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Abstract-Recent advances in the field of machine learning and social media platforms facilitate the creation and rapid
dissemination of realistic fake content (i.e., images, videos, audios). Initially, the fake content generation involved the manipulation
of either audio or video streams but currently, more realistic deepfakes content is being produced via modifying both audio-visual
streams. Researchers in the field of deepfakes detection mostly focus on identifying the fake videos exploiting solely visual or
audio modality. However, there exist a few approaches for audio-visual deepfakes detection but mostly are not evaluated on a
multimodal dataset with deepfakes videos having the manipulations in both streams. The unified approaches evaluated on the
audiovisual deepfakes dataset have reported low detection accuracies and failed when the faces are side-posed. Therefore, in this
paper, we introduced a novel AVFakeNet framework that focuses on both the audio and visual modalities of a video for deepfakes
detection. More specifically, our unified AVFakeNet model is a novel Dense Swin Transformer Net (DST-Net) which consists of
an input block, feature extraction block, and output block. The input and output block comprises dense layers while the feature
extraction block employs a customized swin transformer module. We have performed extensive experimentation on five different
datasets (FakeAVCeleb, Celeb-DF, ASVSpoof-2019 LA, World Leaders dataset, Presidential Deepfakes dataset) comprising audio,
visual, and audio-visual deepfakes along with a cross-corpora evaluation to signify the effectiveness and generalizability of our
unified framework. Experimental results highlight the effectiveness of the proposed framework in terms of accurately detecting
deepfakes videos via scrutinizing both the audio and visual streams.
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1. Introduction

In the last decade, we have seen tremendous growth in multimedia content on the Internet due to the economical prices
of digital capturing devices and social media evolution. Nowadays, it has become very easy to manipulate content via
different advanced multimedia editing tools [21]. Moreover, the availability of cutting-edge machine learning (ML)
algorithms like GANs has made it possible to create highly realistic forged content (i.e., images, videos, and audios)
to propagate disinformation through social networks (i.e., Facebook, Twitter, Instagram, etc.). As a result,
disseminating fake content on social media platforms has become easier, making it more difficult to trust the media
information. False information on social networks can affect the opinions and emotions of society and can also result
in disruptive public acts based on misleading ideas. The generation of fake/synthesized content (including images,
videos, and audios) using deep learning algorithms is well-known as deepfakes. Generative Adversarial Networks
(GANS) [28] and Autoencoders (AEs) [29] based techniques are mainly used for the generation of synthesized videos
and audios. Video deepfakes include the generation of fake/synthesized videos via replacing the person’s face with
another person (Face Swap), modifying the person’s expression (Expression Swap), or synchronizing the person's lip
movement with some sound (Puppet Mastery). While the audio deepfakes are the creation of cloned voices of a person
depicting the individual speaking the things that are never spoken. Text-to-Speech Synthesis (TTS) and Voice
Conversion (VC) are the two main techniques for audio deepfakes creation. In TTS synthesis, the person’s natural
voice is synthesized according to the given input text whereas VC is a technology in which the audio of the source
person is modified to make it sound like the voice of the target person [21]. The deepfakes videos and audios generated
using advanced Al algorithms have attained such realism that now it becomes difficult for humans to recognize the
video or audio as a fake one. Thus, bring up the major privacy and security threats as fake voices can be used to fool
the voice recognition system and spread fake news while fake videos can be used to defame a person or generate
misinformation via impersonating a renowned personality. The example includes the fake video of Mark Zuckerberg
posted on Instagram created with Canny AI’s Video Dialogue Replacement (VDR) software [30].

In existing works, the researchers mainly focus on detecting the deepfakes through a single modality/stream (either
video or audio). For instance, in [1], a deep learning model using the multi-layer perceptron (MLP) and convolution



neural network (CNN) was introduced for the detection of Al-generated deepfakes videos. Landmark features and
frames were extracted from the input videos and fed to the MLP and CNN, respectively. At the classification stage,
the output of MLP and CNN was combined to predict whether the video was fake or real. The model [1] was evaluated
on a private dataset and achieved an accuracy and AUC score of 87% and 87.7%, respectively. Kohli et al. [2]
presented a lightweight 3DCNN that extracted the spatial and temporal features using the optical flow method. A 4-
depth matrix comprising two successive frames and their horizontal and vertical gradients was given to the model as
an input. The model [2] was evaluated on the FaceForensics++ (FF++) dataset and showed good detection results.
Likewise, for audio classification, a novel approach DeepSonar was introduced in [3], which monitored layer-wise
neuron behavior to identify the Al-synthesized voices generated using text-to-speech and voice cloning systems. To
evaluate the model [3], experiments were conducted on three datasets (FoR, Sprocket-VC, MC-TTS) covering English
and Chinese languages. Hua et al. [4] demonstrated an end-to-end Time-domain Synthetic Speech Detection Net
(TSSDNet) for the detection of audio deepfakes using deep learning features. TSSDNet was evaluated on a challenging
ASVSpoof-2019 logical access (LA) dataset and attained an equal error rate (EER) of 1.64%. The model [4] shows
good generalizability but is computationally complex.

Due to the lack of audio-visual deepfakes datasets, few unified models are presented in the literature for detecting
deepfakes. Zhou et al. [31] introduced a joint detection framework for detecting deepfakes via audio and video
modality. Similarly, [32] and [33] classified the videos either as fake or real by finding the dissimilarity between audio
and visual streams. Due to the absence of a proper dataset, [31] utilized existing deepfakes datasets such as DFDC
and applied the vocoders used in VC and TTS tasks to mimic the synthesized speech. [32] used the DFDC and
DeepfakeTIMIT datasets. However, [33] evaluated the model on synchronous and asynchronous audio-visual pairs
produced from VidTIMIT and Deepfake TIMIT, respectively. The above-mentioned approaches are not evaluated on
a dataset in which both audio and visual modalities are manipulated. To enhance the research on unified models for
deepfakes detection, Khalid et al. [34] contributed a new audio-visual dataset FakeAVCeleb. In [35], the ensemble
methods based on five classifiers i.e., Meso-4, Mesolnception-4, Xception, VGG16, and EfficientNet-BO were
evaluated on the FakeAVCeleb dataset. The VGG16 model achieved the highest accuracy of 78.04%, while,
XceptionNet showed the worst performance with an accuracy of 43.94%. It can be concluded that none of the methods
provided satisfactory performance demonstrating that they are not suitable for audio-visual deepfakes detection.
Davide et al. [25] presented a POI-Forensics for deepfakes detection based on audio-visual identity verification. The
model was trained only on the augmented real videos of the VoxCeleb2 dataset and attained an accuracy of 86.6% on
the FakeAVCeleb dataset. This model [25] has a limitation of the requirement of some real videos of the target subject
as a reference during the testing. Moreover, POI-Forensics failed on the side-posed faces and performed well only on
frontal-posed faces. Based on empirical findings that faces and voices are more mismatched in fake videos as
compared to the real ones, Cheng et al. [36] introduced a deepfakes detection method called Voice-Face matching
Detection (VFD) via finding the consistency between the voice and face of a person. Three datasets DFDC, Deepfake
TIMIT, and FakeAVCeleb were used to evaluate this approach [36]. VFD achieved an accuracy of 81.52% and an
AUC of 86.11% on the FakeAVCeleb dataset. VFD fails to detect deepfakes in the cases when a face is side-posed
and there is insufficient illumination where faces are not clearly visible.

