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Introduction
Wounds are injuries that affect the skin and underly-
ing tissues and are mainly caused by disease, surgical 
procedures, or trauma. Wounds are generally classified 
as chronic or acute based on the extent of the physi-
cal damage and the timeframe from the primary injury. 
Compared to acute wounds, which often improve in four 
weeks, chronic wounds resist recovery within six weeks. 
Chronic wounds are critical and require appropriate 
medication, as such wounds are severe, painful, tender, 
and can cause significant problems for patients. Accord-
ing to a research study [1], yearly, over 6 million Ameri-
cans suffer from chronic wounds. Diabetic foot ulcers 
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Abstract
Chronic wounds have emerged as a significant medical challenge due to their adverse effects, including infections 
leading to amputations. Over the past few years, the prevalence of chronic wounds has grown, thus posing 
significant health hazards. It is now becoming necessary to automate the wound assessment mechanism to 
limit the dependence of healthcare practitioners on manual methods. Therefore, a need exists for developing an 
effective wound classifier that enables practitioners to classify wounds quickly and reliably. This work proposed 
Eff-ReLU-Net, an improved EfficientNet-B0-based deep learning model for accurately identifying multiple categories 
of wounds. More precisely, we introduced the ReLU activation function over the Swish in our Eff-ReLU-Net because 
of its simplicity, reliability, and efficiency. Additionally, we introduced three fully connected dense layers at the end 
to reliably capture more distinct features, leading to improved multi-class wound classification. We also employed 
augmentation approaches such as fixed-angle rotations at 90°, 180°, and 270°, rotational invariance, random 
rotation, and translation to improve data diversity and samples for better model generalization and combating 
overfitting. The proposed model’s effectiveness is assessed utilizing the publicly available AZH and Medetec 
wound datasets. We also conducted the cross-corpora evaluation to show the generalizability of our method. The 
proposed model achieved an accuracy, precision, recall, and F1-score of 92.33%, 97.66%, 95.33%, and 96.48% on 
Medetec, respectively. However, for the AZH dataset, the attained accuracy, precision, recall, and F1-score are 90%, 
89.45%, 92,19%, and 90.84%, respectively. These results validate the effectiveness of our proposed Eff-ReLU-Net 
method for classifying chronic wounds.
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(DFU), venous leg ulcers (VLU), and pressure ulcers 
(PU) are the most common types of chronic wounds. 
These chronic wounds impose a substantial burden on 
the healthcare system as they need continued monitor-
ing and specialized treatment. Thus, medical costs and 
resource utilization significantly increase due to pro-
longed treatments and frequent hospital visits [2].

Conventionally, practitioners follow manual wound 
assessment methods for treating and caring for chronic 
wounds. However, manual wound assessment can be 
inconsistent and subjective, leading to variability in diag-
noses and treatment plans. This highlights the need for 
automated wound classification systems to provide reli-
able and objective evaluations to support clinicians in 
delivering effective patient care [3]. Scholars have pre-
sented various conventional machine learning (ML) 
and deep learning (DL) based approaches for automatic 
wound classification. ML approaches learn hand-crafted 
features, capturing attributes like texture, color, and 
shape from the wound images, and require domain-
specific expertise for effective feature selection [4, 5]. 
Such methods are ineffective for learning complex pat-
terns in wound images and have poor generalizability 
across diverse wound types [6, 7]. On the other hand, 
DL-based approaches have improved wound classifica-
tion via learning hierarchical and complex features from 
the input wound images [2, 8–10]. Deep learning net-
works have been proven effective for improving wound 
diagnosis, including wound classification. However, DL-
based approaches usually need large datasets to achieve 
enhanced performance and more processing power [11].

Most of the existing methods have tackled wound 
identification as a binary classification problem, show-
ing the presence or absence of wounds. However, auto-
mated methods must also be capable of identifying the 
type of wounds to provide more useful information to 
medical surgeons. In recent times, researchers have also 
developed multiclass wound classification methods to 
indicate the type of wound. Despite progress in deep 
learning methods, existing wound classification systems 
still struggle with accurate identification across multiple 
wound types, especially due to variations in the color, 
shape, and size of wounds. Moreover, wounds that are 
about to heal are particularly challenging to detect. These 
challenges are further compounded by limited datasets 
and computational inefficiencies in model design, which 
hinder the development of robust and generalizable clas-
sification systems.

To overcome current limitations, this study focuses on 
developing an efficient and accurate multiclass chronic 
wound classification model that generalizes well across 
different datasets. For this study, we formulated two 
research questions: (1) Can the use of ReLU activation 
in place of Swish improve the efficiency and training 

stability of the wound classification model? and (2) Can 
the proposed model generalize well across datasets with 
different wound types? For this, we introduced the com-
putationally efficient ReLU activation function over the 
swish activation to enhance the efficiency of the pro-
posed wound classification. ReLU outputs non-negative 
values by avoiding complex exponential computations, 
converging faster, and preventing the vanishing gradient 
problem. These attributes enable ReLU to become very 
efficient in deep neural networks, thus refining training 
proficiency and efficiency. Further, we also suggested 
increasing the fully connected dense layers for more 
effective feature computation. Additionally, we applied 
data augmentation approaches to enrich the dataset, 
reducing overfitting and enhancing generalization with-
out requiring significant computational resources. Along 
with that, cross-corpora evaluation is conducted to ana-
lyze the generalization aptitude of the proposed model. 
The main contributions of the proposed research are:

 	• We present an Eff-ReLU-Net method to reliably 
classify multiple categories of chronic wounds, 
irrespective of diverse wound types and sizes.

 	• We introduce the ReLU activation function in 
our Eff-ReLU-Net to improve the efficiency and 
reliability of the baseline EfficientNet-B0 model.

 	• We introduce three fully connected dense layers 
at the end to better capture the distinct traits of 
different types of wound images.

 	• Extensive experimentation was conducted, including 
cross-dataset evaluation using Medetec and AZH 
datasets, to demonstrate the proposed model’s 
superiority and generalizability over existing 
approaches.

The remaining paper is organized as follows. The related 
work is reviewed in Sect. 2. Section 3 presents the sug-
gested approach, experimental setup, utilized datasets, 
data augmentation, and evaluation metrics. Experimen-
tal results are discussed in Sect. 4. Finally, Sects. 5 and 6 
demonstrate the analysis and conclusion of our work.

Related work
In this section, we discussed recent work on wound 
image classification using traditional ML and DL-based 
methods.

