  played 
under mixed strategy si is represented as the probability of si

(

ai
)

 . The subset of actions 
that are assigned positive probability by the mixed strategy is called the support of si.

Player P1 Strategies  The game starts with data manipulator P1 turn making different 
strategies. It includes different types of deepfake: faceswap, face shifter, neural textures, face 
2 faces, etc. In addition, imbalance, cross corpora, cross set, and post-processing attacked 
sets are also prepared by the data manipulator to create a tough game for the deepfake 
detector.

• Here is the P1representative actions profile A ={combined test set, imbalanced set, 
cross corpora set, cross set, and post-processing attacks}.

Player P2 strategies  In response to every strategy of the data manipulator, player P2 deep-
fake detector employs its best strategy to detect deepfakes. In many cases P2 overfits (with-
out the use of regularization), making it computationally more complex as the training time 
of the P2 increases, also class imbalance and attacks make the detection task more chal-
lenging. To minimize the overfitting issue and save training time for P2, use regularization 
techniques like batch normalization, dropout, early stopping, and data augmentation. The 
selection of an activation function for better deepfake detection is also another strategy 
used by P2 to achieve computational efficiency.

•	 Here is the P2 actions profile A = {batch normalization, dropout, early stopping, and 
data augmentation}.

Overall, strategy plays a significant role in the game, and the strategy that leads the 
players to maximum payoff is considered best.
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3.1.3 � Nash Equilibrium

In the game theory, every game is based on a decision-making theorem called Nash 
equilibrium, which asserts that a player can attain the desired outcome by sticking to 
their initial strategy. Considering the decisions of other players, each Pi tries to achieve 
the optimal NE. In the proposed game-theoretic model, Pi  utilizes a mixed strategy. 
When data manipulator ( P1 ) or deepfake detector ( P2 ) combines their tactics with 
uncertainty, the mixed equilibrium is calculated based on the predicted payoffs to the 
individual players. Our first insight is that if a P2 knows how the P1 will play, then 
P′
2
s  strategic dilemma is significantly simplified. Formally, mixed strategy is defined 

assi =
(

s1,… , si−1, si+1,… , sn
)

 , and the strategy leads the game to NE is the best 
response s*

i
defined as.

• The best response for Pi to the strategy profile si is a mixed strategy s∗
i
∈ si  such 

that ui
(

s∗
i
, s−i

)

≥ ui
(

si, s−i
)

 for all strategies si ∈ Si.
When the player supports the best response for some actions, it must be agnostic 

to that action. However, any combined or individual action must constitute the best 
response. A player cannot predict what strategies the other players will employ, so the 
optimal response is a collection of possibilities. In case of post-processing attack ( si ) 
by P2 , the player P1 used dropout and augmentation as best strategy ( s∗

i
 ), which helps 

to achieve Nash equilibrium. However, we can use the concept of optimum response to 
determine NE in non-corporative games. According to Nash’s theorem:

•	 Every finite game has a Nash equilibrium.
•	 A NE is a strategy profile si =

(

s1,… ., sn
)

, , if si is the optimum response to s−i for 
all agents i .

3.1.4 � Pay‑off matrix

The notion of mixed strategies based on fundamental decision theory is known as util-
ity. We initiate by calculating the probability of each occurrence and then compute the 
average of the potential payoffs, weighted by the likelihood of each outcome. The for-
malization of the expected utility is as follows: (overloading notation, we use ui for both 
utility and expected utility). Given a normal-form game 

(

Pi, Ai, ui
)

, the expected utility 
ui for Pi of the mixed-strategy profile s =

(

s1,… , sn
)

 is defined as:

The payoff of a game is the incremental gain/benefit or loss/cost that a player earns 
because of executing its action against the strategy of the other player. Figure 1 shows 
the payoff matrix of our proposed method, where the red boundary around the upper 
left and lower right blocks represents the Nash state, while the remaining two represent 
the non-Nash state. The maximum outcome, TP, and TN lead our game towards the NE. 
The game planner creates the payoff function of the game. In the proposed game, the 
maximum TP, TN, and AUC represent the reward.

(1)ui(s) =
∑

a∈ A
ui(a)

∏

n
j=1

sj
(

aj
)
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3.1.5 � Zero‑sum game

Consider a detector as the player of interest in a zero-sum game to identify the best 
operating point using the min-max approach from game theory. In zero-sum games, one 
player’s advantage must come at the expense of the other player in contrast to common-
payoff games. In deepfake detection, the matrix for a zero-sum game correlates directly 
to the detector’s confusion matrix. The game utilities are a, b, c, and d, where the detec-
tor has maximum TP and TN values leading to the utility value of a = d = 1, and mini-
mum FN and FP correspond to b = c = 0. Maximizing the accuracy of the P2 utility in a 
zero-sum game against P1 is an identical scenario. The utility function of the proposed 
method is defined in Eq. (2).

(2)Utility =
a.TP + b.FP + c.FN + d.TN

TP + FP + TN + FN

Fig. 1   Game Theory Framework for Deepfake Detection. The video dataset undergoes preprocessing where 
facial frames are extracted and trained using the proposed Regularized Forensic Net, accurately classifying 
them as real or deepfake. Game theory integration enables players to customize strategies, enhancing the 
system’s generalizability. For model interpretability and explainability, heatmaps are produced. The model 
is also evaluated against postprocessing attacks to test its generalizability
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3.2 � Deepfake Detection Game

Using game theory for deepfake detection allows us to design the two-player game between 
P1 and P2. For this purpose, both players P1and P2 used mixed strategies (si) have differ-
ent possibilities to achieve the payoff. P1 in this game has the probability of pristine and 
deepfake samples, and P2 has the probability of detecting these samples and resisting anti-
forensic attacks. The mixed strategy of both players leads the game toward NE, and the 
outcome of a game having maximum TP and TN in the payoff matrix allows the game to 
achieve the best response payoff. Although the strategies of both players changed during 
the deepfake detection game, we consider P2 as the player of interest who maximizes NE to 
minimize the non-Nash state.

The game begins with the P1 turn passing different datasets, in response the pessimistic 
approach of P2 leads our game to NE and achieves maximum payoff. Employing selected 
regularization techniques helps to minimize overfitting and save training time for P2, it may 
also increase the accuracy and effectiveness of the deepfake detector in detecting more 
complex and sophisticated deepfakes. We further elaborate the strategies of both players 
in detail in the coming sections and the algorithm for the two-player game is mentioned in 
Algorithm1.

Assuming a game strategy where the attacker utilizes post-processing attacks 
( s1, s2, … , sn ) on a deep learning model, but the defender applies regularization tech-
niques ( s1, s2, … , sn ) to counteract these attacks. From all of the defender strategies si , 
dropout ( s1 ) enhances robustness by prohibiting reliance on specific neurons, which may 
reduce the efficacy of adversarial attacks that are specifically targeted. The model’s capac-
ity to identify and resist adversarial manipulations is improved by data augmentation ( s1 ), 
which broadens exposure to a variety of scenarios. The best regularization strategies s*

i
 

effectively decrease the benefit for the attacker and slightly increase the expense for the 
defender; equilibrium will probably be reached with both parties choosing their respective 
strategies. Dropout and data augmentation tactics improve a detector’s robustness in Nash 
equilibrium, stabilizing the attacker and defender’s best strategies. The detector’s increased 
resistance may prevent attacks and strengthen the defensive approach as a stable, mutually 
optimal response by reducing the attacker’s exploit attempt return.