These days, deepfakes are not just created by forging only one modality/stream (video or audio) rather, more
convincing fake videos are produced in which forgery is applied on both modalities (video and audio), thus enhancing
the threats and concerns associated with deepfakes. Detecting such videos in which both visual and audio stream is
modified is a challenging task. Moreover, there is also a lack of such datasets which contain fake videos along with
fake audio. Thus, limiting the development of the unified model that can detect the audio and video deepfakes
simultaneously. Most of the unified frameworks reported in the literature are not evaluated on the multimodal
deepfakes dataset such as FakeAVCeleb. Also, the models [25,36] evaluated on the FakeAVCeleb datasets have
detection accuracies lesser than 90% and fail to detect deepfakes videos that contain the faces at different angular
positions. To address the aforementioned limitations, we present a unified AVFakeNet model that by using the visual
and acoustics features exploits the spatio-temporal characteristics of the input video for deepfakes detection. For this
purpose, we proposed a unified Dense Swin Transformer Net (DST-Net) for the detection of deepfakes videos via
analyzing both audio and visual streams. Our unified DST-Net has three blocks named input block, feature extraction
block, and output block. The input block consists of dense layers while the output block contains the combination of
dense and dropout layers. Feature extraction block comprises the modified swin transformer. For the evaluation of our
proposed unified framework, we utilized an audio-video multimodal deepfakes detection dataset named as
FakeAVCeleb. According to the best of our knowledge, it is the only publicly available dataset that has the cloned
deepfakes audios along with deepfakes videos. The major contributions of our work are:



e  We propose a novel unified framework AVFakeNet that is able to accurately detect the manipulation in both the
audial and visual streams of deepfakes video.

e We propose a Dense Swin Transformer Net that computes the dense hierarchical features maps for better
representation of the input videos and improves the deepfakes detection performance.

e  QOur proposed unified model is robust against the high-quality deepfakes videos with angled or side-posed faces
having variations in illumination conditions, people’s ethnicity, gender, and age groups.

e  We have performed extensive experimentation on five different datasets comprising audio, visual, and audio-
visual deepfakes along with a cross-corpora evaluation to signify the effectiveness and generalizability of our
proposed unified framework.

2. Literature Review

To counter the threats introduced because of deepfakes video and audio generation, researchers have introduced many
different deepfakes detection models and algorithms. In this section, we have reviewed the state-of-the-art methods
for the detection of audio and video deepfakes.

2.1.Video deepfakes detection

For video deepfakes detection, some approaches focus on hand-crafted features [5,19,20] or physiological features
[6,7,8,10]. For example, Geura et al. [5] introduced a no pixel-based approach in which feature vectors were
constructed from the stream descriptors information of the videos. These feature vectors were then used to train the
ensemble of SVM and random forest classifiers. AUC score of 98.4% was achieved on Media Forensics Challenge
(MFC) dataset. Despite the good performance, this approach [5] fails to handle the video re-encoding attacks. Ciftci
et al. [6] presented a method that used biological features such as heart rate estimation to identify the deepfakes videos.
SVM and CNN-based classifiers were trained on features extracted using the remote photoplethysmography (rPPG)
technique. Likewise, in [7,8], rPPG-based physiological features were used to discriminate fake videos from real ones.

Keeping in view the possible abuses of deepfakes videos, researchers have also introduced deepfakes detection models
based on deep neural networks (DNNs). Chintha et al. [9] introduced a framework based on XceptionNet and
Bidirectional LSTM. XceptionNet was used to extract the facial features whereas temporal sequence analysis was
performed using Bidirectional LSTM. To distinguish the real video’s features from the fake ones, the model was
trained on the combination of KL divergence and Cross Entropy loss functions. Likewise, in [11], facial features
extracted using VGG-11 from the video frames were fed to the LSTM to obtain the temporal sequence descriptors.
These descriptors were then used to train CNN frameworks named 13D, ResNet, and R3D for recognizing fake videos.
This approach [11] achieved decent detection accuracy on the Celeb-DF dataset however it is computationally
complex.

2.2. Audio deepfakes detection

Traditional voice spoofing detection methods focus on feature engineering where the hand-crafted features are used
to train the classifier for the detection of the audio deepfakes. For instance, in [12], a global modulation 2D-DCT
features extractor was presented that captured global spectro-temporal modulation patterns for audio deepfakes
detection. The approach [12] attained an EER of 4.03% on ASVspoof-2019 LA, however, the performance decreases
on noisy samples. To increase the diversity of ASVspoof-2019 LA training data, Das et al. [13] applied a signal
companding-based data augmentation technique before computing the constant Q transform (CQT) features and then
used these features to train the LCNN classifier. This method [13] improves the detection accuracy but at the expense
of extensive training data. In our prior work [14], we developed a robust method for the detection of multiple spoofing
attacks including single and multi-order playback, voice synthesis, and cloned replay attacks. A novel acoustic ternary
patterns-Gammatone cepstral coefficients (ATP-GTCC) features were introduced to better capture the dynamic traits
of the real human voice, robotic noise, and distortion in the playback samples for the accurate detection of spoofing
attacks on voice-driven systems. ATP features descriptor uses a fixed threshold for patterns generation and provides
a lower performance in real-time scenarios. To overcome this limitation of ATP features, we presented the extended
local ternary patterns (ELTP) and fused them with Linear Frequency Cepstral Coefficient (LFCC) features in [15] for
detecting the TTS and VC spoofing attacks. ELTP calculated the threshold dynamically by locally computing the
standard deviation of each audio frame. We also developed a unified voice spoofing detector [43] by proposing novel
acoustic-ternary co-occurrence patterns (ATCoP) and fused them with GTCC patterns to accurately detect all types of
voice spoofing attacks. This anti-spoofing framework [43] was evaluated on four different datasets including voice
spoofing detection corpus (VSDC), ASVspoof-2019, Google’s LJ Speech, and YouTube deepfakes datasets to
demonstrate the accurate detection performance for various kinds of audio deepfakes.



Deep neural networks have also shown great performance while detecting spoofed voices or audio deepfakes. Alanis
et al. [16] introduced a Light Convolutional Gated Recurrent Neural Network (LC-GRNN) to expose the spoofing
attacks (i.e., text to speech, voice conversion, and replay) via extracting discriminative frame level and contextual
features. Log magnitude spectrograms with 256 bins were fed to the model to identify the speech as fake or real.
ASVspoof-2015, 2017, and 2019 were used to evaluate the model. This anti-spoofing system [16] is computationally
efficient but not robust against unseen spoofing attacks. In [17], a self-supervised approach known as SSAD consisting
of an encoder, regression, and binary workers was presented to detect the original and fake voices. This approach [17]
was evaluated on the ASVspoof-2019 LA dataset and achieved an EER of 5.31%. Although the model [17] is
computationally efficient, the detection accuracy needs to be further improved. Zhang et al. [18] presented a one-class
learning model (based on ResNet-18 and one-class softmax) that detected unknown synthetic voices generated using
TTS and voice conversion techniques. The model was trained on 60-dimensional LFCCs features and attained 2.19%
EER and a min t-DCF of 0.059 on the ASVspoof-2019 LA dataset.

