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Voice-based authentication systems have become increasingly vulnerable to logical access (LA) 
spoofing through sophisticated voice conversion (VC) and text-to-speech (TTS) attacks. This paper 
proposes an end-to-end deep learning approach DeepLASD, that processes raw waveforms to detect 
spoofed speech without relying on handcrafted features. The model incorporates a SincConv layer for 
interpretable spectral processing, along with residual convolutional blocks that integrate attention 
for improved feature extraction. We introduce GeLU activation in residual blocks to enhance our 
method’s ability to better capture the unique traits in real and spoof samples. A gated recurrent unit 
is further employed for temporal dynamics modeling. Extensive experimentation was conducted on 
the large-scale and diverse ASVspoof 2019 and 2021 datasets. Achieving an Equal Error Rate as low as 
4.98% and a minimum Tandem Detection Cost Function of 0.1208, along with strong generalization to 
both VC and TTS spoof types, demonstrate the competency of the proposed method for LA spoofing 
detection. Although the results on the ASVspoof 2021 dataset underscore the challenges posed by 
next-generation synthetic speech, the proposed solution exhibits notable adaptability. These findings 
affirm that the proposed end-to-end anti-spoofing framework enhances security and detection 
capabilities in voice authentication systems.

Keywords  Automatic speaker verification, Deep learning, Logical access attacks, Spoof detection, Text-to-
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Automatic Speaker Verification (ASV) has emerged as a convenient and secure method of authenticating users 
based on vocal characteristics. Its applications span industries such as finance, healthcare and the Internet 
of Things (IoT), enabling hands-free voice-based identity verification. Despite its advantages, ASV systems 
face a growing range of spoofing attacks that pose serious security concerns1,2. These attacks aim to deceive 
ASV systems through methods such as replaying pre-recorded speech, employing advanced voice conversion 
(VC), generating text-to-speech (TTS) audio, or even creating imperceptibly altered inputs using adversarial 
techniques.

Among the various spoofing attacks, logical access (LA) attacks have gained special attention due to the 
increasing sophistication of synthetic speech technologies3. Rather than interacting with an ASV system via the 
typical acoustic input path (e.g., a microphone), logical access attacks feed digitally generated signals directly 
into the software chain, effectively bypassing hardware-based controls. Advanced TTS and VC methods can 
craft high-fidelity speech samples, making detection considerably more challenging and increasing the risk 
of fraudulent activity. Consequently, enhancing ASV systems to detect these attacks is vital for ensuring their 
reliability and trustworthiness.

The significance of this study is threefold. First, it contributes to a deeper understanding of vulnerabilities 
within ASV systems and highlights the urgent need for more adaptive and generalized countermeasures1. 
Second, by demonstrating robust performance on the ASVspoof 2019 and 2021 datasets, it underscores the 
importance of leveraging large-scale community-driven benchmarks. Finally, as voice-driven interfaces become 
more prevalent, ensuring the security and reliability of ASV technology has profound legal, cultural, and 
ethical implications. Tackling logical access spoofing effectively will help maintain user trust, protect sensitive 
information, and meet emerging regulatory standards for biometric authentication systems.

Existing anti-spoofing methods frequently rely on handcrafted spectral features, which can limit their ability 
to generalize to advanced or unseen spoofing techniques. Moreover, many approaches lack robust mechanisms 
for capturing the subtle spectral and temporal artifacts introduced by sophisticated VC and TTS methods. These 
limitations often lead to degraded performance in cross-dataset evaluations or emerging attack scenarios.
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To address these challenges, there is a need to develop a robust end-to-end deep learning framework that 
directly processes raw audio signals, eliminating the need for handcrafted features and adapting more effectively 
to evolving spoofing techniques. We leveraged robust activation functions (e.g., GeLU, LeakyReLU) in 
combination with SincNet-based convolution and attention mechanisms to capture subtle frequency distortions. 
We also explored key hyperparameter and architectural configurations that further enhance spoof-detection 
performance. While prior end-to-end systems such as RawNet and RawNet2 have demonstrated the potential 
of raw waveform processing for spoofing detection, this work focuses on further improving the existing RawNet 
and RawNet2 models by optimizing the integration of interpretable SincConv filters, attention mechanisms, and 
advanced activation functions to enhance adaptability and generalization across diverse spoofing attacks. Rather 
than introducing entirely new architectural components, we contribute a carefully tuned combination of proven 
modules and provide comprehensive empirical validation, enhancing system performance on challenging 
logical access tasks.