3.3 � Face detection

A Multi-Task Cascaded Convolutional Neural Network (MTCNN) [73] is used to extract 
frames from the video sample. Using facial landmarks like nose, eyes, and mouth, this 
model detects faces in input videos. Compared to other face detectors such as Viola-Jones 
and Haar-cascade [74], MTCNN isolates the face from the rest of the frame and extracts 
minute facial landmark details. MTCNN is capable of precisely detecting features and 
capturing coarse-to-fine detail, even under varying illumination and occlusion conditions. 
During preprocessing, we used MTCNN to detect individuals in each frame. After facial 
features have been extracted, images are resized to a resolution of 224 × 224 with three 
channels. The facial frame images that have been resized are subsequently provided to our 
proposed RFE Net.
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3.4 � Proposed regularized forensic efficient net

The architecture of the proposed Regularized Forensic Efficient Net for deepfake detec-
tion is shown in Fig. 2. In our proposed RFE Net, we altered the activation function, top 
layers and also introduced several regularization techniques to improve the EfficicentNet-
b0 [75], which enhanced performance and efficiency. The use of regularization techniques 
such as batch normalization, dropout, and early stopping in the proposed RFE Net makes 
this model resource-efficient and robust. In addition, the use of ELU [76] activation in RFE 
Net prevents dead neurons, regularizes the gradient flow, and accelerates learning of the 
model. The architectural design of this model integrates various optimization techniques, 
including the utilization of depthwise separable convolutions. These convolutions effec-
tively decrease the overall number of parameters and computational expenses, while main-
taining the performance of the model. Furthermore, the model integrates efficient residual 
connections to enhance the flow of gradients and alleviate the problem of vanishing gradi-
ents. The parameter count of our RFE Net is 4.01 million, which is lower than that of most 
CNN models currently available, including EfficientNet (B0-B7), Xception, Inception-v3, 
InceptionResNet-v2, and DenseNet. Algorithm 2 presents the training process of the pro-
posed model, while the subsequent subsections provide a comprehensive discussion of the 
specifics of the proposed RFE Net.

Fig. 2   Proposed RFE NET architecture
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Algorithm 1 Two Player zero-sum game

3.4.1 � Customized top sequential layers

Sequential model layers are created to pass the features map extracted from the last MBConv 
block. We customized the model by adding four sequential layers, which are global average 
pooling, batch normalization, dropout, and dense layer. Batch normalization and dropout lay-
ers are used as regularization techniques. The details of the global average pooling and dense 
sequential layers are as follows:

Global average pooling  The Global Average Pooling (GAP) layer is employed to decrease 
the spatial dimensions of feature maps while retaining crucial information. The process 
involves computing the mean value across spatial dimensions for every feature map, gen-
erating an isolated value for each feature map. This layer diminishes the spatial dimen-
sions of the feature maps, thereby producing a more condensed representation of the sali-
ent features. In the final stages of a CNN, this pooling operation frequently replaces fully 
connected layers, resulting in a model with fewer parameters that is computationally more 
efficient.
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Algorithm 2 Main procedure (Proposed game theory based-RFE NET Training)

Dense layer  In the proposed RFE Net, we used the last fully connected layers with Soft-
Max activation for the classification of the pristine and deepfake samples. The dense con-
nectivity of neural networks preserves valuable information about the features and weights 
that are transmitted to subsequent nodes within the hidden layers. The network makes pre-
dictions of the class label by identifying the class with the highest probability. This setup 
allows for a probabilistic interpretation of the predicted class probabilities, making it suit-
able for binary classification problems.

3.4.2 � Feature map generation

The proposed RFE Net model consists of an initial convolutional layer of 224 × 224 size 
followed by 7 MBConv blocks. Some of these MBConv blocks consist of subblocks hav-
ing an expansion layer, a depthwise convolution layer, and a squeeze-and-excitation (SE) 
block. In the proposed model, the input image gets transmitted through a series of convo-
lutional layers. These layers extract features by employing various filters to detect patterns. 
The details of the model are given as follows.

MBConv Block  This block is a fundamental component of the proposed architecture. It is 
made up of a few primary elements, which are the expansion layer, depthwise separable 
convolution, SE block, and skip connection [75]. The depthwise separable convolutional 
operation involves segregating the spatial and channel-wise convolutions. It consists of a 
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depthwise convolution followed by a pointwise convolution. Depthwise convolution uses 
one filter per input channel instead of mixing information across channels and pointwise 
convolution efficiently combines information across channels using a single convolutional 
filter. The depthwise convolution performs spatial filtering, while the pointwise convolu-
tion performs dimensionality reduction. The SE block is responsible for channel-by-chan-
nel feature transformation, enabling the model to prioritize channels with more informa-
tion. The skip connection connects the input directly to the output, providing a shortcut for 
gradient flow and enhancing the network’s information flow.

SE Block  The Squeeze-and-Excitation block enhances the representational capacity of a 
neural network through the adaptive transformation of channel-wise features. The process 
includes two distinct operations, namely compression and excitation. The channel descrip-
tor refers to the result obtained from the squeeze operation, wherein the spatial dimensions 
of the input feature map are combined globally. The excitation operation involves utilizing 
a series of fully connected layers subsequently followed by an activation function. This 
process is employed to generate attention weights that are specific to each channel. The 
attention weights are multiplied elementwise with the input feature map, allowing the net-
work to emphasize informative channels and diminish irrelevant ones.

3.4.3 � Activation functions

ELU  In each block, we employed the Exponential Linear Unit (ELU) activation function 
[76] rather than using the traditional Swish activation function to enhance the classification 
performance and achieve computational efficiency. ELU assigns negative values to nega-
tive inputs, allowing the network to capture both positive and negative data. This modi-
fication allows for mitigating the dying ReLU issue and improves learning. Implement-
ing ELU [76] rather than Swish enhances the model’s generalizability, and its continuity 
and smoothness can aid in gradient propagation and training optimization. ELU activation 
function is defined as.

SoftMax  In the final layer of the model, the SoftMax activation function is employed for 
class detection. This function transforms the vector in a probabilistic manner. The Soft-
Max activation function is utilized to compare the training set with the test set, resulting in 
a probability distribution that distinguishes between pristine and forged images. SoftMax 
takes the exponent of each input value divided by the sum of the exponent of all inputs. 
In the proposed model, the SoftMax function returns 0 for forged and 1 for pristine image, 
defined as.

3.5 � P2mixed strategy 
(

s
i

)

 using regularization techniques

In the proposed model, we use several regularization techniques, including batch normaliza-
tion, dropout, early stopping, and data augmentation. These methods reduce overfitting and 

(3)
f (x) = x if x ≥ 0

f (x) = α ∗ (exp (x) − 1) if x < 0

(4)softmax
�

xi
�

=
exp

�

xi
�

∑k

i=1
exp

�

xj
�
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increase model generalization. Batch normalization normalizes inputs inside each mini batch, 
decreasing internal correlate shift and speeding training. Dropout randomly removes a certain 
number of units during training, driving the model to learn stronger features. Early stopping 
terminates training when the model overfits the validation set, preventing performance degra-
dation. Data augmentation artificially expands the training set. The details of these methods 
are given in subsections.