The state-of-the-art methods for the detection of deepfakes mainly focus on the fake audio or video detection
separately and attained reasonable results as discussed above. Less attention is given to the field of a unified model
for detecting deepfakes utilizing both audio and visual streams of a video. The models exploiting both streams of the
video are either not evaluated on multimodal datasets or failed to perform well in case of varying lighting conditions,
videos having side posed faces, etc. Moreover, models are not evaluated for cross corpora settings. In this paper, a
unified framework is presented that identifies the deepfakes videos via analyzing audio and video streams and
overcomes the above-mentioned limitations of the existing deepfakes detection methods.

3. Analysis of the mel-spectrogram of real and fake videos of FakeAVCeleb dataset
Deepfakes attacks can be very harmful and used to defame a person, spread fake news on social media, hack voice-
controlled systems, and exploit society’s peace by conveying misleading and disrupting ideas. Mostly deepfakes
attacks can either include audio or video manipulation. These attacks could be more dangerous when both audio and
video stream of a video is modified to generate more realistic fake content.

Based on our analysis and observation, we argue that fake audio can be different from the real human voice from
many perspectives. For instance, the real human voice can have many natural characteristics such as respiration,
expression, vocalism, change in pitch, and tone of voice. Voice recording also entails many factors such as background
noise, distortions, etc. Contrarily, synthetic voices lack the human voice prosodic attributes, variation in the pitch and
tone of the voice. Also, the speaking process is linear and seamless with void of distortions or background noise in
fake audio due to its linear generation process. Synthetic and real voices are also different in terms of the pauses
between the speech. There is no distortion or noise in the spoofed speech if there is a pause. However, breathing or
background noise is present in the real voice during the pause.

The advancement in the quality of deepfakes audio generation methods/tools has reduced the potential discriminative
attributes of audio used to classify between fake and real speech, thus increasing the difficulty to detect fake utterances.
We suppose that spectrograms generated using high resolution 2048fft bins can demonstrate the imperceptible
differences and also depict the above-mentioned dissimilarity between real and fake audio. So, we investigated the
spectrograms in this research work for audio modality with the expectation of providing a good performance compared
to the conventional acoustic feature extraction. To support our assumptions, samples of real and fake audio Mel-
Spectrograms are shown in Fig. 1. From the highlighted patterns in dotted regions in Fig. 1, it can be seen that the
corresponding region becomes entirely blank in the respective Mel-Spectrogram where the pause occurs in fake audio.
While in real speech, when a pause occurs, the corresponding Mel-Spectrogram area is not completely blank, but it
contains some patterns due to the presence of noise. Moreover, the bright horizontal patterns represent the pitch and
emphasize on the words. These lines are brighter when the speaker emphasizes on a word or there is high background
noise and also patterns are not linear but irregular due to the variations in the pitch. Whereas for the fake audio, the
horizontal patterns are more linear compared to the real audio because of the same pitch of the voice throughout the
audio sample. It is also notable that, in the synthetic speech, there appears a vertical portion for each word in the Mel-
Spectrogram while such portions are less prominent in the real speech Mel-spectrograms. Our proposed DST-Net
model exploits globally aware dense hierarchical deep learning features, so we hypothesize that such features enable
our model to accurately detect the above-mentioned distinctive artifacts in the Mel-Spectrogram of fake and real
speeches.
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Fig. 1. Mel-Spectrograms of real and fake audios.

4. Proposed methodology

CNN' s have been widely used in ML because of the effective feature extraction of convolution layers. The majority of
deep learning-based deepfakes detection methods have employed CNNs. However, the scope of CNNs is limited
owing to network depth and kernel size as the extremely deep neural networks induce gradient vanishing problems
and large kernels increase computing costs. The transformers, on the other hand, have first achieved considerable
success in the natural language processing arena via using self-attention setting, deeper mapping, and sequence-to-
sequence model design. Thereafter, it has been employed in object detection and image recognition tasks.

Keeping in view the limitations of CNNs and the emerging use of transformers in the image recognition tasks, we
utilize the swin transformer architecture with a modified MLP module. In our proposed network, we used the modified
swin transformer as a feature extraction module. The purpose of this research work is to develop a unified model that
can detect the manipulation in both audio and visual streams of deepfakes videos. The architectural details of the
proposed model DST-Net and the workflow of the proposed framework are described in the subsequent sections.

4.1. Workflow of proposed unified framework

The detailed classification process of our unified framework for deepfakes detection is shown in Fig. 2. Our proposed
framework is a two-stream network having an audio and video model that can classify both the audio and visual
features extracted from a video. The video and audio models are trained on the frames and Mel-Spectrogram images,
respectively and make the predictions individually. It is important to note that our proposed DST-Net is used to classify
audio and visual features in both streams of the proposed framework. The model trained on audio Mel-Spectrograms
is referred to as an audio model while the DST-Net trained on the extracted faces from the video frames is named as
a video model. For testing, the input to our framework is a video along with its respective Mel-Spectrogram image.
Frames of the video are extracted, and the face detection algorithm Multi-Task Cascaded Convolution Neural Network
(MTCNN) [37] is used to detect the faces. However, Python librosa package is employed to generate Mel-Spectrogram
with the following parameters: n_fft = 2048, hop length = 512 and n_mels = 175. And then power to db function is
used to convert the spectrum to decibel units. Mel-Spectrogram is an effective method to extract the hidden and useful
features to visualize the audio as an image. In the next step, we resize and reshape the extracted faces from the video
and a Mel-Spectrogram image. And then pass the frames and Mel-Spectrogram to the respective stream of the model
containing the Dense Swin Transformer network. The video model provides the prediction for the faces extracted
from the videos; therefore, we apply the majority voting rule to classify the overall visual stream either as fake or real.
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Fig. 2. Workflow of unified framework.

The majority voting rule is demonstrated in Eq. (1).

V. = max{real, fake} )

where Vs denotes the label prediction from the video stream of the framework while real and fake indicates the real
and fake frames count, respectively. Finally, we compare the predicted label from the audio and video stream of the
framework, and based on the comparison shown in Eq. (2), we classify the video as fake or real.

Fake if A= fakeVV; = fake

L — s s

@) {Real Otherwise } @

In Eq. (2), L(v) represents the overall predicted label for a video, and 4 indicates the label prediction from the audio
stream of the network. The algorithm of the classification process is presented as Algorithm 1.

4.2.Dense Swin Transformer network

Our proposed unified model DST-Net consists of an input block (IB), feature extraction block (FEB), and output block
(OB). IB has dense layers, FEB compose of a swin transformer module and OB comprises dense and dropout layers.
The input and output blocks are placed at the start and end of the whole network while FEB is placed in between 1B
and OB. The whole network is shown in Fig. 3, and can be expressed as:

O = Yip(x;) (3)
Orep = Yrgp(O1p) 4)
Oog = Yo5(OFgs) 5

where x; indicates the input image. Yis (.), Yres(.), and Yos(.) represent the input, feature extraction, and output block,
respectively. O, Ores, and Oos indicate the output of the IB, FEB, and OB, respectively. The description of IB, FEB,
and OB is provided in the following sections.