The main contributions of this study are summarized as follows:

•	 We propose an end-to-end DL method DeepLASD centered on SincNet-based convolution and attention 
mechanism for effective LA spoofing detection.

•	 We introduce GeLU activation in residual blocks that makes our method learn salient cues from the audio 
and stabilize training for improved performance.

•	 We performed comprehensive experiments on ASVspoof 2019 and 2021 datasets, including ablation study, to 
demonstrate robust generalization of our method to TTS and VC attacks.

Related work
Research on ASV systems has progressively revealed critical security weaknesses that malicious actors exploit 
to gain unauthorized access. Broadly, these attacks can be categorized into physical-access (PA), logical-access 
(LA), and adversarial attacks4,5. Physical attacks, such as replaying pre-recorded speech or impersonating a 
legitimate user, pose an immediate threat by injecting counterfeit audio directly through microphones. Logical-
access attacks bypass hardware sensors altogether by feeding manipulated or synthesized speech into the 
software pipeline, while adversarial attacks introduce barely perceptible distortions that can drastically degrade 
ASV system accuracy6.

Early attempts at mitigating these threats relied on handcrafted features, including Mel-frequency cepstral 
coefficients (MFCCs), linear frequency cepstral coefficients (LFCCs), and constant Q cepstral coefficients 
(CQCCs)7–9. These features were combined with traditional machine learning models, such as Gaussian mixture 
models (GMMs) and support vector machines (SVMs). Although they proved effective for straightforward 
replay or voice conversion scenarios, their adaptability to higher fidelity or advanced attacks remained limited10.

As computational power increased, researchers leveraged deep learning to enhance spoof detection, typically 
by blending neural networks with existing handcrafted feature sets11,12. For instance, lightweight convolutional 
neural network (CNN) architectures improved detection efficiency and reduced latency13, while more advanced 
back-end classifiers tackled complex replay conditions. However, many of these solutions still depended on 
engineered descriptors, constraining their flexibility in responding to evolving spoof tactics.

In an effort to eliminate reliance on manual feature extraction, end-to-end frameworks began to emerge. 
Models like RawNet14,15 and others process raw audio waveforms directly, capturing subtle spectral and phase 
cues missed by handcrafted features. Advanced end-to-end models such as Stat-SE-Res2Net50, which integrate 
squeeze-and-excitation modules with residual blocks, have also demonstrated strong performance in spoof 
detection tasks16. These methods achieved significant improvements across various spoof categories, including 
voice conversion and text-to-speech synthesis, thereby underscoring the potential of raw-audio pipelines for 
handling increasingly sophisticated attacks17,18.

Simultaneously, advancements in speech synthesis and generative modeling enabled attackers to produce 
near-human-quality voices19,20. Logical-access spoofing thus expanded in scope, including speech generated via 
deep neural networks or adversarial perturbations21,22. Traditional countermeasures often struggled to generalize 
to these high-fidelity spoofs, prompting researchers to explore deeper architectures (ResNet, DenseNet) and 
attention mechanisms that focus on critical time-frequency regions23,24.

Building upon these innovations, some studies pursued unified solutions capable of detecting replay, synthetic 
speech, and cloned voices within a single framework12,25. By covering multiple spoof types concurrently, unified 
approaches can more holistically protect ASV systems under real-world conditions where attacks can vary 
widely. However, designing a one-size-fits-all architecture remains complex, as different spoofing methods 
exhibit diverse artifacts that require specialized feature representation1.