Batch normalization 
(

�
�

)

    Batch Normalization acts as a regularization, prevents overfit-
ting, and improves the generalization. It normalizes inputs by adjusting the variance and 
mean of a batch. Normalization accelerates training and reduces internal covariate shifts 
and enables higher learning rates. It addresses the vanishing gradient problem by ensuring 
smooth gradient flow.

Let xi be an input feature and µ and σ² represent the mean and variance. The normalization 
is done as follows:

Here ε is a small constant for numerical stability. The scaled and shifted output feature is 
obtained by multiplying the normalized input x̂i by a scaling factor γ and adding a shifting fac-
tor β after normalization.

γ and β are trainable parameters in Batch Normalization. Mini-batch statistics are used to 
calculate the mean and variance during training. Batch Normalization improves the stability, 
convergence speed, and generalization ability of neural networks.

Dropout ( s
�
)  We use a dropout layer in the proposed model because it also prevents model 

from overfitting. This layer randomly drops nodes during model training to achieve an 
averaged outcome, which encourages the neurons to learn new features for recognition. 
Once the model is trained, the entire network is used as an inference for the test set. rep-
resents output, where (p) is the probability to keep the useful weights, and represents the 
dropped-out weight.

Early stopping ( s
�
)  To save training time for our model we used an early stopping strategy 

[77]. It monitors the performance of the model and effectively reduces the duration of the 
training process. Early stopping measures performance by setting the parameters for the 
performance measure, in this case, validation loss or accuracy. Other parameters include 
minimum or maximum mode and the verbose value.

(5)x̂i =

(

xi − �
)

√

(

�2 + �
)

(6)yi = � × x̂i + �

(7)ŵi =

{

wi,

0

(8)es = EarlyStopping
(

monitor =� val�
loss

,mode =� min�, verbose = 1
)

29638 Multimedia Tools and Applications (2025) 84:29621–29664



Data augmentation ( s
�
)  To resolve the issue of class imbalance in several datasets like 

DFDC, we augment the training set. These augmentations [78] include vertical and hori-
zontal flips, rotation, cropping, and horizontal and vertical shifts. Moreover, we used salt 
and pepper noise, and median blurring for several test set experiments to evaluate the effi-
cacy of the RFE Net.

4 � Experimental results and discussion

This section provides a comprehensive overview of the various experiments conducted to 
evaluate the efficacy of the proposed RFE Net. A comprehensive analysis of performance 
evaluations involving open and closed sets is provided. Additionally, different experiments 
like cross-set, cross-corpus, and post-processing attacks are conducted to evaluate the gen-
eralizability of the proposed method across different scenarios. Finally, a comparative anal-
ysis is conducted to compare the RFE Net with contemporary methods. Details of datasets 
used for evaluation are also presented in this section. Moreover, we employed the accuracy, 
area under the curve (AUC), and precision-recall (PR) curve for the performance evalua-
tion of our method.

4.1 � Datasets

Four standard datasets were chosen to assess the effectiveness of the proposed model. The 
following section provides a comprehensive discussion of the details of all datasets.

4.1.1 � Face forensic ++

The Face Forensics + + dataset [20] is a benchmark dataset composed of pristine and two 
major forgery subsets: (i) identity swap manipulation and (ii) expression swap. The iden-
tity swap manipulation subset contains face swap, face shifter, and deepfakes subsets, and 
expression swap consists of face2face, and neural textures as shown in Fig. 3. For forgery 
fabrication, 1000 pristine videos are collected from YouTube and then manipulated using 
a fully automated GANs. In the face swap subset, the source facial portion is replaced with 
the target one using the landmark positions such as nose, eyes, and mouth. In face2face, 
the facial expressions of the target are substituted with the source video using the facial 
re-enactment method. In the deepfake subset, deep learning modification techniques based 
on auto-encoders are used to manipulate the faces of the source and target actors. Neural 
textures are created using a fully automatic face rendering technique. The face shifter sub-
set was later added to the FF + + dataset in which GAN was employed to manipulate the 
faces in the target videos. In FF++, each video contains distinctive faces of people from 

Fig. 3   FF + + dataset sample (Left to right) Real, Faceswap, DeepFakes, Face 2 Face, Neural Textures and 
Face Shifter
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different ethnicities, with facial accessories like spectacles or facial hair, and frames with 
contrasting illumination or occlusion conditions. For our experiments, we used the light-
compressed, lossless, c23 version of FF++.

4.1.2 � DFDC

The DFDC preview dataset [79] consists of 5,000 real and deepfake videos. GAN and non-
learned techniques are used to create fake videos, while actual ones were recordings of 
hired actors. Using facial manipulation techniques such as DeepFakes and Face2Face, fake 
recordings are created. Indoor and outdoor settings, day and night lighting, subject proxim-
ity to the camera, posing changes, and other factors are all taken into attention in dataset 
creation. DFDC is diverse in terms of skin tone, gender, age, etc. The dataset concentrates 
on advanced deepfakes and demonstrates the difficulties of deepfake technology. The sam-
ples from the DFDC dataset are given in Fig. 4.

4.1.3 � World Leader Dataset (WLDR)

World Leader Dataset (WLDR) [31] contains YouTube videos of US leaders such as 
Hillary Clinton, Barack Obama, Bernie Sanders, Elizabeth Warren, and Donald Trump. 
The dataset consists of clips of the leaders, comedic impersonators, and faceswap subsets. 
Original, comedic impersonators and face swaps of different leaders can be seen in Fig. 5. 
Additionally, the Obama subset contains lip-sync and puppet-master forgeries as well. 
More recently, Joe Biden’s comedic impersonator and faceswap were added to the dataset. 
Each video was captured by focusing on points of interest (leader), addressing the speech’s 
informal surroundings. The full-frontal faces are captured on a static camera; however, 
some shots are captured with a slow zooming technique with the leader speaking through-
out the 30 frames per second video clip. The WLDR faceswap subset was created with 
GANs by swapping the original face of a leader with that of an impersonator. This dataset 
has a class imbalance issue.

Fig. 4   Samples of the DFDC dataset. Top row: Real Frames, Bottom row: Fake Frames
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4.1.4 � CelebDF

The Celeb-DF dataset [80] comprises 590 genuine and 5639 deepfake videos. The Authen-
tic YouTube videos contain interviews with celebrities of various genders, ages, and ethnic 
backgrounds, and illumination conditions of real-world videos display a wide variety. To 
reduce the contrast between the altered areas, the deepfake creation approach improves the 
brightness and contrast of facial images. As a result, altered videos with higher visual qual-
ity are more deceptive. Figure 6 illustrates a few dataset samples.

Fig. 5   Samples of the WLDR dataset. Top to bottom is the Real, comedic impersonator,  and Faceswap 
images of different US leaders

Fig. 6   Samples of the CelebDF dataset. Top row: Real Frames, Bottom row: Fake Frames
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4.1.5 � DFFD

The Diverse Fake Face Dataset (DFFD) [81] provides a more extensive selection of fake 
face types than previous datasets. This is crucial for the accurate detection and localiza-
tion of facial manipulations. There are four primary categories of facial manipulations in 
the dataset: identity swap, expression swap, attribute manipulation, and entirely synthe-
sized faces, which are produced using cutting-edge techniques. It encompasses a balanced 
distribution of gender, age, and face measurement among 47.7% male and 52.3% female 
subjects, with a primary age range of 21 to 50. The FFHQ, CelebA, and FF + + datasets 
were used to source real face images, which exhibit a wide range of variations in terms 
of gender, age, ethnicity, and other factors. Data from FF + + and other sources were 
employed for identity and expression exchanges. FaceAPP and StarGAN were employed 
to manipulate attributes, resulting in the generation of 92,000 images. Using pre-trained 
models of PGGAN and StyleGAN, the entire visage was synthesized, resulting in the pro-
duction of 300,000 high-quality fake images. Consequently, the DFFD provides a compre-
hensive dataset to facilitate the advancement of facial manipulation detection. The samples 
of DFFD are shown in Fig. 7.