Algorithm 1: Classification process of proposed unified framework

Input: Video Repository, V' = {vi, v2, v3 ..., ..., Vn}

Mel-Spectrogram Image Repository, M = { mi, m2, m3 ..., ..., mn}
Output: Video prediction, V)
1. Setfake < 0,real <0

2. ForeachvinV do
3 Extract the frames from v and detect the faces F = { f1, /2, f3 ..., ..., fu } through MTCNN().
4 For each fin F do
5. f € Resize (f) // Resized the detected facial frames
6 0,5€ Yis(f) // Input Block
7 Oppp€ Yrep(0;5)  // Feature Extraction Block
8 00p€ Yop(Opgg) // Output Block
real < real + + if Opg == 0
? {fake & fake ++ Otherwise}
10. End
11.  V, = max{real, fake} // Majority Voting Rule
12.  Read Mel-Spectrogram Image m of the corresponding video v.
13.  m < Resize (m) // Resized the Mel-Spectrogram Image
14.  0;€ Yig(m) // Input Block

15, Opgp€ Yeep(045) // Feature Extraction Block
16. 005€ Yog(Orgp) // Output Block

17. A, €0,,
18. v, < {Fake if  A;<fakeVV, éfa.ke} // Final Decision
Real Otherwise
19. End
Input Block Feature Extraction Block Output Block
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Fig. 3. Dense Swin Transformer network.

4.2.1. Inputblock

The input block comprises three dense layers, which are employed for primary visual processing and to extract the
dense features from the input image. The dense layers transform the image space into the dense, high-dimensional
feature space. These features encode the fine details of the input image which can be effective for improving the
detection performance. Dense features are then passed to the feature extraction block based on the swin transformer
(ST) for further processing.

4.2.2. Feature extraction block

FEB consists of a swin transformer module and a 1D-global average pooling layer at the end. Swin transformer module
constructs the hierarchical feature maps starting with the small patches and gradually merging the patches as the
network gets deeper in layers. The hierarchical features enable the model to learn effective global and local contextual
representations and allows the model to perform dense prediction task. Moreover, the multi-head self-attention module
captures the long-range dependencies and expands the receptive field with lesser parameters and lower computational
complexity. This leads to better performance while detecting deepfakes videos.

The ST module comprises the patch extracting, patch embedding, two consecutive ST blocks, and patch merging. The
patch extracting layer is used to split the incoming dense features into non-overlapping patches. Patch size is set to
3%3 and each patch is considered as a token. The tokens are mapped to vector data via the patch embedding layer,



which is subsequently utilized in transformer blocks. We used the embedded dimension of 64. After that, two
consecutive ST blocks are applied to these tokens for the feature extraction. As the network grows, the patch merging
layer is utilized to minimize the number of tokens.

Consecutive Swin Transformer blocks: The consecutive swin transformer blocks are presented in Fig. 4. Each ST
block is composed of layer normalization (LN) layers, multi-head self-attention (MHSA) module, residual connection,
and MLP module. Each module (MHSA and MLP) followed a residual connection however, an LN layer is applied
before each of these modules. The two consecutive transformer blocks are different from each other in terms of the
MHSA module. The first transformer block has a window-based MHSA (W-MHSA) module whereas in the second
transformer block, shifted window-based MHSA (SW-MHSA) module is applied. Both modules conduct self-
attention within non-overlapping windows, leading the computation complexity to become linear. However, the SW-
MHSA module also allows cross-window interaction without any additional computational cost.

In both consecutive swin transformer blocks, the MLP is a four-layered module. The first two layers are identical and
composed of Dense, ReLU activation function, and dropout. Similarly, the last two layers are also the same and consist
of dense and dropout. Each preceding and succeeding dense layer is fully connected to each other thus enabling the
dense feature extraction.

Fig. 4. Consecutive Swin Transformer blocks.

4.2.3. Output block

The feature vector obtained from the feature extraction block is passed to the output block, which transforms the high-
dimensional feature space into the output image. OB consists of two dense layers (having ReLU activation function)
followed by the dropout layer for regularization. Finally, to classify the input image as either real or fake, a fully
connected layer with a softmax activation function is employed. The last fully connected layer has two output neurons
for the classification. The softmax function in this layer transforms the neuron’s value to 0 or 1 (0 for the real class
whereas 1 for the fake class).

5. Experiments and results

In this section, details about the experimental setup and datasets used to evaluate the performance of the proposed
DST-Net are provided. To justify the efficacy of our model, the discussion on the results and comparison with state-
of-the-art methods are also given. Moreover, cross corpora evaluation of the unified model is also presented in the
subsequent sections.

5.1.Dataset

For the detection of deepfakes, researchers have presented large and standard datasets such as FaceForensics++ [27]
and Deepfakes Detection Challenge (DFDC) [26], but these datasets have some drawbacks. For instance, FF++ lacks
the audios as it only contains manipulated videos with no audio. However, the DFDC dataset encompasses both fake
audio and fake video, but the entire video is labeled as fake without specifying whether the audio or video is fake.
Therefore, we utilized a recent FakeAVCeleb dataset [34] (comprises the videos having both visual and audio
manipulation) for evaluating the performance of our proposed unified framework. Performance of our proposed model
has also been evaluated on Celeb-DF [23] and ASVSpoof-2019 LA [38] datasets. Celeb-DF contains only the visual
manipulation while ASVSpoof-2019 LA dataset includes only the manipulated speech samples. However, for cross-
dataset evaluation, we used World Leader Dataset (WLD) [19] and Presidential Deepfakes Dataset (PDD) [22]. The
description of these datasets is provided in the next subsections.



5.1.1. FakeAVCeleb dataset

FakeAVCeleb is an audio-video multimodal deepfake detection dataset having a lip-synced fake video along with
synthesized audio. There are 500 real videos of celebrities in the dataset whereas the total number of fake videos is
more than 20k. This dataset contains four subsets, RealAudioRealVideo (RiRv), FakeAudioFakeVideo (F.Fv),
RealAudioFakeVideo (R.Fv), and FakeAudioRealVideo (FaRv). As the name suggests, R.Ry includes real videos, the
FaFy subset contains the fake videos having both audio and visual manipulation whereas F.Ry and RaFy subsets contain
the fake videos having only audio manipulation and visual manipulation, respectively. FakeAVCeleb dataset contains
videos of individuals having diverse ages and ethnic backgrounds. Moreover, this dataset is unbiased in terms of
gender and ethnicity as it contains the videos of both men and women belonging to four ethnic groups i.e., American,
European, African, Asian (south), and Asian (east). The average duration of each video is 7 seconds and has only a
single individual without any occlusion that might cover the person’s face. A few samples of the FakeAVCeleb dataset
are shown in Fig. 5.

RaFv FaFv

RaRv

Fig. 5. FakeAVCeleb dataset.