Another line of work embraced integrated solutions, wherein spoof detection and ASV are combined into a 
single pipeline26,27. Such integrated methods attempt to verify the speaker and assess authenticity in tandem, 
reducing system overhead and potentially improving security. Nonetheless, unifying these two objectives 
demands carefully balanced multi-task learning or joint optimization, and many solutions are still tested under 
limited conditions, making it difficult to ascertain their robustness28.

In parallel with algorithmic advancements, the research community introduced new datasets and benchmarks 
to promote rigorous evaluation. The ASVspoof series (2019, 2021)3,29 incorporates both logical and physical 
access scenarios, as well as different forms of speech synthesis. Additional corpora, such as the Voice Spoofing 
Detection Corpus (VSDC), expand replay conditions with multi-order configurations30. These resources 
facilitate standardized cross-dataset comparisons and highlight shortcomings in existing methods when faced 
with novel or high-complexity spoofs.

Assessment metrics have also evolved. While Equal Error Rate (EER) remains a core indicator of system 
accuracy, the tandem Detection Cost Function (t-DCF)31 provides a cost-sensitive perspective that balances 
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missed detections and false alarms under realistic operational assumptions. The ASVspoof challenges 
have consistently used EER and min-tDCF to facilitate fair, application-driven evaluations of spoofing 
countermeasures.

Despite these concerted efforts, current gaps persist in addressing sophisticated logical-access spoofing, 
particularly in unseen conditions or rapidly evolving neural synthesis approaches1. Models often fail to 
generalize to complex VC or TTS outputs, and adversarially crafted inputs can further undermine performance. 
Moreover, though advanced activation functions and attention-based modules offer promise, selecting the ideal 
architecture for a given spoof scenario remains non-trivial. Our proposed work, therefore, advances beyond 
prior solutions by integrating SincNet-based convolution layers, embedding of GeLU activation in residual 
blocks, and attention mechanism to reliably capture salient cues and frequency distortions of modern LA attacks 
with improved adaptability.

Methodology
The framework proposed in Figure 1 addresses logical access spoofing attacks, specifically those based on voice 
conversion and text-to-speech synthesis, by processing raw audio signals in an end-to-end manner, eliminating 
the need for handcrafted features. Instead, the model learns spoof-specific representations directly from 
waveforms, enabling flexible adaptation to emerging attack methods. The overall architecture is composed of 
four primary components: a SincConv layer, a stack of residual convolution blocks with integrated attention, a 
Gated Recurrent Unit (GRU) layer, and a final classification head. An overview of the architecture is presented 
in Figure 1.

Proposed end-to-end DeepLASD architecture
The architecture is specifically designed to capture algorithmic artifacts of spoof samples and dynamic variations 
of bonafide audios for better LA spoofing detection. Each component contributes uniquely to the overall 
performance, as detailed below.

Fig. 2.  SincConv feature map visualization.

 

Fig. 1.  Proposed End-to-End DeepLASD architecture.
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SincConv layer (Component A)
At the network’s front-end, the SincConv layer replaces conventional convolutional filters with parameterized 
sinc functions, providing a more interpretable and efficient frequency analysis. Speech signals, x(t), are 
decomposed into distinct frequency bands using band-pass filters defined by learnable cutoff frequencies f1 and 
f2. The impulse response of each filter is given by:

	 g(t; f1, f2) = 2f2 sinc(2πf2t) − 2f1 sinc(2πf1t)� (1)

where the sinc function is defined as:

	
sinc(x) = sin(πx)

πx
� (2)

The convolution operation for a given input signal x(t) and the filter g(t) is expressed as:

	
y(t) = x(t) ∗ g(t) =

∫ ∞

−∞
x(τ) g(t − τ ; f1, f2) dτ � (3)

The convolution operation produces feature maps that highlight frequency bands where spoofing artifacts 
occur. Key hyperparameters—filter count, length, and regularization on cutoff frequencies—balance temporal 
resolution and frequency discrimination. Our SincConv layer replaces traditional filters with parameterized sinc 
functions for interpretable frequency decomposition. To prevent overfitting, we initialize filters using a Mel-scale 
filterbank (with experiments on linear and inverse-Mel scales) and fix the raw waveform to 4 seconds (64000 
samples). We also optimized the filter length and found that 129 samples yields superior performance. Figure 2 
illustrates how different SincConv filters activate over time for a sample input. This visualization highlights the 
layer’s ability to extract meaningful, frequency-specific features directly from raw waveforms, supporting its role 
in detecting spoofed audio.