4.2 � Experimentation protocol

Every individual frame of all the datasets was extracted using the MTCNN. During face 
frame extraction, a parameter was used to resize each frame to 224 × 224 pixels. For each 
experiment, 80% of the frames were used for training, while the remaining 20% were used 
for the test set. The parameters of the model were set as follows: learning rate = 0.0001, 
L2, batch size = 100, and epochs = 25. The model was trained using the Adam optimizer 
and the binary cross-entropy loss. Experiments were conducted on high-performance com-
puters with GPU nodes that met the following requirements: 4 NVIDIA Tesla V100 16G 
GPUs with NV Link, 192 GB RAM, and 48 CPU Cores at 2.10 GHz.

4.3 � Evaluation measures

The following evaluation measures were used to measure the performance of the proposed 
technique. For these measures, the model was evaluated on all datasets.

Fig. 7   Samples of the DFFD dataset. Real Sample, PGGAN, STARGAN, StyleGAN-CelebA, StyleGAN-
FFHQ
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4.3.1 � Accuracy

Accuracy is used to measure the percentage of accurately classified members of the given 
classes. It can be defined as the sum of the TN and TP rates divided by the total number of 
samples.

4.3.2 � Area under the curve

The AUC represents a graphical representation of the relationship between the True Posi-
tive Rate (TPR) and the False Positive Rate (FPR). TPR and FPR are computed at various 
thresholds, with optimal AUC values corresponding to higher TPR and lower FPR.

4.3.3 � Precision/Recall curve

The provided visual representation depicts the combination of Precision and Recall, also 
known as True Positive Rate (TPR). A model that exhibits a higher PR curve closer to the 
y-axis is indicative of superior performance.

4.4 � RFE net analysis and ablation study

To develop a robust and generalized deepfake detector we perform several experiments, 
which include regularization and activation function selection. This experiment also 
includes the analysis based on regularization techniques used in the proposed approach for 
detecting deepfakes.

4.4.1 � Performance evaluation of the proposed detector ( P
2
 ) based on regularization 

techniques

This experiment aims to select best regularization techniques 
(

si
)

 and evaluate the efficacy 
of the model with and without regularization techniques. During training, dropout regulari-
zation reduces the model’s reliance on particular neurons, thereby enhancing its generaliz-
ability. In addition, data augmentation was utilized to increase the effective size of our lim-
ited dataset, thereby enhancing the adaptability of the model. The early stopping method 
contributed to a simpler optimization process during training, resulting in a shorter training 
period [77]. Overall selecting a regularization strategy reduces overfitting and preserves 
key features in the data.

Regularization selection  We select dropout (s1) and L2 regularization (s2) to prevent over-
fitting, we also add a batch normalization layer (s3) which boosts regularization and model 
performance. Batch normalization normalizes layer activations, stabilizing the model and 
decreasing weight initializations. L2 regularization adds a penalty term to the loss function 
to reduce model complexity by selecting lower weights. We attain an accuracy of 96.5% on 
using L2 and batch normalization with our base model. However, dropout randomly sets a 
fraction of input units to zero during training, inhibiting neuron co-adaptation and improv-
ing generalization. Dropout has a larger regularization effect than L2 regularization, as we 
attain the highest accuracy of 98.8% on combined FF + + by a combination of dropout and 
batch normalization. In comparison to L2, we finalize dropout and batch normalization as 
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the best regularization techniques 
(

s∗
i

)

 . This combination leads the model to even better 
generalization and improved training speed.

Dropout layer  An experiment was created to compare the performance of the proposed 
RFE Net with and without dropout regularization as a strategy to measure the training 
and validation loss. Before applying dropout regularization, the model was trained on the 
combined FF + + dataset. During the training process, the validation loss decreases slightly 
and then rises again due to model overfitting. When the detector strategy was modified by 
adding a dropout layer, it regularized the weight by decreasing the validation and training 
loss. From this experiment, it can be inferred that dropout regularization helps to prevent 
overfitting.

Early stopping  To better investigate the computational cost of the proposed RFE Net, an 
early stopping regularization strategy was used to prevent a model from unnecessary train-
ing. To train the model without using an early stopping strategy, the training epochs were 
set to 50 in the first experiment. This model generates accurate training set results but is 
less accurate on the validation set. Changing this strategy, early stopping was introduced. 
Performance measures were configured to monitor the “validation loss” and the mode was 
set to “min” to minimize the validation loss. The “verbose” parameter was used to show 
training progress. This parameter also validated each of the epochs and stopped our model 
from unnecessary training. This model produced the best training and validation accuracy 
only on 7 epochs. The early stopping regularization strategy (s3) made the model better fit 
the training sample, prevented the model from iterating uselessly, and provided a signifi-
cant reduction in computational cost.

4.4.2 � Comparison with deep learning models

This experiment was conducted to compare the effectiveness of our proposed RFE Net 
and other deep learning architectures with and without regularization. To test the perfor-
mance of our model, we utilize the combined FF + + dataset. This evaluation involved 
a comparative analysis of our model against others such as ResNet, VGG16, Inception, 
and DenseNet. All the models, including the proposed model, are trained using the same 
dataset and the game scenarios. The proposed method, even without regularization, dem-
onstrates enhanced accuracy while utilizing a smaller number of parameters, thereby 
increasing its efficiency as well. In addition, we train all models with regularization. The 
accuracy of each model increased with parameter decreases, showing the effectiveness 

Table 1   Comparison with different deep-learning models

Deep learning Models Without Regularization With Regularization

Accuracy (%) Parameters Accuracy (%) Parameters

ResNet50 85.6 25.6 M 88.5 23.4 M
VGG16 87.2 138.4 M 92.3 120.5 M
InceptionV3 90.7 23.9 M 94.5 22.0 M
DenseNet121 92.4 8.1 M 95.5 7.3 M
Proposed RFE Net 97.3 5.3 M 98.8 4.0 M
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of regularization. In comparison with others, the proposed model balances depth, width, 
and resolution in layers, enabling it to maintain efficiency while delivering outperforming 
results. Table 1 shows the comparison of the findings in terms of accuracy and parameter 
information. The results demonstrate that our RFE NET outperforms all other deep-learn-
ing models while using the fewest number of parameters.

4.4.3 � Comparison of different activation functions

In this experiment, we investigate the effect of various activation functions on the proposed 
RFE Net. The model was tested using several activation functions, and the results are 
shown in Table 2. The experiment was conducted using the combined FF + + dataset, with 
the same experimental protocols defined in Section  4.4. Exponential Linear Unit (ELU) 
was found to be the most promising activation function among all, exhibiting superior per-
formance on all datasets. One of the primary benefits of the ELU is its ability to mitigate 
the issue of.

the dying ReLU by providing the formation of the negative slope during the training 
process [76]. This feature prevents neurons from becoming inactive, thereby enhancing the 
network’s capacity to effectively learn complex functions. Moreover, the inherent smooth-
ness of ELU contributes to its computational efficiency, rendering it highly effective even 
in situations with limited resources. This characteristic makes ELU a compelling choice for 
an activation function in our model.