Traditional handcrafted methods of wound classifica-
tion mainly depend on the health practitioners’ knowl-
edge. They consider features like wound location, size, 
depth, appearance of wound edges, and surrounding skin 
condition, frequently using basic tools like rulers and 
probes to access key features with classifications. Initially, 
conventional approaches were used to recognize wounds 
for binary classification, like SVM and decision trees, to 
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distinguish wound and non-wound regions in medical 
images, including typical skin or background elements. 
Examples of binary wound type classification scenarios 
involve classifying background from DFU, normal skin 
from PU, and DFU from PU. Yadav et al. [12] proposed 
a traditional machine learning method for binary classifi-
cation of burn wound images using a classic color-based 
feature extraction technique with an SVM. This method 
[12] categorized the samples into two classes: grafting 
and non-grafted wounds, while achieving 82.43% accu-
racy. The dataset comprised 94 images with burn depths, 
including full-thickness, deep dermal, and superficial 
dermal. This method was evaluated on a small custom 
dataset, and its assessment on a large and diverse data-
set is yet to be explored. Multi-class image classification 
using conventional ML methods is adopted by differ-
ent studies like an approach discussed in [13], where the 
Scale Invariant Feature Transform (SIFT) and Speeded 
Robust Features (SURF) methods combined with the 
Bag of Features (BOF) technique are used to extract the 
features from given images to train the SVM for classi-
fication. The approach attained a classification score of 
97.81%, however, it needs testing on a large and diverse 
dataset, where a significant reduction in performance 
is expected. Veredas et al. [14] used the three machine 
learning models: neural networks, support vector 
machines (SVMs), and random forest decision trees to 
categorize every segmented area of wound tissue. Models 
were trained to classify tissue categories built on features 
extracted from the segmented regions, with the neural 
network attaining an accuracy of 81.87%, SVMs achiev-
ing 88.08%, and random forests getting 87.37%. Alevizos 
et al. [15] proposed an ML-based approach for recogniz-
ing diabetic foot ulcers. For this, the approach suggested 
an improved local binary pattern (LBP) to compute rota-
tion-invariant feature vectors. The estimated information 
is later categorized by using the XGBoost approach. The 
work has attained a sensitivity score of 92%, however, it 
needs more improvements. ML-based approaches for 
wound classification perform well, however, they often 
face challenges such as reliance on manual feature extrac-
tion, which can be time-consuming and error-prone, and 
limited generalization due to insufficient dataset diver-
sity. Additionally, these methods struggle with handling 
variations in wound size, texture, and imaging condi-
tions, leading to inconsistent performance in real-world 
scenarios. As a result, traditional ML models may not 
accurately classify wounds, leading to biased decisions 
and limited clinical utility under scenarios where wound 
samples possess significant variations in size, color, and 
shape.

The advancement in deep learning approaches has 
shifted the paradigm, and various models like pre-trained 
CNNs are widely explored for medical image analysis, 

including wound classification. Goyal et al. [16] classify 
the infection and ischemia in diabetic wounds using an 
ensemble CNN network for binary classification. A cus-
tom DFU dataset was utilized in his research, and lower 
accuracy was achieved for the infected class. Rostami 
et al. [17] classify wound images into binary and multi-
classes by using an end-to-end ensemble DCNN-based 
model utilizing the Medetec dataset. The work reported 
accuracy values of 91.2% and 82.9% for binary and 3-class 
classifications. The method performs well for binary clas-
sification; however, it needs improvements for multi-
class classification. In addition, Husers et al. [18] used 
YOLOv5 architecture to classify DFU and VU, with the 
YOLOv5m6 architecture attaining 94.2% accuracy on a 
custom dataset of 885 images. This study is tested on a 
small dataset. Husers et al. [19] classify macerations in 
diabetic foot ulcers by using a Mobilenet-v1-based model 
utilizing the transfer learning method. This method was 
tested on a small custom dataset of 416 wound images 
collected from the wound care center of Christliches 
Klinikum Melle, Germany. The work reported an accu-
racy of 69%, which needs significant improvement. 
Aguirre et al. [20] used a pre-trained VGG-19 model to 
categorize the ulcer images and attained 75% accuracy 
and 82% precision for the custom dataset of 300 ulcer 
images. Ahsan et al. [21] used VGG16, ResNet50, and 
AlexNet, utilizing the DFU2020 dataset, attaining an 
accuracy of 99% for ischemia and 84.76% for infection 
classification on ResNet50. Rostami et al. [22] classify 
wound images into multiple classes, including surgi-
cal, diabetic, and venous ulcers, by using an end-to-end 
ensemble DCNN-based model utilizing the Medetec 
dataset. The output classification values of two classifiers 
depend on patch-wise and image-wise approaches that 
were input into a Multi-Layer Perceptron to give a larger 
classifier. The work reported 91.9% and 87.7% accuracy 
for three classes and 96.4% and 94.28% for binary class 
classification. Sarp et al. [23] classify chronic wounds 
into diabetic, lymph vascular, pressure injury, and sur-
gical wounds using an explainable artificial intelligence 
method adopting the dataset of the eKare repository, 
which contains 8690 wound images. The VGG16 archi-
tecture was used for the classification. The work reported 
an average F1 score of 0.76. Zaid et al. [24] proposed a 
Swish-ELU EfficientNet-B4 model that merges two 
modified EfficientNet-B4 models to get better relevant 
features, which are then classified through a regular-
ized prediction module. The AZH and Medetec datasets 
were used for testing. This method attained 87.32% and 
88.17% accuracy on the AZH and Extended AZH data-
sets, whereas 88% and 89.34% accuracy on the Medetec 
and extended Medetec datasets, respectively.

Qian et al. [25] suggested a deep framework called the 
SARNET in which a self-attention embedded residual 
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model is applied to compute the features and categorize 
the wounds into 6 groups. The approach has reported 
a maximum classification performance of 80%, which 
needs further enhancement. Patel et al. [26] proposed a 
multi-modal combined VGG16, ResNet152, and Effi-
cientNet deep convolutional neural architecture for the 
classification of wounds into four classes: diabetic, pres-
sure, surgical, and venous ulcers, utilizing corresponding 
body location. This multi-modal architecture was trained 
and assessed on Medetec and the AZH datasets. Abuba-
kar et al. [27] suggested an approach to differentiate pres-
sure ulcers and burn wounds. Pre-trained deep learning 
models like ResNet152, ResNet101, and VGG-face were 