Residual convolution blocks with attention (Component B)
Following the SincConv layer, six residual convolution blocks extract multi-scale features, with independent 
feature map scaling highlighting the most informative outputs. Each block is mathematically represented by a 
residual mapping:

	 y = x + F(x, {Wi})� (4)

where x is the input to the block, F(·) represents the transformation (convolution, non-linear activation, and 
normalization) with weights {Wi}, and the sum denotes the residual (or shortcut) connection.

Attention Mechanisms Integrated attention mechanisms refine the feature maps by dynamically weighting 
the spatial and channel dimensions. A simple formulation for spatial attention is:

	 Aspatial = σ (Wspatial ∗ F)� (5)

where F is the feature map, Wspatial is a learnable weight filter, ∗ denotes convolution, and σ(·) is a sigmoid 
activation function that normalizes the attention weights between 0 and 1.

Channel attention can be similarly expressed as:

	 Achannel = σ (Wchannel · GAP(F))� (6)

where GAP(·) denotes Global Average Pooling applied over spatial dimensions, and Wchannel is a learnable 
weight matrix.

The output of the attention module is then combined with the original feature map:

	 Fatt = F ⊙ (Aspatial + Achannel)� (7)

where ⊙ represents element-wise multiplication.
We introduce GeLU activation in the convolutions of residual blocks followed by the attention mechanism 

to capture complex traits in the audio. Batch normalization or layer normalization is also applied to stabilize 
training.

GRU layer
To model the temporal dynamics of speech, a GRU layer is employed. The GRU updates its hidden state using 
the following equations:

	 zt = σ (Wzxt + Uzht−1 + bz) � (8)

	 rt = σ (Wrxt + Urht−1 + br) � (9)

	 h̃t = tanh (Whxt + Uh(rt ⊙ ht−1) + bh) � (10)

	 ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t � (11)
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where xt is the input at time t, ht is the hidden state, zt is the update gate, rt is the reset gate, and ⊙ denotes 
element-wise multiplication. The weights W{z,r,h}, U{z,r,h}, and biases b{z,r,h} are learnable parameters. The 
GRU layer is added to integrate frame level embeddings into a single utterance level embedding. The GRU layer 
efficiently captures both short-term and long-term dependencies in the sequential data.

Classification head
The final stage of the architecture is the classification head, which aggregates the learned features and produces 
a binary decision. Let h denote the aggregated feature vector from the GRU layer. A series of fully connected 
(dense) layers transforms h:

	 z = ϕ (Wfch + bfc)� (12)

where Wfc and bfc are the weights and biases of the dense layer, and ϕ(·) is a non-linear activation function. 
Finally, the softmax function converts the output z into class probabilities:

	
pi = exp(zi)∑

j
exp(zj) � (13)

where pi is the probability of class i (genuine or spoofed). The network is trained using a cross-entropy loss 
function, defined as:

	
L = −

∑
i

yi log(pi)� (14)

with yi representing the ground-truth label.

Activation function configuration
The activation function computes the output of nodes in neural network according to its inputs and corresponding 
weights. We employed GeLU activation in residual blocks and Leaky ReLU in Sinc convolution block. We selected 
GeLU in residual blocks because of its smooth gradient and nonzero gradient for negative inputs. These attributes 
improve the efficacy of residual connections by making the architecture learn complex traits while keeping stable 
training. More precisely, GeLU is smooth and differentiable, with probabilistic interpretation, better capability 
to handle negative values and regularization effect. These attributes make GeLU a reliable activation function in 
residual blocks of proposed architecture to achieve better performance and more stable training.