4.5 � Performance evaluation of the proposed RFE Net

To test the robustness of the proposed RFE Net for deepfake detection, rigorous experi-
ments were designed using mixed strategies (si) of both players P1 and P2, on the FF++, 
WLDR, CelebDF and DFDC datasets. P1 strategies include dataset formation and combi-
nation, whereas P2 in response uses its best strategy to detect between given classes.

Table 2   Performance evaluation 
with different activation 
functions

Activation Functions Accuracy (%) Training time

Swish 98.53 2 h
ELU 99.39 1 h 40 min
GELU 97.07 3 h
SELU 97.78 2 h 30 min
RELU 98.71 2 h

Table 3   Performance evaluation of RFE Net on FF++

*(Acc = Accuracy, PR = Precision, AUC = Area under curve)

Generative 
Technique

Faceswap Deepfakes Face2Face Face Shifter Neural Textures Combined

Acc (%) 99.3 98.4 98.1 97.9 92.5 98.8
PR 0.98 0.97 0.98 0.97 0.95 0.98
AUC​ 1.00 0.98 0.98 0.98 0.90 0.95
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4.5.1 � Evaluation on FF++

For the FF + + dataset, two different dataset division strategies were employed, as follows:

Strategy 1(�1)  Pristine video frames were used to test the model against each given fake 
class: face swap, deepfake, face2face, neural texture, and face shifter. Overall, superior 
results were attained for all sets, but for the deepfake set, the highest accuracy of 99.36% 
and an AUC of 1.00 was achieved. The results of the proposed RFE Net with all subsets of 
FF + + are presented in Table 3.

Strategy 2 
(

�
�

)

    To test the generalizability of the proposed model, the P1 strategy was 
changed by combining all the given fake classes into one combined class. Combined fake 
and pristine samples were used to train the RFE Net. In this experiment, the highest accu-
racy was 98% and an AUC of 1.00 was observed. The results of the combined set are pro-
vided in Table 3.

The results presented in Table 3 show that the RFE Net (P2) is remarkably effective at 
identifying all types of manipulated subsets (P1). This observation demonstrates the mod-
el’s robust ability to detect accurately manipulated features generated using deep learning 
techniques. The aforementioned results indicate that the proposed model (P2) effectively 
incorporates the essential characteristics required for detecting alterations. Still, it can be 
noted that the performance of the proposed model exhibits a slightly low accuracy on the 
neural texture dataset achieving scores of 92.5%. This set uses expression-swapping tech-
niques to create counterfeit features with minimal changes, making them extremely dif-
ficult to identify. Therefore, identifying this particular form of manipulation presents a dif-
ficult task for the model.

4.5.2 � Evaluation on WLDR

For WLDR, the model was tested on pristine videos of each leader with the corresponding 
comedic impersonator and face swap. In this experiment, three different dataset division 
strategies were implemented from P1 and in response P2 is also trained against all the data-
set manipulation strategies given below. The results of all strategies are shown in Table 4.

Table 4   Performance evaluation of RFE Net on WLDR

*(FS = Faceswap, IM = Impersonator, Lip = Lip-sync)

Leaders Obama JB Clinton Warren Sander Trump Combine

Generative 
Technique

FS IM Lip FS IM FS IM FS IM FS IM IM IM FS

Acc (%) 99.1 99.6 97.9 99.3 100 99.2 97.8 92.0 95.8 95.5 99.3 99.0 99.8 98.7
PR 0.98 0.97 0.99 1.00 1.00 1.00 0.99 0.96 1.00 0.99 1.00 1.00 0.99 0.98
AUC​ 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99 0.99
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Strategy 1 (s1)  In this experiment, the RFE Net was trained on each leader’s original class, 
the corresponding comedic impersonator, and faceswap. The Obama videos were addition-
ally trained on the lip-sync class. On WLDR, good accuracy was achieved overall for all 
the leaders shown in Table 4, however, for Obama, Clinton, Sander, Trump (impersona-
tor), and Obama, bidden (faceswap), the highest accuracy of 99% and AUC up to 1.00 was 
observed.

Strategy 2 (s2)  In this experiment, pristine/original samples of all leaders were combined 
in one class, face swap in another class, and both were used to train the proposed RFE Net. 
Experimental results show that the RFE Net produced a remarkable accuracy of 98% and 
0.99 AUC on the combined face swap class.

Strategy 3 (s3)  In this experiment, the pristine samples of all leaders constituted one class, 
and comedic impersonators in another. The model was trained in these classes, and in this 
experiment, the model attained 99% accuracy and 0.99 AUC on the combined impersona-
tor class.

Table  4 demonstrates that the model (P2) performed exceptionally well on all cat-
egories of leader deepfakes. In many subsets, the model can obtain the highest AUC 
and accuracy, except for Warren, with 92% accuracy. The dataset reveals that Warren’s 
faceswap class was similar to its real class, which increases the likelihood of fewer false 
positives in comparison to other leaders. The findings from the analysis demonstrate 
that the proposed model exhibits the ability to differentiate between authentic and fake 
samples based on their distinctive attributes.

4.5.3 � 4.5.3 Evaluation on DFFD

For the DFFD dataset, two different dataset division strategies were employed, as 
follows:

Strategy 1(s
1

)  Real video frames were used to test the model against each given fake 
class: PGGAN, STARGAN, StyleGAN-CelebA, StyleGAN-FFHQ. Overall, superior 
results were attained for all sets, but for the StyleGAN-FFHQ set, the highest accuracy of 
99.99% and an AUC of 1.00 was achieved. The results of the proposed RFE Net with all 
subsets of FF + + are presented in Table 5.

Table 5   Performance evaluation 
of RFE Net on DFFD

*(Acc = Accuracy, PR = Precision, AUC = Area under curve)

Generative 
Technique

PGGAN STARGAN Style-
GAN-
CelebA

Style-
GAN-
FFHQ

Combined

Acc (%) 99.5 99.3 99.4 99.9 99.6
PR 0.97 0.91 0.99 0.96 0.99
AUC​ 0.99 0.97 0.98 1.00 0.97
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Strategy 2 (s2)  To evaluate the generalizability of the proposed model, the P1 strategy was 
modified by combining all the provided fake classes into a single combined class. The RFE 
Net was trained using a combination of pristine and fake samples. An AUC of 0.97 was 
observed in this experiment, with a maximum accuracy of 98%. Table 5 contains the out-
comes of the combined set.

The RFE Net (P2) is remarkably effective at identifying all varieties of manipulated 
subsets, as demonstrated by the results in Table 5. This observation illustrates the mod-
el’s capacity to precisely identify manipulated features that are produced through the 
different GANs. The aforementioned results suggest that the proposed model (P2) effec-
tively integrates the fundamental characteristics necessary for the detection of altera-
tions. However, it is important to acknowledge that the proposed model demonstrates a 
high level of accuracy on all DFFD subsets.

4.5.4 � Evaluation on Celeb‑DF

In this experiment, the model was evaluated on pristine videos with the deepfake with two 
strategies.

Strategy 1 (s1)  To assess the effectiveness of the deepfake detection model, a comparative 
analysis was conducted between the original and synthetic samples of CelebDF. Our RFE 
Net attained a notable accuracy of 91.9% and 0.93 AUC. Despite the data imbalance issue 
as this dataset contains substantially more fake videos (5639) than real videos (590), the 
proposed method was able to identify key characteristics based on color and texture.