used for feature extraction. While the SVM was used for 
classification. The dataset comprised 31 burn images and 
29 pressure images, which were increased using flipping 
transformations, rotation, and cropping. The author exe-
cuted a 3-class classification and binary class tests. The 
images were categorized into pressure classes or burn 
images in the binary classification. The 3-class classifi-
cation test aimed to categorize the images as pressure, 
burn, or healthy skin. The ResNet152 model performed 
best among the employed DL models. Alhababi et al. [28] 
proposed a framework comprising an attention-dense-
unit method for wound segmentation and a feature con-
catenation-based method for wound classification. This 
unified method attained 90% accuracy on the Medetec 
dataset and 81% accuracy on the AZH dataset for wound 
classification. These hybrid methods [26–28] are compu-
tationally complex due to employing multiple DL mod-
els for wound classification. DFU_MultiNet, introduced 
in [29], detected diabetic foot ulcers utilizing multiscale 
feature fusion. DFU_XAI [30] was an end-to-end frame-
work that fine-tuned five pretrained CNNs (Xception, 
DenseNet121, ResNet50, InceptionV3, MobileNetV2) 
and applied three XAI methods (SHAP, LIME, Grad-
CAM) to both classify and localize ulcers. These frame-
works [29, 30] are limited to the DFU-specific dataset 
and lack generalizability. Likewise [29], Biswas et al. 
[31] demonstrated a multi-scale feature-fusion network 
named XAI-FusionNet that fused high-frequency fea-
tures from DenseNet201, VGG19, and NASNetMobile 
via a meta-tuner module, and applied SHAP, LIME, and 
Grad-CAM for post-hoc explainability. FusionNet [31] 
achieved 99.05% accuracy and 99.09% AUC. However, 
this study is limited to binary classification, misclassify-
ing other ulcer types, indicating a need for future exten-
sions to multi-class detection to enhance its clinical 
applicability.

Despite the advancements offered by deep learning 
approaches in addressing the limitations of traditional 
methods, there remains room for performance improve-
ment. Challenges such as optimizing computational effi-
ciency, enhancing model generalization to diverse and 
unseen datasets, and improving robustness to imaging 
variations highlight the need for further research and 
innovation in this domain. Table 1 shows the comparison 
of the existing works.

Proposed methodology
This section presents Eff-ReLU-Net, an end-to-end 
deep-learning model for classifying wound types, includ-
ing diabetic foot ulcers, pressure wounds, toe ulcers, 
and leg ulcers. A comprehensive visual demonstration 
of the proposed approach is shown in Fig. 1. In the pre-
processing step, the input image is resized to 224 × 224 
resolution to satisfy the input size specifications of the 

Table 1  Overview of wound classification methods
Ref. Methods Accuracy 

(%)
Dataset Limitations

 [12] Color 
descriptor + SVM

82.43 Burns BIP_US 
Database

Tested on a small 
custom dataset

 [16] Ensemble CNN 
network

73–90 DFU dataset Specific for DFUs

 [19] Mobilenet-v1 69 Custom 
dataset

Limited data 
samples are used
Lower accuracy

 [27] VGG-face, 
ResNet101, and 
ResNet152

99 Custom 
dataset

Designed for 
limited datasets

 [22] Ensemble 
DCNN

82.9 MEDETEC 
dataset

Not robust for 
different datasets

 [23] VGG16 
architecture

76 eKare, Inc 
dataset

Low classification 
accuracy

 [17] Ensemble 
DCNN

91.20 Medetec 
dataset

Needs improve-
ments for 
multi-class 
classification

 [24] Swish-ELU 
EfficientNet-B4

89.34 MEDETEC, 
AZH, and 
Extended 
MEDETEC

Computationally 
inefficient

 [20] VGG-19 75 Custom 
dataset

Low classification 
accuracy

 [25] SARNET 80 kaggle 
dataset

Low classification 
accuracy

 [21] AlexNet, VGG16, 
and ResNet50

84.76–99.49 DFU2020 Computational 
Complex

 [18] YOLOv5 94 Custom 
dataset

Tested on a small 
custom dataset

 [28] Att-d-UNet 90 AZH and 
Medetec

Computationally 
inefficient

 [26] VGG16, 
ResNet152, and 
EfficientNet

78.10 AZH and 
Medetec

Computational 
Complex

 [13] SIFT-SURF-
BAG + SVM

99.09 Custom 
dataset

Tested on a small 
custom dataset

 [14] Random forest, 
SVM, and deci-
sion trees

81-88.07 Custom 
dataset

Low accuracy

 [15] LBP with 
XGBoost

76.5 Custom 
dataset

Low accuracy
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proposed model. Then, the wound images are augmented 
to increase the number of samples in each wound class, 
ensuring that the training samples are sufficient to train 
the proposed deep learning model. The proposed Eff-
ReLU-Net model then processes the resized image using 
multiple convolution blocks, comprising convolution 
and max pooling layers, along with the ReLU activation 
function and three fully connected dense layers before 
the final output layer to perform multi-class wound clas-
sification. A detailed description of the proposed model, 
Eff-ReLU-Net, is provided in the subsequent subsections.

EfficientNet
EfficientNet is a convolutional neural network that 
employs a compound scaling method to optimize the bal-
ance between network depth, width, and resolution, thus 
permitting it to attain maximum accuracy while sustain-
ing computational efficacy [32]. These attributes make 
EfficientNet particularly well-suited for tasks that require 
both precision and resource management, as it consis-
tently outperforms other deep learning models in terms 
of accuracy-to-efficiency ratio. EfficientNet’s ability to 
capture fine-grained details with reduced computational 
cost makes it an ideal choice for the wound classification 
task. EfficientNet-B0 from the EfficientNet family (i.e., 
EfficientNet B0 to B7) is utilized in our research work, 
for feature extraction and wound classification, because 
it has the least number of parameters (5.3 M) and FLOPS 
(0.39B) on ImageNet, shown in an experiment in [32]. 
The most accurate model in the EfficientNet family is the 
EfficientNet-b7, however, it is computationally expen-
sive with 66 M parameters and 37B FLOPS [32]. So, we 
choose EfficientNet-B0’s architecture for customization 
as it is more cost-effective, robust, and efficient among 
other models in the EfficientNet family. Moreover, 

compared to other lightweight models such as Mobile-
NetV2 (3.4 B FLOPS, ~ 3.5 M parameters) or ShuffleNet 
(0.14B FLOPS), EfficientNet-B0 matches or exceeds their 
accuracy because of its optimized inverted-bottleneck 
blocks with squeeze-and-excitation. Overall, we choose 
the Efficient-B0 model that not only performs well in 
classifying wound types but is also useful in real-world 
clinical environments where resources are limited.

Eff-ReLU-Net architecture
EfficientNet has established itself as a state-of-the-art 
architecture for image classification tasks that delivers an 
excellent balance between accuracy and computational 
efficiency. Its compound scaling method ensures opti-
mized performance across a range of model sizes, which 
makes it highly versatile. However, despite its strengths, 
EfficientNet faces certain limitations when applied to 
complex and domain-specific tasks like wound classifi-
cation. The default use of the Swish activation function, 
while beneficial in some contexts, however, can intro-
duce computational overhead, which increases training 
time, and its dependence on the sigmoid function leads 
to gradient saturation, slowing convergence. Addition-
ally, Swish struggles with sparse feature representations, 
which are critical for wound-classification tasks where 
complex details play a significant role. To address these 
issues, we have developed the Eff-ReLU-Net model to 
enhance the accuracy of wound classification. Specifi-
cally, we have incorporated the ReLU activation function 
in EfficientNet. ReLU is simpler and less computationally 
demanding, which reduces processing time and enhances 
the suitability of the framework for real-world clini-
cal deployment. Further, this activation function allows 
the approach to mitigate vanishing gradient problems, 
enabling faster convergence and improved feature 

Fig. 1  Proposed Framework
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learning. We include average pooling and dropout layers 
to avoid overfitting. We also added three fully connected 
dense layers to further extract and pass the distinctive 
features to the SoftMax layer to classify different types 
of wounds. This modification not only reduced train-
ing complexity but also enhanced the capability of our 
approach to extract fine-grained wound features, result-
ing in higher classification accuracy.