Similarly, the Leaky Rectified Linear Unit (Leaky ReLU) is utilized in the Sinc convolution block to address 
the limitations inherent in standard ReLU functions. Leaky ReLU allows a small, nonzero gradient when the 
input is negative, which prevents neurons from becoming inactive, a common issue with standard ReLU known 
as the “dying ReLU” problem. This characteristic ensures continuous gradient flow during training, thereby 
facilitating the capture of subtle non-linear features essential for effective spoofing detection. The efficiency and 
simplicity of Leaky ReLU make it a robust alternative in scenarios where nuanced feature extraction is critical.

Although the standard Rectified Linear Unit (ReLU) is widely used due to its computational efficiency, 
its tendency to produce “dead neurons” where negative inputs result in zero output limits its effectiveness in 
learning intricate features. For this reason, standard ReLU is used sparingly in our architecture, with advanced 
alternatives such as GeLU, Leaky ReLU, and SELU being preferred for their superior handling of gradient flow 
and learning dynamics.

This careful selection and assignment of activation functions ensure that the network adapts robustly to a 
variety of synthetic speech distortions while maintaining effective learning dynamics.

Training procedure and hyperparameters
Training is conducted over 100 epochs using the Adam optimizer with an initial learning rate of 0.0001 and a 
weight decay of 0.0001. A batch size of 32 is selected to balance computational efficiency and model stability. To 
further enhance training:

•	 A learning rate scheduler reduces the learning rate when performance plateaus, facilitating continued im-
provement in model accuracy.

•	 Early stopping is implemented based on validation performance, preventing overfitting by halting training 
once no further improvements are observed.

The proposed method presents an effective end-to-end DL approach for logical access spoofing detection by 
processing raw audios. From the SincConv layer’s frequency-specific filtering (Eqs. 1 and 3) to the multi-scale 
feature extraction in the residual convolution blocks with attention (Eqs. 4–7), the GRU’s temporal modeling 
(Eqs. 8–11), and the finely tuned classification head (Eqs. 12–13), each element is meticulously engineered to 
meet the challenges posed by synthetic speech detection.

Experiments and Results
This section presents the experimental setup and performance outcomes of the proposed End-To-End 
DeepLASD Detector on both the ASVspoof 201932 and ASVspoof 202133 Logical Access datasets. We begin 
with a description of data preparation and the evaluation metrics used, followed by a series of paragraphs 
summarizing key experimental findings.
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We employed the ASVspoof 201932 and ASVspoof 202133 datasets as primary benchmarks, each featuring 
a variety of spoofing scenarios, including VC and TTS attacks3,29. Each dataset includes predefined training, 
development, and evaluation subsets, which we used for model training, validation, and final testing respectively, 
following ASVspoof challenge protocols. Where necessary, audio files were resampled to 16 kHz, normalized to 
a fixed amplitude range, and segmented to ensure consistent input dimensions for the detector. The ASVspoof 
2019 dataset served as the main training and development resource, while ASVspoof 2021 allowed us to evaluate 
generalization to more challenging spoofing techniques.

We reported performance using two key metrics recommended in ASVspoof challenges. The first is the 
Equal Error Rate (EER), defined by the operating point at which false acceptance and false rejection rates are 
equal. The second is the Minimum Tandem Detection Cost Function (min-tDCF)31, a cost-sensitive measure 
incorporating misclassification costs and prior probabilities. Lower EER and min-tDCF values denote improved 
spoof detection, and both are evaluated on the respective 2019 and 2021 LA evaluation subsets3,29.

Performance Evaluation of proposed method
We designed an in-depth multi-stage experiment for assessing the effectiveness of proposed antispoofing 
detector. For this purpose, we evaluated our DeepLASD model on the ASVspoof 2019 and 2021 LA datasets 
overall, and TTS and VC subsets separately. We used the same hyperparameter settings as mentioned in 
Section III-C. We used the train set for model training, and eval set for model testing for all experiments. Our 
detector achieved a min-tDCF of 0.1216 and an EER of 5.2753% on ASVspoof 2019-LA-Eval. For the TTS 
and VC subsets, the min-tDCF/EER pairs were 0.1442/6.6891% and 0.1477/6.2678%, respectively, while on 
ASVspoof 2021-LA-Eval, we observed a slight decline in performance by attaining a min-tDCF of 0.4250 and 
EER of 12.76%, reflecting the increased complexity of ASVspoof 2021 dataset. Still, we achieved competitive 
performance for LA spoofing detection. These results in Table 1 underscore the ability of our method to capture 
subtle spoof artifacts, attributed to the use of GELU in residual blocks and LeakyReLU in the Sinc convolution 
block for stable gradient flow and nuanced feature extraction.