Strategy 2 (s2)  In this experiment, we employed several augmentation techniques through 
CLoDSA [78] to create a balanced dataset. Augmentation was applied to a genuine class 
to create several samples equivalent to those of a fake class. Several transformations were 
applied to the real data, including horizontal and vertical flipping, rotation, luminance 
adjustment, and cropping. In comparison, augmentation enhanced the results by 94.3% and 
resulted in an AUC of 0.93.

Even though Celeb-DF is a highly imbalanced dataset, the proposed method effec-
tively captures the characteristics of the samples by analyzing changes in color and texture. 
Remarkably, it distinguishes highly realistic swapped features within the Celeb-DF data-
set with minimal color variance and reduced temporal flickering. After applying augmen-
tation to this dataset, the results improved and demonstrated the method’s (P2) excellent 
performance.

4.5.5 � Evaluation on DFDC

In this experiment, the model was tested on pristine videos with the deepfake using two 
strategies, one with an imbalanced dataset and the second with a balanced one.

Strategy 1 (s1)  To evaluate the effectiveness of the proposed model in identifying deep-
fakes within the DFDC dataset, both genuine and fake samples were analyzed. RFE Net 
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attained an accuracy rate of 89.9% and an AUC value of 0.80. Upon examination of the 
DFDC dataset, one major reason is a class imbalance from 5k videos around 28% of sam-
ples are real, and the remaining is deepfake generated. Furthermore, many videos were 
recorded in conditions of dim lighting, posing a challenge to the model’s ability to dif-
ferentiate visual components. Significantly, the proposed model can differentiate between 
authentic and fake samples, even under conditions of limited lighting and side poses. 
Despite the diversity of the dataset and these variations, the proposed model detects deep-
fake artifacts with remarkable accuracy.

Strategy 2 (s2)  DFDC dataset is highly imbalanced, with the fake class having more sam-
ples than the real one. To address this issue, several augmentation techniques were utilized, 
such as horizontal and vertical flipping, rotation, luminance adjustment, and cropping. 
These methods helped to increase the number of samples in the real class to match that 
of the fake class, creating a more balanced dataset. As a result of this augmentation, the 
accuracy and AUC reported on DFDC were improved by 90.3% and 0.90 compared to the 
original dataset. This indicates that augmentation is an effective way to enhance the perfor-
mance of a model.

Most of the videos in the DFDC dataset were captured under extremely dim illu-
mination conditions, which created a challenge to the discrimination abilities of the 
model. Remarkably, our model P2 can identify pristine samples from deepfake sam-
ples even in dim lighting and side poses. Most of the videos in the dataset feature two 
actors conversing from side angles. Despite encountering such a wide variety of data-
set variations, the proposed model remains to detect deepfake anomalies with remark-
able precision. In addition, training the model on the augmented dataset also improved 
its accuracy.

Overall, these results on all datasets show that RFE Net performs remarkably well 
for classification. It should be noted that the player of interest P2 performs well even 
when employing different strategies for P1. More specifically, the use of regularization 
techniques as a game-theoretic strategy for P2 enables the model to learn the features of 
the original and deepfaked samples rather than memorize them. The proposed strate-
gies not only generate the highest accuracy but also produce higher PR and AUC.

Fig. 8   Payoff matrix and AUC of proposed model
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4.6 � Payoff matrix analysis

To better investigate the “True positive rate” and “True negative rate” scenarios con-
cerned with the different strategies of P1 and P2, a payoff matrix was used for analy-
sis. This experiment was designed to measure the performance of the game theoretic 
RFE Net on all datasets. As the payoff matrix shown in Fig. 1, NE is presented as the 
maximum of TP and TN. As seen in Fig. 8, the best payoff matrix representation was 
achieved on the faceswap subset of FF + + datasets. On the FF + + dataset, RFE Net 
achieved the highest TP and TN, 14,182 pristine and 14,174 deepfake samples, and 
achieved an overall TP and TN of 99%. The incorrectly classified 178 deepfake and 38 
pristine samples represent a minimal FP and FN. These maximum TP and TN represent 
that the game achieved an NE state using pessimistic approaches, which lead our game 
to an overall maximum payoff. This analysis shows the robustness of our RFE Net for 
the detection of deepfake using game theory.

4.7 � AUC analysis

To determine the responsiveness of the proposed game-theoretic RFE Net, the receiver 
operating characteristics (ROC) curve was created. The ROC curve measures the trade-
off between higher TPR and lower FPR. The AUC measures the model’s ability to dis-
criminate between pristine and deepfake samples. From the ROC curves in Fig.  8, it 
can be observed that the proposed method attained exceptional results. The black line 
in Fig. 8 represents the curve for the pristine class and the green line is the curve for 
deepfakes. The results where these lines are more on the top-left side of the graph pre-
sent the best AUC. Tables illustrate the AUCs of the proposed method on all datasets. 
The higher AUC shows that the model is discriminating well between the pristine and 
deepfake videos.

4.8 � Performance evaluation of RFE Net in cross‑set scenarios

To evaluate the generalizability of the RFE Net, rigorous cross-set experiments were 
designed to evaluate the performance of a proposed model on FF + + and WLDR data-
sets using different strategies. This experiment is applicable to the mentioned datasets 
due to additional subsets within these datasets.

4.8.1 � Evaluation on FF++

Strategy 1 (s1)  This experiment was designed to evaluate the model’s robustness for iden-
tity swap and expression swap subsets of the FF + + dataset. To identify instances of iden-
tity swapping, the authentic and fake samples were used to train RFE Net from combined 
sets such as faceswap, deepfakes, and face shifter (FS + DF + SH). Face2Face and neural 
texture datasets (F2F + NT) were combined to train the model in the context of expression 
swapping. The close-set classification (CSC) was performed on the trained models. In the 
context of close-set testing, the model was subjected to individual testing on each of its 
subsets, regardless of whether it was trained on identity swap or expression swap sets. In 
this experiment, our model demonstrated superior performance on each CSC set. The cor-
responding results can be found in Table 6.
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Strategy 2  (s2)  In the second experiment, we decided to change the strategy and make 
an open-set classification (OSC). This allowed us to test identity swapping on the expres-
sion-swapping subsets and vice versa. For this experiment, we trained our model on 
(FS + DF + SH) and then tested it on the subsets of F2F and NT. It can be observed that 
the CSC attained better results because the model was trained on close-set train sets. From 
this cross-set evaluation on FF++, the Strategy is considered the best strategy which is fol-
lowed by the detector for deepfake detection.

4.8.2 � Evaluation on WLDR

In this experiment, intra-class cross-set experiments were performed for the WLDR 
dataset.
Strategy 1 (s1)  In this evaluation, each leader’s comedic impersonator was tested against 
the same leader’s face swap and vice versa. The motivation of this experiment was to check 
how well our models discriminate between an impersonator of a leader from its deepfake. 
The cross-set results of an impersonator on the WLDR dataset are mentioned in Table 7. 
These results show the robustness of the proposed model on the WLDR dataset as it suc-
cessfully discriminates between the intra-class forgeries even in class imbalance scenarios. 
In this context, our model’s overall performance is convincing because it generalizes well 
to cross-set samples.