Specifically, the Eff-ReLU-Net model begins with an 
input layer that processes images resized to 224 × 224 
pixels. The architecture incorporates Mobile Inverted 
Bottleneck Convolutions (MBConvs), which form the 
backbone of the network. These layers utilize depthwise 
separable convolutions and inverted residual connections 
to effectively extract meaningful features while reducing 
computational overhead. Unlike the original EfficientNet, 
ReLU is used as the activation function instead of Swish, 
simplifying computations while retaining performance. 
These blocks are repeated with varying channel sizes 
and strides for progressive downsampling and feature 
enhancement. A final 1 × 1 convolution layer is followed 
by global average pooling and three fully connected (FC) 
layers. The last layer accomplishes the classification task 
using a softmax activation function to produce class 
probabilities. Table 2 provides the details of the proposed 
architecture.

Convolutional and residual bottleneck layers
The model employs five convolutional layers with a stride 
of 2 × 2 to reduce spatial resolution. The initial convo-
lutional layer contains 32 kernels and is followed by 15 
MBConv layers, which form the core of the architecture. 
Each MBConv layer includes a depth-wise convolution 
with a 3 × 3 kernel and a pointwise convolution with a 
1 × 1 filter. This configuration is pivotal for capturing 
fine-grained features while maintaining the model’s com-
putational efficiency. After each convolution, a batch 
normalization (BN) layer is applied to stabilize the learn-
ing process, except after the third convolution, where the 
BN layer directly follows a 1 × 1 convolution.

Activation function and pooling
In the Eff-ReLU-Net model, the ReLU activation function 
is used with convolutional and fully connected layers to 
establish non-linearity, which is critical for learning com-
plicated patterns in wound images. We selected ReLU 
because of its simplicity, computational effectiveness, 
and capability to prevent vanishing gradient issues, which 
guarantees speedy training and effective learning even in 
deeper networks. ReLU’s sparse activation also proceeds 
as implicit regularization, reducing overfitting by forc-
ing the model to focus on the most appropriate features. 
Unlike other complex functions like Swish, which can be 
computationally expensive, ReLU allows for faster con-
vergence without degrading performance. Moreover, we 
integrated a global average pooling layer to ease the mod-
el’s parameters, improving computational proficiency 
while preserving the fundamental information needed 
for precise wound classification.

FC dense and softmax layers
We introduced three FC-dense layers in our Eff-ReLU-
Net architecture to extract and pass more distinctive pat-
terns to the SoftMax classification layer to convert the 
output into probability distributions among the various 
wound classes. The class with the maximum probability 
is chosen as the calculated wound class. Statistically, the 
SoftMax function is stated as:

	
σ (Zi) = ezi

∑ n
j=1ezj � (1)

Where zi is the input to the i-th neuron in the output 
layer, and n is the total number of classes. The SoftMax 
function exponentiates each zi, getting all values posi-
tive, then normalizes them by dividing with the sum of all 
exponentiated values. This certifies that σ(Zi) denotes the 
probability of the input image relating to class I, allowing 
the model to classify the image into predefined wound 
classes based on the maximum probability. The algorithm 

Table 2  Details of Eff-ReLU-Net
S. 
No

Operator Image 
Size

Channel Lay-
ers

1 Input Conv 3 × 3 224 × 224 32 1
2 MBConv1 3 × 3 

(Normalization + Relu)
112 × 112 16 1

3 MBConv6 3 × 3 
(Normalization + Relu)

112 × 112 24 2

4 MBConv6 
5 × 5(Normalization + Relu)

56 × 56 40 2

5 MBConv6 3 × 3 
(Normalization + Relu)

28 × 28 80 3

6 MBConv6 5 × 5 
(Normalization + Relu)

14 × 14 112 3

7 MBConv6 
5 × 5(Normalization + Relu)

14 × 14 192 4

8 MBConv6 3 × 3 
(Normalization + Relu)

7 × 7 320 1

9 Conv 1 × 1, pooling 7 × 7 1280 1
10 Fully Connected (Dense) 

Layer 1
1 × 1 Units: 512 -

11 Fully Connected (Dense) 
Layer 2

1 × 1 Units: 256 -

12 Fully Connected (Dense) 
Layer 3

1 × 1 Units: 128 -

13 Classification 1 × 1 -
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for the classification process of wound images is pre-
sented as Algorithm 1.

Algorithm 1: Classification process of proposed Eff-ReLU-Net
Input: Image Repository, X = {x1, x2, x3, …., xn}
Augmented Image Repository, W = {w1, w2, w3, …., wn}
Output: Predicted class label, Yp
1. ForeachwinWdo
2. → w ← Resize (w) // Resized the image to 224 × 224
3. → w ← Conv 3 × 3 (w, out_channels = 32)
4. → w ← BatchNorm (w)
5. → w ← ReLU (w)
6. → w ← MBConv (w, exp = 1, out = 16, kernel = 3, stride = 1)
7. Repeat 2 times
8. → w ← MBConv (w, exp = 6, out = 24, kernel = 3, stride = 1)
9. Repeat 2 times
10. → w ← MBConv (w, exp = 6, out = 40, kernel = 5, stride = 1)
11. Repeat 3 times
12. → w ← MBConv (w, exp = 6, out = 80, kernel = 5, stride = 1)
13. Repeat 3 times
14. → w ← MBConv (w, exp = 6, out = 112, kernel = 5, stride = 1)
15. Repeat 4 times
16.→ w ← MBConv (w, exp = 6, out = 192, kernel = 5, stride = 1)
17. → w ← MBConv (w, exp = 6, out = 320, kernel = 5, stride = 1
18. → w ← Conv 1 × 1 (w, out_channels = 1280)
19. → w ← BatchNorm (w)
20. → w ← ReLU (w)
21. → w ← Global_Average_Pooling (w)
22. → w ← DenseLayer (w, 512)
23. → w ← DenseLayer (w, 256)
24. → w ← DenseLayer (w, 128)
25. → Yp← Softmax (w) // Final prediction
End
MBConv Block
1. MBConv(w, exp, out, kernel, stride):
2. → w0 ← w
3. Ifexp > 1:
4. → w ← Conv1 × 1(w, out_channels = exp × in_channels)
5. → w ← BatchNorm(w)
6. → w ← ReLU(w)
7. End
8. → w ← DepthwiseConv(w, kernel_size = kernel, stride = stride)
9. → w ← BatchNorm(w)
10. → w ← ReLU(w)
11. → w ← Squeeze&Excitation(w)
12.→ w ← Conv1 × 1(w, out_channels = out)
13. → w ← BatchNorm(w)
14. Ifstride = = 1 and shape(w) = = shape(w0):
15. → w ← w + w0 // Skip connection
16. return w