5.1.2.  Celeb-DF (v2) dataset

Celeb-DF(v2) dataset contains visual manipulated deepfakes videos with no voice. The dataset consists of a total of
590 real videos of 59 celebrities gathered from youtube and 5639 deepfakes videos of corresponding real videos.
Celeb-DF(v2) dataset includes individuals of various ethnicities, ages, and genders. Moreover, the dataset is
challenging since it comprises high-resolution videos with different lighting conditions, orientations, and
backgrounds. The frame rate of each video is 30fps and the average duration is appx. 13 seconds. Fig. 6 shows some
frames of the Celeb-DF Dataset.

5.1.3. ASVSpoof-2019 LA dataset

ASVspoof-2019 LA dataset encompasses speech data that is captured from 107 individuals including 61 females and
46 males. The dataset is partitioned into three disjoint sets named training, development, and evaluation. The training
and development sets include known attacks while the evaluation set contains 11 unknown and only 2 known spoofing
attacks. The spoofed audio is generated using the 17 diverse VC, TTS, and hybrid systems.

5.1.4. Presidential Deepfakes dataset

PDD dataset consists of 32 videos of two US presidents Donald Trump and Joseph Biden. Half videos in this dataset
are real while the other half are fake videos modified using impersonated audio, lip synchronization, and misleading
content. So, in the fake videos, the speech of both presidents is fake as none of them actually spoke such statements
as mentioned in the videos. The resolution of each video is 854x480 pixels, the frame rate is 30fps and the duration is
between 15s to 30s. Some samples of the PDD dataset are shown in Fig. 7.



Fig. 6. Celeb-DF dataset.
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Fig. 7. Presidential Deepfakes dataset.

5.1.5. World Leader dataset

WLD dataset contains the real and deepfakes videos of U.S politicians including Barack Obama, Joe Bidden, Donald
Trump, Hillary Clinton, Bernie Sanders, and Elizabeth Warren. The corresponding comedic impersonator of each
politician is used to create face-swapped and impersonated deepfake videos via GANs. For Obama, lip sync deepfakes
videos are also included in the dataset. The duration of each video is 10 seconds while the frame rate is 30fps. Fig. 8
shows some frame samples of the WLD dataset.

Fake

Real

Fig. 8. World Leader dataset.



5.2.Experimental setup and training parameters

The proposed DST-Net is trained from scratch with an image resolution of 128 x 128 (for extracted faces) and 175x175
(for Mel-Spectrograms). In order to find the optimized hyper-parameters for the proposed model, we performed
extensive experimentation while tuning the hyper-parameters. After the detailed experiments, the optimized
parameters values are: learning rate = 0.001, batch size = 16, label smoothing = 0.1, and weight decay = 0.0001. We
trained the model using AdamW optimizer and Binary Cross Entropy loss along with label smoothing. The best model
weights are stored using the early stopping on validation accuracy with the patience value of 5. All the
experimentations are performed on high-performance computing clusters having the compute nodes with the
following specifications: 40 CPU cores at 2.50 GHz and 192 GB RAM.

5.3.Performance evaluation measures
The performance of the proposed method is evaluated using standard metrics such as accuracy, Area under curve
(AUC) score, precision, true positive rate (TPR), true negative rate (TNR), and F1-Score.

AUC measures the model’s aptitude to distinguish between real and fake videos. The higher AUC indicates better
performance of the model for discriminating between real and fake videos.

Accuracy is calculated by the sum of correctly predicted fake and real videos divided by the total number of videos in
the test set. Accuracy is computed as follows:

TP+TN
P+N

Accuracy =

Q)
TPR is the proportion of correctly predicted fake videos out of all fake videos. It indicates the model’s ability to
correctly predict the deepfake video as a fake one. TPR is calculated as follows:

TP
TP+FN

TPR = (7)

TNR is the fraction of correctly predicted real videos out of all real videos. It indicates the model’s ability to correctly
predict the real video as a real one. TNR is calculated as follows:

TN
FP+TN

TNR =

(®)

Precision is the ratio of correctly predicted deepfake videos to the total number of fake predictions made by the model.
It represents the quality of deepfakes videos prediction made by the model. We computed the precision as follows:

)

FI-Score represents the harmonic mean of precision and TPR (recall) by combining both into a single metric. It is
used to assess the performance of models where one model has high precision, and the other model has a higher recall.
It can be calculated as follows:

TP
TP+FP

Precision =

Precision XTPR (Recall)
Precision+TPR (Recall)

F1 Score =2 X

(10)

where TP represents the correctly predicted deepfakes videos and 7N indicates the correctly detected real videos. FP
denotes the false predicted deepfake videos and FN represents the false detected real videos. P and N represent the
total fake and real videos.

5.4.Detection performance on different spectrograms

We conducted an experiment to analyze the performance of our proposed DST-Net model on different spectrograms
of an audio stream. The spectrogram depicts the visualization of the frequency range that the signal contains over
time. This experiment is conducted on the FakeAVCeleb dataset. The subsets used for this experiment are F.Fy and
RaRy each containing 500 videos. We split the subsets into training and testing sets with a split ratio of 80:20. Chroma-
CQT, Gammatone Cepstral Coefficients (GTCC), Mel-Frequency Cepstral Coefficients (MFCC), and Mel-
Spectrograms of the videos are computed using the python package librosa. After that, the model is trained and
assessed on these spectrograms and the results are demonstrated in Table 1. From Table 1, it can be clearly seen that
our proposed model, when evaluated on Mel-Spectrograms provides the highest accuracy of 97.51% and AUC of
97.52%. While, on all other spectrograms (i.e., GTCC, MFCC, and Chroma-CQT) the detection accuracy and AUC
are below 90%. Mel-Spectrogram is a Spectrogram converted to a Mel Scale which mimics the working of a human
ear. Mel-Spectrogram provides the sound information in a visual form to the model which is similar to the pitches that



humans can perceive. So, the Mel-Spectrogram depicts the audio signal information in a more descriptive way
resulting the higher detection accuracy. As a result of these findings, we used the Mel-Spectrograms of the audio
stream for all other deepfakes detection experimentations.

Table 1 Performance of DST-Net on different spectrograms.

Spectrograms Accuracy (%) AUC (%)
Mel-Spectrograms 97.51 97.52
GTCC 89.5 89.5
MFCC 88.5 88.5
Chroma-CQT 80.10 80.10

5.5.Performance evaluation

To evaluate the efficacy of the proposed model for audio-visual deepfakes detection, we conducted multiple
experiments on standard datasets, and details are provided in the subsequent sections. The experimentation protocol
in terms of dataset splitting information is provided in Table 2.

Table 2 Datasets details.