Ablation study
This experiment was designed to examine the effects of different architectural configurations in our DeepLASD 
method. We investigated how advanced activation functions and specific architectural configurations affect 
performance on both ASVspoof 2019 and 2021 LA datasets. The experiments were carried out using the same 
experimental and hyperparameter settings as mentioned above, with results highlighting the sensitivity of our 
method to different design choices.

	A.	 Impact of different activation functions. This study was performed to investigate the effect of different ac-
tivation functions in residual and sinc convolution blocks in our DeepLASD. We conducted more than 20 
experiments exploring a range of activations (e.g., ReLU, LeakyReLU, SELU, GELU) in our method to deter-
mine the configuration, which achieves the lowest EER and min-tDCF values. We reported the details of top 
three performing activation configurations in Table II. From the results in Table 2, we conclude that pairing 
GELU in residual layers with LeakyReLU in the Sinc convolution layer consistently yielded the lowest EER 
(5.28%) and a stable training process. This study highlights the efficacy of GeLU activation in residual blocks 
and leaky ReLU in Sinc convolution blocks for better feature computation of spoofing artifacts in synthetic 
samples and speech dynamics of bonafide samples.

	B.	  Investigation of different strategies of Pooling and FC layers. This two-stage experiment was planned to ex-
amine the effect of different pooling strategies and impact of adding an additional FC layer. First, we carried 
out this experiment by examining the effect of using average pooling instead of max-pooling and results 
are shown in Table III. Next, we introduced an additional FC layer in addition of two FC layers to assess its 
impact on the spoofing detection performance. As shown in Table 3, adding a third FC layer led to a modest 
increase in EER (from 5.28% to 6.39% on ASVspoof 2019), while substituting max pooling with average 

Exp # Configuration EER (%) Min-tDCF

1 ReLU (residual block) + ReLU (Sinc block) 7.95 0.1413

2 LeakyReLU (residual block) + SELU (Sinc block) 4.98 0.1208

3 GELU (residual block) + LeakyReLU (Sinc block) 5.28 0.1216

Table 2.  Comparative analysis of activation functions on ASVspoof 2019 LA-eval Dataset.

 

Spoof type Dataset min-tDCF EER (%)

Overall LA-eval ASVspoof 2019-LA-Eval 0.1216 5.2753

Text-to-speech ASVspoof 2019-TTS 0.1442 6.6891

Voice conversion ASVspoof 2019-VC 0.1477 6.2678

Overall LA-eval ASVspoof 2021-LA-Eval 0.4250 12.76

Table 1.  Performance evaluation of the proposed DeepLASD method.
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pooling dramatically worsened performance (EER rising to 48.18%). Similar trends on the ASVspoof 2021 
subset confirm that maintaining a balanced architecture with max pooling and controlled network depth 
using two FC layers is key to effectively detecting spoofing.

 
These ablation studies reveal that the combination of GeLU and ReLU in residual and sinc convolution 

blocks, respectively, and configurations involving two FC layers and max pooling for downsampling ensure the 
best generalization, particularly for confronting more sophisticated, unseen spoofing attacks.