Experimental setup
The Eff-ReLU-Net model is trained on 30 epochs using 
categorical cross-entropy loss, SGD optimizer with 

an initial learning rate of 0.01. Each of the 30 epochs 
involved shuffling the dataset to provide the model with 
a different group of samples, improving training. An 
early stopping technique with a patience value of 4 is also 
employed to avoid the model overfitting. The number of 
trainable parameters, average prediction time per sample, 
and peak GPU memory consumption of the proposed 
model are provided in Table  3. All experiments were 
executed on the system having an Intel(R) Core (TM) 
i7-6300U processor, 12 GB of RAM, and a 2GB NVIDIA 
m920 graphics card.

Datasets
In our study, we utilized two publicly available wound 
datasets, Medetec [33] and AZH [34]. The Medetec data-
set includes 12 classes of wound types with a total of 800 
images. We specifically selected 4 main wound classes of 
this dataset, which are Diabetic Ulcers, Pressure Ulcers, 
Toe Ulcers and Venous Ulcers, comprising a total of 365 
images. The dataset includes images with various wound 
characteristics, such as different sizes, colors, and stages 
of healing. The AZH dataset, obtained from a Milwau-
kee, Wisconsin, wound care center over two years, con-
tains 730 images of four wound types (Diabetic, Pressure, 
Venous, and Surgical). Images are different in size, with 
widths varying from 320 to 700 pixels and heights from 
240 to 525 pixels. The dataset is divided into train and 
test groups with a ratio of 75:25. Figure  2 shows some 
samples of wound images from both datasets.

Data augmentation
To enhance the classification performance of our pro-
posed model, we tackle the limitations posed by small 
datasets using extensive data augmentation methods. 
These methods artificially increase the dataset size, guar-
anteeing more diverse representations for better model 
training. We used various augmentation techniques, 
including fixed angle rotations at 90°, 180°, and 270° to 
introduce rotational invariance, random rotation to get 
flexibility, and translation to obtain different perspectives. 
Moreover, elastic deformation is employed to simulate 
realistic distortions, and gamma correction is implied to 
regulate brightness and contrast levels. Figure 3 presents 
the original image along with the corresponding resized 
and augmented images. These augmentation approaches 
notably improve the size of the dataset. By leveraging 
these augmentation methods, we mitigate the limitations 
of utilized datasets, enhancing the generalization ability 
and robustness of our proposed model. The dataset sta-
tistics are provided in Table 4.

Table 3  Computational cost analysis of the proposed Eff-ReLU-
Net
No. of parameters 5.3 million
Average Training Time 5–6 h
Average Inference Time 12.4 millisecond
Average GPU Usage 780 MB
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Evaluation metrics
To measure the suggested Eff-ReLU-Net, we have utilized 
the standard evaluation metrics of accuracy, recall, and 
precision.

Accuracy  The ratio of accurately identified wound cate-
gories associated with the complete predictions, revealing 
the model’s whole reliability. We calculated the accuracy 
as show in Eq. (2) [35].

Fig. 3  Samples of original images along with corresponding resized and augmented images

 

Fig. 2  Sample images for all four wound classes
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Accuracy = TP + TN

TN + FN + FP + TP
� (2)

Where the TP, TN, FP, and FN represent the true posi-
tives, true negatives, false positives, and false negatives, 
respectively.

Recall (Sensitivity)  The ratio of accurately identified 
wounds of a specific class out of all actual classes, reflect-
ing the model’s ability to differentiate related cases. Recall 
is calculated as in Eq. (3) [35].

	
Recall = TP

TP + FN
× 100� (3)

Precision  The ratio of accurately detected wounds of a 
particular class out of all instances in which the model cal-
culated for that class shows the accuracy of positive pre-
dictions. Precision is calculated as shown in Eq. (4) [35].

	
Precision = TP

TP + FP
× 100� (4)

F1-score  F1-score is a metric that balances the trade-
off between precision and recall while differentiating 
between different wound types. It provided an accurate 
assessment in the presence of class imbalance and is cal-
culated as shown in Eq. (5) [35].

	
F1 − Score = Precision × Recall

Precision + Recall
× 100� (5)

ROC curve  The ROC curves plot the True Positive Rate 
against the False Positive Rate as the classification thresh-
old varies. Each curve rises steeply toward the top-left 
corner, indicating strong discriminative power and the 
model’s ability to distinguish different wound types.

Results and discussion
This section presents a detailed assessment of the sug-
gested Eff-ReLU-Net model’s performance for wound 
image classification. We have provided the details of the 

experimental setup, datasets, augmentation techniques, 
and different experiments designed to assess the com-
petency of our method over the state-of-the-art (SOTA) 
methods and DL approaches. Furthermore, we also eval-
uated our method in a cross-corpora setting to measure 
the generalizability of the proposed method.

Performance evaluation
To evaluate the performance of the proposed Eff-ReLU-
Net method for chronic wound classification, we con-
ducted experiments utilizing the Medetec and AZH 
datasets. For this purpose, we trained our method to use 
the training collection of Medetec and AZH datasets sep-
arately and evaluated them on their corresponding test-
ing collections with a split ratio mentioned in Sect.  4.2. 
The attained results for both datasets are reported in 
Table  3. From Table  5, it is depicted that the suggested 
approach performs well in classifying the wounds with 
an accuracy of 92.33%, a recall of 95.33%, a precision of 
97.66%, and F1-score of 96.48% for the Medetec dataset. 
However, an accuracy of 90%, a recall of 89.45%, a preci-
sion of 92.19%, and F1-score of 90.84% is attained for the 
AZH dataset.

The ROC curves are also computed for AZH and 
Medetec datasets, as shown in Fig. 4. It can be observed 
that the Medetec dataset achieved a macro-average AUC 
of 99.03%, highlighting consistently strong discriminative 
performance across all wound classes. This high average 
indicates that the model performs well not just on one or 
two dominant classes, but across the entire set of classes, 
making it well-suited for handling class variability in real-
world clinical data. Similarly, the AZH dataset attained a 
macro-average AUC of 88.4%, further demonstrating the 
model’s reliable and balanced classification ability.