Training Testing
Split | Subsets | No. of Samples Split | Subset | No. of Samples
Audio-Video Dataset
FakeAVCeleb
Train (80%) RaRy 400 Test (20%) R.Rv 100
F.Fy 8753 F.Fy 2081
R.Fy 7841 R.Fy 1866
F.Ry 400 F.Ry 100
Video Dataset
Celeb-DF (v2)
Train (80%) Real 472 Test (20%) Real 118
Fake 4511 Fake 1128
Audio Dataset
ASVSpoof-2019 LA Dataset
Subsets No. of Bonafide Samples No. of Spoofed Samples
Training 2,580 22,800
Development 2,548 22,296
Evaluation 7,355 63,882

5.5.1. Performance evaluation on FakeAVCeleb dataset

To show that our proposed DST-Net is a unified model and capable of reliably detecting both the audio and visual
deepfakes, we evaluated the performance of our proposed model on the FakeAVCeleb dataset. For this purpose, we
conducted experiments in three different stages. In the first stage, we evaluated the performance of DST-Net using
only visual stream, and the model trained on visual stream/modality is termed a video model. In the second stage,
performance is evaluated on audio stream only and the trained model is named as audio model. While at the third
stage, our proposed unified framework is evaluated on the FakeAVCeleb dataset via utilizing both the audio and video
models. So, we evaluated the performance of our proposed model on the FakeAVCeleb dataset for video only, audio
only, and audio-video modality.

Augmentation techniques

Because the real subset comprises only 500 videos, therefore, we applied different augmentation techniques to increase
the number of real videos to match the number of videos in the fake subsets (FaFy, RaFv, FaRv) of the FakeAVCeleb
dataset. The applied video augmentation techniques are: horizontal flip, vertical flip, translation, sharpening, elastic
deformation, dropout, gamma correction, gaussian blurring, average blurring, bilateral blurring, median blur, gaussian
noise, salt and pepper noise, raise blue channel, raise green channel, raise red channel, raise hue, raise intensity and
raise saturation. Few of the frames of the augmented videos in the same above-mentioned order are shown in Fig. 9.
Whereas we applied the following audio augmentation techniques: white noise, time stretch, pitch scale, random gain,
invert polarity, Gaussian noise, high pass filter, low pass filter, pitch shift, shift, bandpass filter, band-stop filter, high
shelf filter, low shelf filter, peaking filter, gain transition, Gaussian noise and pitch shift, pitch shift and high pass
filter, Gaussian noise and high pass filter. Some samples of Mel-Spectrograms images of augmented audios in the
same above-mentioned order are presented in Fig. 10.



Fig. 9. Frames of the augmented videos.

Fig. 10. Mel-spectrograms of augmented audios.



Evaluation on FakeAVCeleb for video-only modality

To evaluate the performance of our model for video-only modality on FakeAVCeleb dataset, we performed two
experiments using three subsets (FaFv, RaFv, and RaRv) of the dataset. These subsets are further split into training and
testing sets. In the first experiment, we used FaFy subset videos as fake and R.Ry as real videos and trained the model
on the extracted frames of training set videos of these subsets. For the second experiment, we used RaFv subset videos
as fake and RaRy videos as the real ones to train the model. The trained models are then evaluated on the videos present
in their respective testing sets. The results are shown in Table 3. From the results, it is seen that the video model has
achieved an accuracy of 90.94% on FaFv and 85.29% on RaFv subsets illustrating that the model has the capability to
detect the identity swapped and reenacted fake videos accurately. Both subsets contain the face-swapped visual content
generated through different techniques i.e., DeepFaceLab [40], FaceSwap [41], and FSGAN [42]. Moreover, in FaFy
subset, the mouth region is also modified to make it synced with the fake audio using the facial reenactment technique
Wav2Lip. For both experiments, the TPR and TNR indicated that the video model predicts the fake videos more
accurately as compared to the real ones.

Evaluation on FakeAVCeleb for audio-only modality

To check the effectiveness of DST-Net for audio-only modality, we also performed two experiments using subsets
(FaFv, FaRy, and RaRv) of FakeAVCeleb dataset. Both experiments are different in terms of subsets used to train the
model. For the first experiment, we used F.Fyand R.Ry whereas, for the second experiment, we used F.Ry and RaRy
subsets. For both experiments, we computed the Mel-Spectrograms of each video using python library librosa and
stored them as 3-channel images. The proposed model is then trained and assessed on the extracted Mel-Spectrograms
and the results are presented in Table 3. It can be observed from Table 3 that the audio model attained 98.75% and
94.5 % accuracy on F.Fy and FaRy subsets, respectively indicating that our audio model can accurately detect the fake
voices generated using TTS systems. TPR is 99.62% and TNR is 97.72% on F.Fy subset. Similarly, for FaRv subset,
TPR is 92% and TNR is 97%. These TPR and TNR values clearly indicate that our audio model can accurately detect
both the fake and real Mel-Spectrograms. The precision score on F.Fy and FaRy subsets is 98.06% and 96.84%,
respectively indicating the outstanding fake video prediction quality of the model. In both subsets, the fake audio is
generated using a real-time voice cloning method named Multispeaker Text-to-Speech Synthesis (SV2TTS) [39]. The
fake speech generated via SV2TTS lacks the human voice naturalness and cannot isolate the reference audio prosody
from the speaker's voice. The outperforming results indicate that our model captures these differences between real
and synthetic voices with high detection accuracy. And also proves our hypothesis that the analysis of Mel-
Spectrogram can be effective for detecting deepfakes audio.

Evaluation on FakeAVCeleb for audio-video modality

To analyze the robustness of our unified model for both the audio and video modalities, we performed two experiments
using all subsets (FaFv, FaRv, RaFy, RaRv) of the FakeAVCeleb dataset. For these experiments, training sets are the
same as for video-only and audio-only modality experiments. But the testing sets contain the videos along with their
respective Mel-Spectrogram images. In the first experiment, we utilized the video and audio model trained on Fa.Fy
and RaRv subsets of the FakeAVCeleb dataset and evaluated our unified framework on the testing set containing the
F.Fy subset videos along with its Mel-Spectrograms. For the second experiment, the video model is trained on RaFy
and RaRy subsets whereas, the audio model is trained on F.Ry and RaRy subsets. The trained audio and video models
are then evaluated on the testing set containing the fake videos and their respective Mel-Spectrograms from the testing
set of both subsets (FiRy and RaFy). Table 3 shows the results of these experiments. Our unified framework achieved
the detection accuracy of 92.59% on FaFv and 93.41% on RaFv + FaRy subset. The model achieved the TPR of 99.95%
for subset F.Fv and 94.35% for R.Fv + FaRy subset. Overall, the results shown in Table 3 indicate that our unified
framework is more robust in detecting fake videos as compared to the real videos, in the case of the FakeAVCeleb
dataset.

As can be seen from Table 3, the model trained on different subsets when evaluated on their respective test sets, most
of them show exceptional TPR while some exhibit outstanding precision, so the F1-Score is shown in Table 3 for a
more thorough analysis of the proposed model on different subsets in terms of precision and recall. Except for one
experiment in video-only modality, F1-Score is above 90% on all experiments performed for video only, audio only,
and both modalities, indicating that our proposed model performs well on the FakeAVCeleb dataset. It can also be
seen from Table 3 that for audio-video modality experiment, the detection accuracy and F1-Score for F.Fy subset are
slightly lower than the other subset. This may be due to the reason that the facial reenactment technique such as
Wav2Lip is applied on video in FaFyv subset to generate more realistic videos having the facial features modified and
lip movement synchronized with the fake audios.



Table 3 Performance evaluation on FakeAVCeleb dataset.