Table 6   Cross-set evaluation of 
proposed RFE Net on FF++

*(FS = Faceswap, DF = deepfake, F2F = Face2Face, NT = Neural Tex-
tures, SH = Shifter)

Identity Swap Train Set FS + DF + SH
CSC OSC

Test Set FS DF SH NT F2F
Acc (%) 97.6 97.8 96.6 65.4 72.6
PR 0.96 0.96 0.96 0.65 0.74
AUC​ 0.96 0.97 0.95 0.65 0.75

Expression Swap Train Set F2F + NT
CSC OSC

Test Set F2F NT FS DF SH
Acc (%) 92.6 90.2 70.4 66.7 53.3
PR 0.90 0.90 0.72 0.65 0.55
AUC​ 0.85 0.90 0.73 0. 67 0. 54

Table 7   Cross-set evaluation of 
proposed RFE Net on WLDR

Leaders Obama Clinton Sander Warren

Test Set Imp FS Imp Imp FS FS Imp FS

Train Set FS Imp FS FS Imp Imp FS Imp

Acc (%) 93.64 95.86 96.13 85.21 80.77 96.46 91.60 91.73
PR 0.94 0. 95 0.95 0. 85 0. 81 0. 95 0. 90 0. 90
AUC​ 0.92 0. 93 0.95 0. 84 0. 80 0. 95 0. 90 0. 90
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4.8.3 � Cross‑set comparison with contemporary methods

In comparison with our highest cross-set accuracy of 97% on the FF + + dataset, the exist-
ing methods [82] achieved between 60% and 65% cross-set accuracy; [57] attained a high 
accuracy of 75.30%; and [58] achieved an accuracy of 68%. This experiment demonstrated 
the superior performance of our model in close-set scenarios than in open-set scenarios on 
the FF + + dataset. It indicates our model’s ability to detect fake traits that differ from those 
detected in the training data. The results for open-set testing were good, except for the face 
shifter, which is generated by the GAN-based technique. The intricate textures make it dif-
ficult to reliably capture the distinguishing characteristics, resulting in lower performance 
for the model. Despite this, the proposed method demonstrated outstanding generalizability 
in CSC testing and reasonable performance in the OSC scenario. For the WLDR dataset, 
all experiments attained outstanding results, which demonstrate the generalizability of our 
RFE Net on cross-set experiments. The overall results indicate that our method is more 
generalizable in comparison to existing techniques.

4.9 � Cross‑corpora evaluation

To check the inter-class generalizability of the proposed method, we designed a cross-cor-
pora experiment. Cross-dataset experiments were devised on all datasets to evaluate the 
generalizability of RFE Net among totally different datasets.
Strategy 1  (s1)  In this experiment, we combined all leaders’ face swap subsets. As the 
combined subset contained a smaller number of videos, we used augmentation to increase 
the number of samples. We applied vertical and horizontal flips, rotation, cropping, and 
horizontal and vertical augmentation techniques using the data augmentation library 
CLoDSA [78]. The combined WLDR is trained, and model performance is evaluated with 
FF++, CelebDF, and DFDC datasets.

Strategy 2  (s2)  For this experiment, identity-swapping subsets of the FF + + dataset are 
combined to evaluate with WLDR, CelebDF, and DFDC datasets. In this experiment, less 
accurate results were achieved because the WLDR dataset is not as diverse as FF++. But 
still, the model precisely detects the TP (Pristine) sample available in the FF + + dataset. 
We trained our model with a combined train set and evaluated it with WLDR for each 
leader’s face swap subset. In this experiment on the Clinton subset, we attained the high-
est accuracy of 73.4%, because the model is trained on diverse identity-swapped samples. 
Even in diverse case cross-corpora evaluation, the model achieved more than 73% accu-
racy, which is far better than contemporary methods.

Strategy 3  (s3)  This experiment involved the utilization of a trained model on the Cel-
ebDF, which was subsequently evaluated using the DFDC, WLDR, and FF + + test set. 
The WLDR test set includes the collection of faceswap test sets of all leaders, while 
the FF + + dataset’s test set comprises samples generated using the identity-swapping 
technique.

Strategy 4 (s4)  The last cross-corpora experiment involved training the RFE NET model 
on the DFDC dataset and subsequently evaluating its performance using the CelebDF, 
WLDR, and FF + + datasets. A test set was created for the WLDR and FF + + models using 
the technique as used in .
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4.9.1 � Cross‑corpora comparison with contemporary methods

This experiment is conducted to demonstrate the effectiveness of a cross-corpora evalua-
tion of our technique. Comparing the cross-corpora evaluation with the existing method 
[57, 58, 60], our method attains good cross-corpora results. The method [58] achieved 
cross-dataset results between 40 and 60%, whereas for [60], the best cross-corpora value is 
76.1%. The highest cross-corpora accuracy attained by our model is 78.19%. It is shown in 
Table 8 that DFDC and CelebDF, DFFD outperformed the other datasets when compared 
to FF + + and WLRD. Compared to other datasets, Celeb-DF, DFFD, and DFDC comprise 
a variety of samples with different illumination conditions, backgrounds, ages, genders, 
and ethnicities and are created through face-swapping techniques.

In the cross-dataset scenario, our model achieved remarkable accuracy on these data-
sets. In contrast, the FF + + dataset includes techniques for expression and identity-swap-
ping. Moreover, WLRD is restricted to videos of only five leaders, so it cannot produce 
convincing results when compared to other datasets. Therefore, the efficacy of these data-
sets was inferior to that of DFDC, DFFD, and Celeb-DF. Given the diversity of each data-
set, it is reasonable to expect cross-dataset results between 60 and 70%. Each dataset varies 
due to the inclusion of different ethnicities, ages, geographic locations, lighting conditions, 
and face accessories.

4.10 � Generalizability analysis on multiple post‑processing attacks

To determine the generalizability and robustness of the proposed model in the context of 
various adversarial attacks including noise, blur, pixel dropout, and elastic deformation, the 
P1 data manipulator acts as the attacker. It is essential to note that the proposed model P2 
was not trained for such attacks. We conducted this experiment on all datasets and details 
are provided in this section.

To test the efficiency of our RFE Net on unseen attacked instances, we devised an exper-
iment that used four different strategies for attacking the test set images of all datasets. It is 
important to highlight that the models were only trained on normal data, attacked samples 
were not included in the training. These techniques include (�

1

) : Salt and pepper noise, 
(�

2

) : Gaussian blur (kernel = 5), (�
3

) : Pixel Dropout (0.05%), and (�
4

) : Elastic deformation 
(α = 5, sigma = 0.05).

For each FF++, DFFD, and WLDR dataset, we merged all subsets into one training set, 
whereas the CelebDF and DFDC datasets were used as a whole. Table 9 shows the results 
of all post-processing attacks on datasets. Overall, we obtained accurate outcomes for all 

Table 9   Performance evaluation 
of proposed model on post-
processing attacks

Dataset Accuracy (%)

 Blur  Noise  Pixel
 Dropout

 Elastic
 Deformation

FF++ 92.5 85.4 78.3 72.6
WLDR 94.5 89.5 80.2 76.9
DFFD 93.2 86.1 79.4 74.5
CelebDF 90.4 86.7 82.5 70.3
DFDC 83.7 74.6 71.9 69.2
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datasets, including attacked samples, except for elastic deformation-attacked instances. 
Elastic deformation simulates model-deceiving distortions by applying non-rigid changes 
to the input image. Comparing the results of attacked images to those of normal images, 
Table 9 demonstrates a decrease in the detection accuracy for the attacked samples. RFE 
Net classifies attacked samples with an accuracy of at least 69.2% for the DFDC dataset. 
Analyzing the DFDC, it was noticed that most of the videos were captured in extremely 
dim illumination, making it challenging for the model to differentiate between fake and 
genuine. In addition, the use of elastic deformation makes it more challenging for a model. 
Still, our model is reasonably resistant to post-processing attacks due to the use of drop-
out regularization and data augmentation. The detector’s improved resistance may prevent 
attacks and strengthen the defensive approach as a stable, mutually optimum response by 
minimizing exploit attempt returns. Also implied is that RFE Net outperforms on both 
attacked and non-attacked samples. Because the generalizability of the proposed RFE Net 
enables it to achieve such satisfactory detection results for the attacked images, this allows 
the model to become resistant to unseen samples not observed during the training.