These results are attributed to the ability of the pro-
posed method to obtain more distinctive and relevant 
features, obtained after introducing three fully connected 
dense layers and the incorporation of ReLU activation, 
which permits the flow of more relevant information. 
Combining the efficient scaling capability of the Efficient-
NetB0 model and ReLU activation allows the model to 
efficiently capture the distinct visual features in wound 
images, leading to improved wound recognition results 
on both datasets.

Table 4  Dataset details
Dataset Classes Train Set Test Set

Before Aug After Aug
Medetec Dataset Diabetic Ulcers 89 1270 30

Pressure Ulcers 56 1081 19
Toe Ulcers 26 891 9
Venous Ulcers 102 1166 34

AZH Dataset Diabetic Ulcers 128 1107 43
Pressure Ulcers 131 1256 44
Venous Ulcers 150 1650 50
Surgical Ulcers 139 1304 46

Table 5  Performance of Eff-ReLU-Net for Medetec and AZH 
datasets
Dataset Accuracy 

(%)
Recall (%) Precision 

(%)
F1-
Score 
(%)

Medetec Dataset 92.33 95.33 97.66 96.48
AZH Dataset 90.00 89.45 92.19 90.84
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Comparison with other deep learning models
This experiment aims to analyze the effectiveness of 
the suggested Eff-ReLU-Net against the existing deep-
learning models for wound classification. Specifically, 
we compared the proposed model performance with 
ResNet-50, VGG-19, Inception-V3, MobileNet-V2, Rep-
Ghost, RepVGG, and MobileViT utilizing the Medetec 
and AZH datasets. These models are nominated because 
of their huge employment in computer vision tasks and 
their proven effectiveness in feature extraction and clas-
sification. Each of these architectures represents a unique 
design, ranging from traditional DL approaches like 
ResNet-50 and Inception-V3 to lightweight architectures 
such as MobileNet-V2 and more advanced frameworks 
like RepGhost, RepVGG, and MobileViT, providing a 
comprehensive benchmark for evaluating the robust-
ness and efficiency of the proposed model. Evaluating 
our model against these diverse approaches provided a 
comprehensive assessment of its ability to address the 

specific challenges of wound classification, like comput-
ing detailed wound features and handling variations in 
size and texture. The comparison in terms of accuracy, 
precision, recall, and F1-score is presented in Tables  6 
and 7 for the Medetec and AZH datasets, respectively.

The results in Tables  6 and 7 demonstrate that the 
proposed Eff-ReLU-Net consistently outperformed all 
baseline models. It can be attributed to EfficientNetB0’s 
unique compound scaling strategy, which optimally bal-
ances network depth, width, and resolution. VGG-16 and 
VGG-19 are renowned for their strong baselines with 
their deep, uniform structures, but lack the modern scal-
ing techniques that improve efficiency. While ResNet-50 
and Inception-V3, known for their deep architectures 
and strong feature extraction capabilities, lack the effi-
ciency optimization found in EfficientNet, which limits 
their performance on specialized tasks like wound clas-
sification. MobileNet, although lightweight and effi-
cient, compromises some accuracy due to its emphasis 

Table 6  Comparison with other DL models utilizing the 
Medetec dataset
Model Accuracy 

(%)
Sensitivity 
(%)

Precision 
(%)

F1-
Score 
(%)

VGG-16 85.1 82.5 87.2 84.8
VGG-19 86.4 83.8 88.6 86.1
ResNet-50 88.03 85.77 91.01 88.31
Inception-V3 70.5 64.01 79.59 70.93
MobileNet 64.01 58.03 70.06 63.49
RepGhost. 82.3 85.1 82.8 83.94
RepVGG 85.3 80.1 84.5 82.24
MobileViT 83.7 86.2 88.3 87.24
Eff-ReLU-Net (Pro-
posed Model)

92.33 95.33 97.66 96.48

Table 7  Comparison with other DL models utilizing the AZH 
dataset
Model Accuracy 

(%)
Sensitivity 
(%)

Precision 
(%)

F1-
Score 
(%)

VGG-16 76.06 75.40 79.10 77.20
VGG-19 70.23 73.02 72.41 72.71
ResNet-50 88.5 86.2 90.1 88.1
Inception-V3 78.3 75.8 82.4 78.9
MobileNet 74.01 68.03 80.06 73.49
RepGhost. 83.3 87.2 84.6 85.88
RepVGG 87.2 81.12 86.4 83.68
MobileViT 85.9 88.21 90.12 89.16
Eff-ReLU-Net (Pro-
posed Model)

90.00 95.33 97.66 90.84

Fig. 4  ROC curves for wound datasets

 



Page 11 of 15Ullah et al. BMC Medical Imaging          (2025) 25:257 

on reducing computational load, which limits its abil-
ity to capture complex features in wound images. Fur-
thermore, RepGhost and RepVGG both simplify their 
multi-branch blocks into single-path convolutions for 
faster inference but lack the compound-scaling needed 
for wound images, while MobileViT, which combines 
convolutions with self-attention, performs well on large 
datasets but adds unnecessary overhead on smaller data-
sets like Medetec and AZH. In comparison, our approach 
has overcome the issues of these methods by present-
ing a computationally simpler approach by employing 
the ReLU activation, which reduces gradient saturation 
issues and accelerates model convergence. Additionally, 
we incorporated average pooling and dropout layers to 
mitigate overfitting, which ensures better generalization 
across diverse wound categories. Furthermore, three fully 
connected dense layers are added to extract and pass dis-
tinctive features effectively to the SoftMax layer for accu-
rate classification. So, Eff-ReLU-Net, with its efficient 
architecture, utilizes MBConvs and the ReLU activation 
function and adds dense layers, achieving superior per-
formance by effectively balancing computational effi-
ciency with enhanced feature extraction and attaining the 
best results on the Medetec and AZH datasets. Conse-
quently, it demonstrates a balance between accuracy and 
efficiency that outperforms other leading architectures 
for wound classification. Highest accuracy, recall, preci-
sion, and F1-score on both wound datasets proved our 
proposed model the best choice for wound classification 
among other deep learning models.

Evaluation with State-of-the-Art methods
To show the superiority of our Eff-ReLU-Net over the 
existing wound classification approaches, we performed a 
comparative study of the suggested approach with SOTA 
methods. Particularly, we compared our method with the 
most recent approaches [17, 24, 26, 28, 36, 37] for both 
datasets. The comparison in terms of accuracy is shown 
in Table 8.