Models Testing Subsets Accuracy | AUC TPR TNR Precision F1-Score
Real | Fake (%) (%) (Recall) (%) (%) (%)
(%)
Video only RaRy | FiFy 90.94 90.65 | 94.57 86.03 88.61 91.49
RiRy | RiFy 85.28 85.09 | 94.80 7545 80.04 86.79
Audio only RaRy | FiFy 98.73 98.66 | 99.62 97.72 98.06 98.83
RaRy | FaRy 94.5 94.5 92 97 96.84 94.36
Both (Audio and | RiRy | FiFy 92.59 92.01 | 99.95 84.08 87.91 93.55
video) R.Ry | RiFy+FRy 93.41 84.67 | 94.35 75 98.67 96.46

Evaluation on FakeAVCeleb for angled or side-posed faces

To evaluate the performance of our proposed model specifically on the angled or side posed faces, we designed an
experiment where we gathered the videos having the side pose of a person from the FakeAVCeleb dataset. After that,
we evaluated our trained model on these videos to show their effectiveness on the angled faces. Our model classifies
the videos accurately with 100% accuracy and AUC which indicates that DST-Net has the capability to accurately
detect the angled fake faces if present in the videos while detecting the deepfakes. Few samples of the angled face
from the videos are shown in Fig. 11.

In the extreme side-posed faces, only half region of the face is visible resulting in the loss of significant facial features
information and thus making it more difficult to detect the synthetic face accurately. Our proposed DST-Net captures
the global long-term dependency and dense hierarchical features which enable them to correctly classify the side-
posed faces. Dense layer encodes fine details about the input image and swin transformer in the network architecture
extracts the feature maps that have global aware attributes and also establishes the relationship between different
image features. Due to these facts, our proposed model is able to detect the fake videos having the extreme side posed
faces of the person. Furthermore, there are certain frames in the video when the person's face is at an angle or is
looking at the camera rather than being severely side-posed at all times. Such frames can also aid in the reliable
identification of real or fake videos with extreme side-facing poses.

Fig. 11. Angled or side-posed faces.
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5.5.2. Performance evaluation on Celeb-DF dataset

To evaluate the performance of our proposed model on a diverse, challenging, and only visual manipulated dataset,
we designed an experiment to analyze the performance of our model on the Celeb-DF dataset. For this purpose, we
split the dataset into training and testing sets. In order to train the DST-Net model, we extracted the faces from the
frames of the videos present in the training set. From the training set, 20% of the extracted faces are used for validation
purposes during the training. After training the model, we evaluated it on the videos present in the testing set. The
model was able to achieve an accuracy of 73.05% and an AUC score of 75.64% on the testing set videos. However,
TPR and TNR are 72.07% and 79.21%, respectively. Moreover, the model attained the F1-Score of 82.20% and a
precision of 95.65%. The low detection performance on Celeb-DF (v2) dataset is attributed to the fact that this dataset
is highly unbalanced, and the dataset is also biased towards the male gender as only 30% of the dataset is comprised
of females. Moreover, the dataset has less statistical difference between the real and fake videos. As there is no
mismatch of skin color and illumination difference in the swapped fake faces, which may also affect the detection
performance.



5.5.3. Performance evaluation on ASVSpoof-2019 LA dataset

In order to investigate the model behavior for a large-scale and standard audio-only dataset, we conducted an
experiment where we evaluated the performance of our proposed DST-Net on the ASVSpoof-2019 dataset. More
specifically, we used the Logical Access subset of the ASVSpoof-2019 dataset for the assessment of our model. We
first generate the Mel-Spectrograms image of the audios present in the training, development, and evaluation set as
our model demands images as input. Then, we trained the model on these Mel-Spectrograms using the training and
development sets. The development set is used for validation purposes. After that, the trained model is evaluated on
the Mel-Spectrograms present in the evaluation set. On ASVSpoof-2019 LA dataset, our model attained the EER of
0.13, accuracy, and AUC of 86.77% of 88.34%, respectively. The LA dataset contains the fake speech samples
generated through voice cloning and synthetic speech generation methods. The fake audio generated using VC systems
is more difficult to detect as compared to the audio generated via TTS systems. VC systems utilize the human voice
as a source, conversely, TTS methods generate synthetic speech using digitized text. So, VC systems generated voice
can sustain the prosodic characteristics of a person that the synthetic speech may lack, making the fake speech more
realistic. In the presence of such challenging audio samples, the results indicate the effectiveness of our proposed
model while detecting the spoofed audios generated through different VC and TTS techniques.

5.6. Comparison with state-of-the-art methods on FakeAVCeleb dataset

To justify and measure the effectiveness of our unified framework, we performed a comparative analysis of our DST-
Net with the existing state-of-the-art methods on the FakeAVCeleb dataset. We compared the accuracy of our DST-
Net with the methods reported in [25, 36, 35] for video only, audio only, and both (audio and video) modalities. The
results of the proposed and existing models in terms of accuracy are provided in Table 4. The proposed method
outperforms the existing contemporary models by attaining the highest accuracy of 90.94% for video-only modality,
98.73% for audio-only, and 92.59% for both (video and audio) modalities. In the case of video-only modality, Meso-
4 is the worst performing model while the VGG16 performed the second best. For audio-only modality, our proposed
DST-Net outperforms the second-best model with an average accuracy gain of 22%. XceptionNet is the worst
performer for the detection of deepfakes via both modalities (audio and video). However, POI-Forensics is the second-
best performing model for audio-visual deepfakes detection, but it has the limitation of requiring reference real video
of the target subject at the testing time. We can conclude from this comparative analysis that the proposed framework
outperforms the existing models and is capable of accurately identifying the deepfakes video via detecting
manipulation in both streams (audio and video). It is important to mention that our proposed DST-Net also performed
better over the baseline models for deepfakes detection using audio-only and video-only modalities of the
FakeAVCeleb dataset.

Table 4 Comparison with existing models on FakeAVCeleb dataset.

Models Accuracy (%)
Audio and Video Modality | Video only Modality | Audio Only Modality
XceptionNet [35] 43.94 73.06 76.26
Meso-4 [35] 45.93 43.15 50.36
EfficientNet-BO [35] | 63.18 59.64 50
Mesolnception-4 [35] | 72.87 77.88 53.96
VGG16 [35] 78.04 81.03 67.14
VFD [36] 81.52 -- --
POI-Forensics [25] 86.6 -- --
DST-Net (proposed) | 92.59 90.94 98.73

5.7. Comparison with existing methods on ASVSpoof-2019 LA dataset

To investigate the performance of our model against the existing acoustic features extraction methods on the LA
dataset, we evaluated our DST-Net with state-of-the-art (SOTA) methods [14,15,24,43]. The purpose of this analysis
is to show that the Mel-Spectrograms can also be worthwhile for fake audio detection besides the acoustic features
used for classifying synthetic speech. The performance comparison based on EER is shown in Table 5.

From Table 4, it is observable that our model achieves the EER of 0.13%, which is 0.61% less than the second-best
performing model. However, our model performs almost equivalent to our prior method [14] and shows that it is
remarkably good at the detection of logical access attacks. According to our expectations, DST-Net shows incredible
classification performance and proves that Mel-Spectrograms provide good performance compared to conventional
acoustic feature extraction for the detection of fake audios. Thus, it can be concluded that the image visualization of
audios in terms of Mel-Spectrogram can also be effective for classifying fake audios.