4.11 � Explain ability analysis through heat maps

Deep learning models are considered black box models that make classification decisions 
for given classes based on deep features without showing any visual evidence. For explain-
ability purposes, heatmaps improve the visualization of what the network has learned dur-
ing deep feature extraction. To visualize the explainability factor of our RFE Net, we cre-
ated heatmaps through the Grad-cam [83] approach. Selecting the Grad-cam in comparison 
to other methods like saliency maps, lime, and guided backpropagation offers a more pre-
cise and interpretable visualization of the model’s attention. Grad-cam uses gradients in the 
final convolutional layer, which not only helps in interpreting the model’s decision-making 
process but also enhances the transparency of the model. Figure 9 depicts the heatmaps 
matching the proposed RFE NET’s final convolution layer overlaid with several types of 
deepfakes. The RFE NET focuses on the silhouette in the face region where the manipula-
tion is present. The visual study supports our claim that the RFE NET is suitable for deep-
fakes detection. It is clear from the visual study that the RFE NET emphasizes the regions 
inside the face, like the foreheads, brows, nose, eyes, etc. The focus of heatmaps on distinct 
sections of the facial region indicates that our RFE NET model is focusing on relevant sec-
tions in the frame. In comparison, we generated heatmaps after post-processing attacks it 
can be seen in Fig. 9 that noise distorts pixel values, resulting in incorrect focus areas in 
heatmaps. Blurring reduces detail and smooths pixels, resulting in diffused activations in 
heatmaps as the model attempts to detect subtle features. The model’s inability to deal with 
incomplete inputs is demonstrated by the data gaps that are created by dropping pixels. 
These gaps are visible in heatmaps as areas of reduced or absent activation. Elastic Defor-
mation causes image distortion that misaligns features. However, our model is still resistant 
to post-processing attacks due to the use of dropout regularization and data augmentation.

4.12 � Comparison with contemporary methods

To analyze the effectiveness of our game-theoretic RFE NET for deepfake detection, it 
was compared with the existing state-of-the-art methods. We compared our model’s per-
formance on the FF + + dataset using [20, 38, 39, 51, 56–60], on the DFDC dataset using 
[56, 59, 60], on the DFFD using [57], on the CelebDF dataset using [38, 39, 60], and 
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the results are given in Table 10. In [20], the FF + + dataset was proposed and trained on 
existing handcrafted and deep learning models like XeceptionNet and MesoNet [49]. Of 
all existing methods, XeceptionNet obtained the highest results for each class: FS, DF, 
F2F, NT, and the combined set. XeceptionNet al.so achieved the best results on all the 
fake classes, except for the real class. For the real class, MesoNet achieved higher accu-
racy than the other models in [20]. In [51], face swap, deepfake, and face2facesubsets of 
FF and FF + + were used to train a Y-shape decoder for classification and segmentation. 
The F2F set of the FF + + dataset was used for training and the model was tested on the 
F2F, deepfake, and face swap subsets. When comparing the combined FF + + with con-
temporary methods, it is evident that Steg features [20] achieved the lowest accuracy of 
51.8% [60], achieved an accuracy of 97.16%, and our proposed method achieved an accu-
racy of 96.85%, which is equivalent to the highest accuracy among the listed methods. 
When compared to state-of-the-art approaches, our method detects all FF + + subsets with 

Fig. 9   Each column has different samples of FS, DF, F2F, NT, and SH subsets of FF + + datasets. 1st row 
represents heat maps without post-processing attack, 2nd row represents noise attack heat maps, 3rd row 
represents blur attack heat maps, 4th row represents pixel dropout attack heat maps, and 5th row represents 
elastic deformed attack heat maps
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greater precision. Our model captures attribute manipulation artifacts significantly better 
than other approaches.

When Celeb-DF is compared to contemporary approaches, it is evident that our pro-
posed RFE Net has the highest accuracy among all. However, on the DFDC dataset, the 
method [60] achieved 2% higher accuracy compared to the proposed method, however use 
of early stopping regularization makes the proposed method more efficient compared to 
[60]. This comparison shows that the proposed RFE Net beats existing deepfake detection 
techniques. These results demonstrate explicitly that the proposed RFE NET can reliably 
detect numerous types of deepfake.

For the WLDR dataset, the proposed model was compared with the contemporary 
methods in [31, 43, 57, 58, 60]. The performance of the existing method on this 
dataset is measured by the AUC, so we compare the AUC of our method with these 
techniques. Methods [31, 43], performed several experiments to train a single class 
SVM on subsets of all leaders. The overall average AUC for this model was 0.93. In 
[43], appearance and behavior bioinformatic features were used for face swap deepfake 
detection, which achieved an AUC of 94.5 on the WLDR. The method [58] attained less 
accurate results than the proposed method. In comparison with [31, 43], the proposed 
game theoretic RFE NET achieved an even higher AUC of 0.99 on the WLDR dataset. 
Warren’s Imposter and faceswap sets [31] and [43], slightly perform better than our 
method, whereas on the Sander and combined set [60], achieved a performance gain 
of 2% over the proposed method. Based on this comparison, with the above-mentioned 
techniques, it can be concluded that the proposed RFE Net outperforms the majority of 
the contemporary deepfake detection methods and is comparable to [57] and [60]. As 
clearly shown by these results, the proposed game theoretic RFE NET can effectively be 
used to detect the diverse types of deepfakes.

5 � Conclusion

This paper has presented a novel game theory-based Regularized Forensic Efficient Net 
model, which combines supervised learning with a game theory approach for video 
deepfake detection. We presented a zero-sum game for two players: dataset and detector, 
using different regularization-based strategies to check the generalizability of the player 
of interest “deepfake detector”. The use of mixed strategies allowed the game to achieve 
NE rewards and our model to better classify diverse types of deepfakes. We performed 
rigorous experimentation of our method on five benchmark datasets that are FF++, 
WLDR, CelebDF, DFFD  and DFDC against contemporary methods, including cross-
set and cross-corpus experiments, and post-processing attacks evaluation to judge the 
generalizability of the proposed RFE Net. In addition, the explainability factor is also 
highlighted by extracting the visual artifacts through heat maps. the proposed extensive 
game allows players to customize the strategies such as regularization making it more 
generalizable. this adaptability allows the proposed method to detect different deepfakes, 
improving its effectiveness. Experimental results indicate the effectiveness of the proposed 
method for diverse types of videos deepfake detection, including identity and expression 
swapping (face2face, neural textures), and lip-syncing. In the future, we plan to expand our 
contribution by introducing other game theory concepts with deep learning to improve the 
generalizability and explainability of deepfake detection.
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