It is revealed from Table  8 that the proposed model 
attained the highest accuracy on both databases, with 

values of 92.33% and 90% for the Medetec and AZH 
datasets, respectively. Aldoulah et al. [24] employed a 
DL approach and attained an accuracy of 89.34%, while 
the work in [17] scored an accuracy of 91.90%. Moreover, 
the method in [28] used the feature concatenation-based 
approach and attained a score of 90%. Similarly [36], also 
utilized. feature concatenation approach implementing 
DenseNet and XceptionNet. Mousa et al. [37] utilized 
Xception model with gaussian mixture RNN and attained 
88.81% accuracy. Our method secured the highest accu-
racy of 92.33%. Aldoulah et al. [28] employed Efficient-
NetB4, a larger and deeper variant of EfficientNet. While 
EfficientNetB4 provides strong feature extraction capa-
bilities due to its depth, it also comes with increased 
computational costs. Our Eff-ReLU-Net, although 
smaller, utilizes a ReLU activation function that signifi-
cantly improves computational efficiency while main-
taining high classification accuracy, giving it an edge 
over the deeper EfficientNetB4. Rostami et al. [17] used 
an ensemble of Deep CNNs, which generally improves 
performance by combining multiple models to increase 
accuracy. However, ensemble methods tend to be com-
putationally expensive and lead to diminishing returns 
when models are not sufficiently diverse. Our single 
well-optimized EfficientNetB0 model provided a more 
streamlined approach, balancing efficiency with accuracy 
without the added complexity of ensembling multiple 
networks. Alhababi et al. [28] implemented a feature con-
catenation-based method for classification. The feature 
concatenation-based method implies feature extraction 
employing numerous architectures that sum into a sin-
gle feature vector and then classify into multiple wound 
classes using transfer learning and the transfer feature 
method. The method in [26] utilized numerous DL works 
with an attention mechanism, which resulted in model 
overfitting. Comparatively, we attained superior perfor-
mance over both datasets due to the combination of Effi-
cientNetB0’s compound scaling strategy employing ReLU 
activation and the additional three fully connected dense 
layers. This balance allows our model to capture relevant 
features with high precision while maintaining compu-
tational efficiency, thus leading to the highest accuracy 
compared to the SOTA methods.

Cross-Dataset evaluation
This experiment aimed to evaluate the generalization 
ability of our suggested Eff-ReLU-Net for chronic wound 
classification. To perform this task, we utilized the com-
mon classes among the Medetec and AZH datasets.

For this, we planned a cross-dataset assessment for the 
subsequent states: (a) trained the proposed model on the 
Medetec dataset and tested it over the AZH dataset, (b) 
trained Eff-ReLU-Net on the wound images of the AZH 
dataset and evaluated it utilizing the Medetec dataset. 

Table 8  Comparison with state-of-the-art methods on the 
medetect dataset
Year Methods Accuracy (%)

Medetec 
Dataset

AZH 
Dataset

2021 Ensemble CNN [18] 91.90 82.48
2023 Swish-ELU EfficientNet-B4 [19] 89.34 87.32
2024 Multi-modal Network [27] 83.00 78.00
2024 DenseNet121 + XceptionNet [35] 84.45 82.39
2025 DenseNet + MobileNet [26] 90.00 81.00
2025 Xception + GMRNN [36] --- 88.81
2025 Eff-ReLU-Net (Proposed) 92.33 90.00
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The attained results are reported in Table 9, from where it 
can be seen that despite training on one dataset and test-
ing on unseen samples of a completely different dataset, 
our method obtained reasonably good results for both 
cases, presenting the better generalizability of our archi-
tecture for the wound classification into relevant ulcers. 
The improved results in cross-dataset evaluation are due 
to the robustness of the proposed model in learning gen-
eralized features that effectively capture the complexities 
of different wound types. The incorporation of additional 
dense layers allowed the model to capture distinctive 
features across datasets, enhancing its adaptability. By 
focusing on common wound classes (diabetic, pressure, 
and venous wounds), the model achieved consistent per-
formance despite variations in dataset characteristics, 
such as image quality and diversity, which indicates its 
potential for real-world clinical applications.

Ablation study
To examine the efficiency and efficacy of our proposed 
model, we conducted an extensive ablation study. We 
conducted two different types of experiments: (1) to ana-
lyze the performance of the proposed model among its 
variants and (2) to analyze the role of different activation 
functions and the number of fully connected layers in the 
multiclass wound classification task. The model variants 
are then trained and tested on the AZH and Medetec 
datasets for multi-class wound classification. The results 
of the ablation study presented in Tables  10, 11 and 12 
confirm the robustness of the Eff-ReLU-Net model’s cur-
rent architecture for effectively classifying the different 
types of wounds.

Performance evaluation of model variants
In this subsection, we examine the performance of the 
proposed Eff-ReLU-Net in comparison with its architec-
tural variants, primarily focusing on the underlying Effi-
cientNet backbone choices (B1–B7) and our proposed 
modification based on EfficientNet-B0 with ReLU and 
additional dense layers.Tables  10 and 11 summarize the 
performance across both datasets.

The proposed Eff-ReLU-Net, which is based on Effi-
cientNet-B0, enhanced with a ReLU activation function 
and three fully connected layers, consistently outper-
formed all other variants in the EfficientNet family. On 
the Medetec dataset, it achieved an accuracy of 92.33%, 
with an F1-score of 96.48%. On the AZH dataset, the 
model achieved 90.00% accuracy and a robust F1-score 
of 90.84%. EfficientNet-B7 is the second-top performer 
but at the cost of the highest number of parameters and 
FLOPS, while the EfficientNet-B1 model variant attained 
the lowest accuracy. Notably, performance gradually 
improved as the base model transitioned from B1 to B7, 
confirming the benefit of deeper EfficientNet variants. 

However, none surpassed our proposed model, suggest-
ing that deeper networks alone are insufficient without 
the appropriate activation strategy and classification 
architecture.

Table 9  Cross-dataset assessment results
Training 
Dataset

Testing 
Dataset

Accuracy 
(%)

Recall 
(%)

Precision 
(%)

F1-
Score 
(%)

Medetec AZH 68.33% 68.46% 68.66% 68.56
AZH Medetec 70.15% 70.55% 70.33% 70.44

Table 10  Performance of EfficientNet variants on Medetec 
dataset
Model Accuracy 

(%)
Recall (%) Precision 

(%)
F1-
Score 
(%)

EfficientNet-B1 87.6 86.3 88.9 87.6
EfficientNet-B2 88.5 87.2 89.8 88.5
EfficientNet-B3 89.8 88.5 91.1 89.8
EfficientNet-B4 90.4 89.2 91.7 90.4
EfficientNet-B5 90.9 89.7 92.2 90.9
EfficientNet-B6 91.0 89.8 92.3 89.9
EfficientNet-B7 91.1 89.9 92.4 91.1
Eff-ReLU-Net 
(proposed)

92.33 97.66 95.33 96.48

Table 11  Performance of EfficientNet variants on AZH dataset
Model Accuracy 

(%)
Recall (%) Precision 

(%)
F1-
Score 
(%)

EfficientNet-B1 84.1 84.7 83.5 84.1
EfficientNet-B2 85.3 85.9 84.8 85.3
EfficientNet-B3 86.7 87.2 86.1 86.6
EfficientNet-B4 87.5 88.1 86.9 87.5
EfficientNet-B5 88.0 88.6 87.4 88.0
EfficientNet-B6 88.3 88.9 87.7 88.3
EfficientNet-B7 88.4 89.3 87.8 88.4
Eff-ReLU-Net 
(proposed)