Table S Performance comparison with existing SOTA methods.

Method EER (%)
Hassan et al. [24] 3.05
Javed et al. [43] 0.75

Arif et al. [15] 0.74
Javed et al. [14] 0.1
Proposed Model 0.13

5.8. Cross corpora evaluation

We performed cross corpora evaluation to evaluate the generalization ability of our proposed unified framework,
which is further subclassified as cross-set evaluation and cross-dataset evaluation. In cross-set evaluation, the models
are trained on one subset and tested on another subset of the FakeAVCeleb dataset. Whereas in cross-dataset
evaluation, models trained on subsets of the FakeAVCeleb dataset are used to test the videos of other datasets (i.e.,
PDD, WLD). The main goal of cross corpora evaluation is to analyze the potential and applicability of our proposed
unified model in real-world scenarios for deepfakes detection.

5.8.1. Cross-set evaluation

The cross-set evaluation experiment is carried out to demonstrate the generalizability of the proposed model on
different subsets of the Fake AV Celeb dataset. For this purpose, experimental protocols are kept the same as mentioned
for audio-video modality experiment in Section 5.5.1. This experiment is conducted in two phases. In the first phase,
audio and video models (trained on F.Fy subset) are used to evaluate the testing test containing the videos and
respective Mel-Spectrograms of RaFv and F.Rv subsets. Similarly, in the second phase, the audio model (trained on
FaRy subset) and video model (trained on R.Fy subset) are used to assess the testing set containing the videos and Mel-
Spectrograms of FaFy subset of the Fake AV Celeb dataset. The results of the cross-set evaluation are provided in Table
6.

From Table 6, it is seen that when evaluated on R.Fy + FaRy subset, the video model and audio model (trained on FaFy
subset) have attained the precision of 99.29%. However, the video model (trained on R.Fyv) and audio model (trained
on F.Ry subset), when tested on F.Fy subset, have achieved a TPR of 99.42%. F1-Score is reported in Table 6 for
better understanding as one unified model achieves high recall and the other attains high precision. The F1-Score of
87.29% and 88.36% on RaFv+ FaRy and FuFy subsets, respectively demonstrates that the model is quite effective at
detecting the deepfake videos. Table 6 shows that under cross-set evaluation settings, the proposed framework
achieved an AUC score of 83.43% on R.Fy + FaRy subset and 84.87% on F.Fy subset. The difference in the accuracy
and AUC for RaFy + FaRy testing subset is attributed to the fact that the class imbalance problem exists as the fake
videos are greater in number as compared to the real ones. The results highlight that the proposed unified framework
has great generalization aptitude for detecting deepfakes videos under a cross-set evaluation setting. It can also be
inferred that the models trained on the videos having manipulation in both streams can reliably detect the videos
having either fake audio or fake visual content.

Table 4 Cross-set evaluation on FakeAVCeleb dataset.

Training Subsets Testing Subset Accuracy AUC TPR TNR Precision F1-Score
(%) (%) (%) (%) (%) (%)

Video Model: F,F, R.Fy + F.Ry 78.41 83.43 77.87 89 99.29 87.29

Audio Model: F.Fy

Video Model: R.F, F.F, 85.94 84.87 99.42 70.32 79.52 88.36

Audio Model: F,R,

5.8.2. Cross-dataset evaluation

The main purpose of the cross-dataset evaluation is to analyze the generalizability of the unified framework over
completely different datasets. In this experiment, the audio and video models are trained on the FaRy and Ra.Fv subsets
of the FakeAVCeleb dataset, respectively. Experimental protocols for training the audio and video models are the
same as mentioned in Section 5.5.1. The trained models are then evaluated on unseen datasets in three phases. In the
first phase, videos of different subsets of WLD are tested. In the second phase, models are evaluated on the PDD
dataset. In the third phase, we applied different augmentation techniques to the PDD dataset and then tested the
augmented videos. The cross-dataset evaluation results are shown in Table 7.



Table 5 Cross-dataset evaluation.

Training Subsets Testing Subset Accuracy (%) AUC (%)

Video Model: R.Fy WLD - FaceSwap 73.98 74.52

Audio Model: F,R, WLD - Imposter 61.74 60.15
WLD- LipSync 69.32 53.69
PDD - full 78.12 78.12
PDD-aug-full 62.34 62.34

The real-world scenarios for the fake videos are included in the WLD and PDD datasets. In the FaceSwap subset of
the WLD dataset, a more realistic fake video is created by swapping the face of the leader with their respective
imposter. The accuracy of 73.98% on such realistic fake videos indicates that our proposed unified model is capable
of accurately detecting the totally unseen real-world face-swapped videos. On Imposter and LipSync subsets, the
accuracies are expected to be lower because the Imposter subset involves the real person impersonating himself as a
leader making it harder for the model to identify the impersonated video. However, the LipSync subset consists of lip-
synced videos of Obama in which only the mouth area is modified according to the speech. Therefore, it is more
challenging for the model to detect manipulated videos due to very little semantic change in the lip-synced video. It
is also important to note that, in all these subsets the audio stream is not manipulated. The accuracies of 61.74% and
69.32% on Imposter and LipSync subsets demonstrate that the proposed model performed fairly well on these subsets
in a cross-dataset setting. The PDD dataset contains the fake videos of Donald Trump and Joseph Bidden which are
lip synchronized according to the impersonated audio. The audio in these videos is not synthesized using any fake
audio generation techniques, however, voice-over actors are used for producing impersonated audio making them
more difficult to detect. Both of the leaders appear to be saying things that they have not really spoken about. Our
unified model detects such misleading content with an accuracy of 78.12%. As the PDD dataset is very small, so we
utilized augmentation techniques such as noise, blurring, etc., to extend it by making it more diverse and challenging
which causes a decrease in the detection accuracy of our model on the augmented videos of the PDD dataset.
Additionally, all the datasets used in cross-dataset evaluation are diverse and distinct from each other in terms of
illumination conditions, video capturing devices, and manipulation techniques. It can be concluded from the detection
accuracies reported in Table 7 that our model is generalizable and can be used to reliably detect real-world fake videos.

6. Conclusion

In this paper, we have presented a unified framework that is able to detect the deepfakes via identifying the
manipulation in audio and visual streams of a video. We proposed a novel unified DST-Net model that accurately
detects both audio and video deepfakes. DST-Net is evaluated on a challenging and diverse FakeAVCeleb dataset for
audio only, video only, and both (audio and video) modalities. Our proposed model not only identifies the deepfakes
videos accurately but also outperforms the contemporary models. To show the effectiveness of our model for visual-
only and audio-only manipulation, we evaluated it on challenging Celeb-DF and ASVSpoof-2019 LA datasets. We
have also conducted a cross corpora evaluation of our unified framework on FakeAVCeleb, PDD, and WLD datasets
to demonstrate its efficacy and applicability in real-world scenarios. Extensive experimentations show that the
proposed approach is effective and robust in detecting deepfakes videos having manipulation in both the audio and
visual streams. In future research, we intend to further improve the performance of our model for cross-corpora
evaluation.
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