Comparative analysis with baseline and SOTA methods
We conducted a series of around five additional experiments to compare the performance of proposed DeepLASD 
method against widely known baselines (e.g., CQCC-GMM, LFCC-GMM) and state-of-the-art systems on the 
ASVspoof 2019 LA dataset. Trained over 100 epochs on the LA partition, our model was evaluated under various 
spoofing scenarios (text-to-speech, voice conversion). Table  4 highlights that our DL approach, powered by 
embedding selected activations, yields an EER of 5.2753% and a min-tDCF of 0.1216, outperforming or closely 
matching several established techniques. Notably, RawNet2-S2 achieves a slightly better min-tDCF (0.1175) but 
at a similar EER (5.13%), while RawNet2-S1 and S3 show comparable performance ranges. These comparisons 
help illustrate the trade-offs between our interpretable modular design and fully end-to-end raw waveform 
pipelines.Despite some hand-crafted feature methods that excel in niche conditions, these results underscore 
the adaptability and effectiveness of a direct waveform-based pipeline in detecting subtle spoof artifacts across 
multiple attack types.

Comparative analysis on voice conversion
Voice conversion spoofing is more difficult to detect than TTS spoofing. To assess the robustness of our DeepLASD 
for voice conversion, we performed a set of focused trials on the ASVspoof 2019 VC subset to determine if 
our End-to-End DeepLASD surpassed established baseline methods. Again, we used the same experimentation 
protocols as mentioned in Section III-C. As shown in Table 5, our method achieved a min-tDCF of 0.1477 and 
an EER of 6.2678%, outperforming all baseline approaches by a wide margin. These results demonstrate the 
efficacy of the proposed DeepLASD for capturing intricate frequency cues that feature-based solutions often 
miss. We can conclude from this experiment that our DeepLASD method can reliably be employed to detect the 
challenging VC spoofing.

Methods min-tDCF EER (%)

CQCC-GMM baseline34 0.236 9.87

LFCC-GMM baseline34 0.212 11.96

FBCC-GMM35 0.155 6.16

Stat-SE-Res2Net5016 0.068 2.86

LFCC+ProdSpec+MGDCC-CNN36 0.198 9.09

CQT+LFCC+DCT-LCNN37 0.051 1.84

ATCoP+GTCC-SVM38 0.050 0.75

RawNet2-S139 0.1301 5.64

RawNet2-S239 0.1175 5.13

RawNet2-S339 0.1294 4.66

L+S139 0.0330 1.12

L+S1+S2+S339 0.0347 1.14

L+S339 0.0370 1.14

Proposed DeepLASD method 0.1216 5.2753

Table 4.  Comparison of proposed and baseline methods on ASVspoof 2019-LA-Eval.

 

Dataset Configuration Min-tDCF EER (%)

2019 LA-Eval Proposed DeepLASD (2 FC, max pool, GELU+LeakyReLU) 0.1216 5.28

2019 LA-Eval DeepLASD (3 FC layers, max pool, GELU+LeakyReLU) 0.1396 6.39

2019 LA-Eval DeepLASD (2 FC layers, Avg pool, GELU+LeakyReLU) 1.0000 48.18

2021 LA-Eval DeepLASD (3 FC layers, max pool, GELU+LeakyReLU) 0.9999 47.10

Table 3.  Comparative analysis of different pooling strategies and FC Layers on ASVspoof 2019 and 2021 LA 
Datasets.
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Theoretical rationale
The proposed DeepLASD design is grounded in key principles from signal processing and deep learning. The 
SincConv layer provides interpretable, learnable bandpass filtering for raw waveforms 41, offering a principled 
alternative to traditional CNN kernels. GeLU activation  42 ensures smooth, stable gradient flow, enhancing 
training compared to standard ReLU. Attention mechanisms  43 enable the model to dynamically prioritize 
the most informative temporal and spectral features, effectively capturing spoofing artifacts. Together, these 
components create a theoretically informed architecture tailored for logical access spoofing detection.

Discussion
Our experimental results collectively underscore the effectiveness of our end-to-end, DeepLASD for logical 
access spoof detection, offering several notable insights. First, direct waveform processing with a SincConv-
based front end reduces dependency on handcrafted descriptors (e.g., LFCC, CQCC) and adapts more effectively 
to advanced voice conversion and text-to-speech scenarios. Second, carefully selected activation functions, 
particularly GELU in residual blocks paired with LeakyReLU in the Sinc convolution block, consistently 
produced a lower EER and min-tDCF. This pairing alleviates vanishing gradients and captures subtle spectral-
temporal cues crucial for distinguishing genuine audio from spoofed samples.