90.0 89.45 92.19 90.84

Table 12  Impact of activation functions and number of fully 
connected layers
Model Variations Accuracy (%) on 

Medetec Dataset
Accura-
cy (%) 
on AZH 
Dataset

EfficientNet B0 – Swish 86.5 80.2
EfficientNet B0 – ReLU 88.1 84.8
EfficientNet B0–2 FC Layers 88.1 85.9
EfficientNet B0–3 FC Layers 89.2 87.4
EfficientNet B0–4 FC Layers 88.7 87.2
EfficientNet B0 – ReLU – 3 FC Lay-
ers (proposed)

92.33 90.0
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Impact of activation functions and fully connected layers on 
accuracy
To further assess the performance of our architecture, 
we conducted targeted experiments on the EfficientNet-
B0 model by varying two key components: the activa-
tion function (Swish vs. ReLU) and the number of fully 
connected (FC) layers (from 2 to 4). Table 12 presents a 
detailed comparative analysis based on accuracy utilizing 
the Medetec and AZH datasets.

From the results, it is observed that using the ReLU 
activation over Swish, particularly when combined with 
three FC layers, produces the best results for the multi-
class wound classification. The proposed model Efficient-
Net-B0-ReLU-3FC attained the highest accuracy on both 
wound datasets and outperformed other model alterna-
tives. Additionally, adding more than three dense layers 
(i.e., 4 FC) did not result in improved performance and 
sometimes led to slight overfitting. Therefore, three fully 
connected layers are the most appropriate choice to trade 
a balance between complexity and performance.

Statistical analysis
To analyze the statistical difference between the pro-
posed Eff-ReLU-Net and other comparative deep learn-
ing models, we conducted statistical tests using ANOVA 
and Friedman approaches. For this analysis, we consider 
the Medetec dataset, and the utilized comparative deep 
learning models are: VGG-16, VGG-19, ResNet-50, 
Inception-V3, MobileNet, RepGhost, RepVGG, and 
MobileViT. We conducted these tests using the SciPy and 
Statsmodels packages in Python. The results for ANOVA 
and Friedman are summarized in Tables  13 and 14, 
respectively. The ANOVA test results in Table 13 reveal 
significant statistical differences between performance 
of the models, thus rejecting the null hypothesis that all 
models have the same mean performance for the wound 
classification. Furthermore, Friedman test results in 
Table 14 also confirm the performance difference among 
the models and attained the test statistics of 39.7867 with 
the p_value of 3.5106 × 10^(-6). Overall, both analysis 
tests reject the null hypothesis and provide statistical evi-
dence that one model perform consistently better than 
other models.

Discussion
Wound classification is a critical task in healthcare, par-
ticularly for managing chronic wounds. Accurate and 
efficient classification of these wounds is essential for 
timely and appropriate treatment, as the existing mod-
els often struggle with generalizing across diverse data-
sets and varying wound types. Therefore, developing a 
robust and efficient model that can handle diverse wound 
images with high accuracy is vital for improving clinical 
decision-making. The proposed Eff-ReLU-Net model 

leverages EfficientNetB0, enhanced with MBConvs and 
the ReLU activation function. Adopting ReLU activa-
tion in our EfficientNet architecture played a critical 
role in achieving faster convergence and improved gen-
eralization. By replacing the Swish function with ReLU, 
the model effectively addressed computational overhead 
and gradient saturation issues, resulting in more effi-
cient learning. Additionally, the inclusion of dense layers 
enhanced the extraction of distinctive features, enabling 
the model to accurately classify wound types. These 
architectural improvements allowed the model to consis-
tently adapt to diverse datasets, demonstrating its robust-
ness and effectiveness in wound classification tasks. We 
assessed the model on the Medetec and AZH datasets, 
comparing it with other deep learning models and state-
of-the-art approaches. Our model achieved accuracies 
of 92.33% and 90% over the Medetec and AZH datas-
ets, outperforming several models, including ResNet-50, 
InceptionV3, MobileNet, RepGhost, RepVGG and Mobi-
leViT. Additionally, we compared our model to SOTA 
methods, where our approach demonstrated superior 
performance in wound classification. The ablation study 
was conducted to show the performance changes due to 
the different components and variants of the proposed 
models. The model was also evaluated in a cross-dataset 
setting and achieved a reasonable performance. These 
results emphasize the model’s robustness and adaptabil-
ity to different datasets, indicating its potential for wide-
spread clinical use. The ability to achieve high accuracy 
on both datasets underlines the generalization capability 
of the model, which is crucial for real-world applications. 
Despite the promising outcomes, the proposed method 
needs to further improve the generalizability aspect. The 
datasets used, though effective, may not fully capture the 
diversity of real-world wound images, potentially affect-
ing the model’s generalization to unseen cases.

For future work, expanding the model’s training with 
additional datasets, exploring advanced techniques 
such as transfer learning or self-supervised learning, 
and incorporating multimodal data can further improve 
its performance and assist in tackling diverse sample 

Table 13  ANOVA test results
Types Sum of 

Squares
Degrees of 
Freedom

F_Statistic P_
value

Treatments 3215.2684 8 14264.4410 1.2654 
×10−6  

Residuals 1.0143 36 -- --

Table 14  Friedman test results
Test Value
Friedman test statistics 39.7867
p_value 3.5106 × 10
Null hypothesis Reject
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distortions. These stages would make the model general-
ize better and provide more precise results across a wider 
range of clinical cases. Eff-ReLU-Net provides an effec-
tive and efficient solution for automated wound classifi-
cation, demonstrating superior accuracy and adaptability 
across diverse datasets. By outperforming existing state-
of-the-art models, the proposed approach highlights its 
potential for real-world clinical applications, particularly 
in enhancing diagnostic precision and efficiency.

Conclusion
This paper has presented the Eff-ReLU-Net method for 
automated chronic wound classification, evaluated by 
employing Medtect and AZH datasets. Experimental 
results, including the comparative analysis, demonstrate 
the proposed model’s competence against the DL-based 
and SOTA wound classification approaches. The ablation 
study highlights the effectiveness of different components 
of the proposed Eff-ReLU-Net. Further, the cross-corpus 
evaluation is also conducted to check the generalization 
ability of the Eff-ReLU-Net. The experimental results 
underscore the effectiveness of the proposed model in 
accurately classifying chronic wounds, showcasing its 
robustness and potential for practical wound image clas-
sification. Moving forward, future research will focus on 
refining the architecture of the model by incorporating 
larger and more diverse wound datasets and conducting 
clinical trials to further enhance its accuracy, efficiency, 
and real-world applicability.
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