Benchmark comparisons show that the proposed model remains highly competitive with established 
baselines and state-of-the-art systems. Our method outperformed most handcrafted features-based methods 
and the two RawNet versions. Although a few fusion-based methods comprising handcrafted features and deep 
learning approaches slightly outperform DeepLASD, but, at the expense of increased computational cost. Its 
resilience extends to a variety of spoofing types, including TTS and VC. In more detailed VC-focused testing, 
the architecture significantly outperformed feature-engineered methods, demonstrating that raw waveform 
analysis can effectively detect higher-frequency or phase-related artifacts absent in many handcrafted features. 
Furthermore, experiments with architectural variations highlight the importance of balanced design choices: 
adding extra layers or substituting max pooling with average pooling often leads to overfitting or performance 
degradation, especially on more complex datasets like ASVspoof 2021. These observations point to a careful 
trade-off between network depth, pooling strategies, and computational overhead when deploying in practical 
settings. Although some baselines outperform in min-tDCF or EER, they often rely on larger models or specialized 
handcrafted features. In contrast, DeepLASD offers complementary strengths by using a lightweight end-to-end 
design that learns directly from raw waveforms, enhancing generalization and practical deployment. Although 
some baselines outperform in min-tDCF or EER, they often rely on larger models or specialized handcrafted 
features. In contrast, DeepLASD offers complementary strengths by using an interpretable, lightweight end-to-
end design that learns directly from raw waveforms, enhancing generalization and practical deployment.

Taken together, the evidence suggests that end-to-end deep learning, combined with attention mechanisms 
and advanced activations, can reliably detect even sophisticated logical-access spoofing attempts. However, 
more challenging conditions in newer datasets (e.g., ASVspoof 2021) imply the need for domain adaptation 
and adversarial strategies to handle rapidly evolving generative models. Additionally, focusing on lightweight, 
efficient designs and robust training schemes (e.g., data augmentation, semi-supervised learning) will be 
essential for real-world deployment, particularly where computational resources and latency are constrained.

It is important to emphasize that the novelty of our work lies in the innovative architectural composition of 
established modules (e.g., SincConv, attention, GRU, GeLU), which are integrated and orchestrated in a unified 
framework tailored specifically for robust deepfake detection. Rather than introducing new components, we 
contribute a novel configuration that leverages the complementary strengths of these elements. Our design 
is driven by a principled understanding of multimodal dynamics and is empirically validated to consistently 
perform well across a broad spectrum of spoofing attacks. This demonstrates that architectural innovation can 
emerge from strategic design and synergy, not solely from inventing new components.

Conclusions
This work has presented an end-to-end deep learning approach for logical access spoof detection in ASV systems. 
By removing the reliance on handcrafted features, the architecture adapts smoothly to various spoofing forms, 
showing strong performance on the diverse and largescale ASVspoof 2019 and 2021 datasets and maintaining 
competitive metrics relative to state-of-the-art systems. Our ablation study emphasized the importance of 
embedding GeLU and LeakyReLU activations in convolution layers to capture salient cues and achieve stable 
training. While the framework proved robust to a range of attacks, performance on the ASVspoof 2021 dataset 
revealed challenges introduced by increasingly realistic and complex synthetic speech. Future work may include 
adopting adversarial training techniques, exploring domain adaptation strategies, and refining architectural 
elements to enhance generalization across emerging spoof scenarios. Overall, the proposed method lays a 

Methods min-tDCF EER (%)

Baseline CQCC40 0.339 30.61

Baseline LFCC40 0.714 46.50

Baseline ELTP-LFCC40 0.390 33.28

Proposed (GELU + LeakyReLU, slope=0.3) 0.1477 6.2678

Table 5.  Comparison of proposed and baseline methods for voice conversion detection.
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foundation for next-generation ASV security, bridging effective raw-audio modeling with an adaptable design 
to counter evolving logical access threats.

Data availibility
We have used the publicly available datasets, i.e., ASVspoof2019 and ASVspoof 2021, which can be found at [31] 
and [32] in the paper.
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