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Abstract-Brain aneurysm detection is challenging due to
multiple types of aneurysms, different image modalities, small
size, and occurrence of aneurysms on multiple locations.
Majority of brain aneurysm detection systems target only single
class of aneurysm (i.e. saccular). Additionally, the detection of
aneurysm location is largely unexplored. To overcome these
challenges, we propose a robust two-stage brain aneurysm
diagnostic system capable of detecting both forms of aneurysm
(saccular and fusiform) along-with the detection of location. The
first stage involves the aneurysm detection where vasculature
extraction is performed initially using the morphological and
enhancement operations. Next, histogram statistics are employed
to obtain the potential aneurysmal region of interests (Rols) that
are later reduced using our proposed automated technique. We
proposed a 28-D feature vector consisting of shape and texture
features to represent these Rols and used them to train a KNN
classifier for aneurysm detection. The second stage focuses on the
location detection where part of the vasculature with identified
aneurysm is cropped and segmented via watershed segmentation.
The distance of aneurysm to these segments is calculated and
three smallest least distanced Rols are identified. Next, we
employed our 6-D shape features to represent these Rols and fed
to another KNN classifier for location detection. We achieved an
accuracy of 95% for aneurysm detection and 82.6% for location
detection on a dataset of 209 digital subtraction angiography
(DSA) images acquired from the Henry Ford Hospital. These
results signify the effectiveness of our system for aneurysm
detection along-with its location identification.

Index Terms —Digital subtraction angiography, Cerebral
Fusiform aneurysm, intracranial saccular aneurysm.

1. INTRODUCTION

Intracranial Aneurysms (IA), also termed as cerebral
aneurysm, is a condition whereby a patient’s blood vessels
develop a balloon like outward swelling. This happens mainly
due to the weakness in the walls of the blood vessels. When
aneurysms become oversized, they tend to rupture because of
increased blood pressure and cause the aneurysmal
Subarachnoid Hemorrhage (aSAH), which represents a
situation where blood flows into the cerebra of the patient
causing serious damages like severe disability to spontaneous
death. The two major shapes of IA are saccular and fusiform.

Automated aneurysm detection using neuroimaging
modality is a challenging task because of the diverse
equipment used, nature of angiogram technique, high intensity
imaging, availability, appearance, and location of cerebral
aneurysms. Existing computer aided detection techniques have
employed various hand-crafted or deep learning-based
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features to develop the brain aneurysm diagnostic systems. In
[1], Haralick features were used to train the multilayer
perceptron classifier to detect the saccular aneurysms.
Moreover, geometrical features were used to determine the
risk of rupture. In [2], a semi-automatic deep learning-based
approach was presented for aneurysm detection on 2D DSA
images. This method requires manual processing of images for
vessel extraction. In our prior work [3], an automated
framework (ISADAQ) based on morphological, anatomical,
and textural analysis was proposed to identify the saccular
brain aneurysms on the DSA images. This framework also
presented a semi-automated method for quantification of
rupture prediction. This method is well suited for invasive
DSA image modality only and efforts are required to extend
this method on other image modalities. In [4], a system based
on the creation of an ellipsoid convex enhancement (ECE)
filter was presented to enhance the aneurysms from the images
while suppressing the loops and overlays. In [5], authors
focused on the enhancement of blob like areas from the
images with the aim of detecting the small sized aneurysms
from the vessels. The extensive research shows size of
aneurysm alone is not a predictor of its rupture. For example
[6-7] suggest that smaller aneurysms do also rupture resulting
in aSAH. Findings of research work [6] concluded that 41% of
the patients suffered aSAH with aneurysms as small as less
than Smm. The treatment decisions of intracranial aneurysm
are not straightforward, and the risks of treatment have to be
balanced cautiously against the risk of rupture [7]. However,
the prediction of aneurysm rupture, based on combination of
risk factors is a complex problem, and a reliable clinical
computer-assisted tool for its diagnosis does not exist.
However, there exist strong evidence that size ratio (IA size
divided by parent vessel diameter), correlates strongly with A
rupture status [8]. Therefore, early identification of aneurysms
along with its location (vessel)is crucial for to determine the
probability of aneurysm rupture.

Most of existing computer aided image analysis works [1-
5] have focused only on Saccular aneurysm detection without
detecting its arterial location. Thus, to overcome the
challenges of aneurysm of different type along with its
location detection, we propose a robust brain aneurysm
diagnostic system capable of effectively detecting the
aneurysm of multiple types (i.e. saccular, fusiform) and
location of aneurysm. According to the best of our knowledge,
this is first attempt to detect both saccular and fusiform
aneurysms along with their arterial location. For aneurysms
detection of both types, we proposed a 28-D features-set
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consisting of shape and texture features (Table I) and used
them to train the KNN for classification. Similarly, we

TABLE I
FEATURES — SHAPE AND TEXTURAL

Shape Features Texture Features

Circularity GLCM

Major Axis Length /

Migxor Axis Length ¢ Contrast

Mean Intensity Energy

Orientation Homogeneity

Eccentricity Correlation

EquivDiameter Haralick

EulerNumber Variance

Extent Sum Average

Location Sum Variance

Major Axis Length Sum Entropy

Minor Axis Length Entropy

Convex Area Difference Variance

Area Difference Entropy

Perimeter Information Measure of Correlation I
Diameter Information Measure of Correlation II

MaximalCorrelationCoefficient

proposed a 6-D shape features-set (Table I) and train the KNN
for location detection. The main contributions of the proposed
work are as follows:

eWe propose an automated brain aneurysm detection

capable of identifying both the aneurysmsand their
cite/arterial location (e.g. Middle Cerebral Artery, Anterior
Communicating Artery).

II. METHODOLOGY

This section provides a discussion of the proposed method
for detection of the aneurysm and its location. The block
diagram of the proposed system is shown in Fig. 1.

A. Aneurysm Detection

1) Pre-Processing and Vasculature
Segmentation:Effective vasculature extraction is essential for
accurate aneurysm detection. The presence of noise and other
degradations make the vasculature segmentation a challenging
task. Therefore, we applied various enhancement and
morphological operators to improve the image quality before
retrieving the vasculature from the image. The input colour
image is transformed into a grayscale image. Next, histogram
equalization is performed to enhance the image contrast. After
contrast enhancement, image is upscaled by a factor of
c=max/mean. Due to the presence of impulse noise, median
filter is applied followed by the morphological closing
operation to suppress the noise in the images shown in Fig.1.

Based upon the histogram counts of grey level values, the
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Fig. 1. Intracranial Saccular and Fusiform Aneurysm with Location Detection System

system of both saccular and fusiform shapes based on the
fusion of shape and texture features using DSA images.

e We present a novel brain aneurysm diagnostic framework

first six non-zero values are identified, and nine mask images
are obtained based upon the individual and combination of
these values. The details of these masks are as follows:
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Mask 1: Iy(x,y) >G;.

Mask 2: Iy(x,y) >G,.

Mask 3: Iy(x,y) >= G, and [(x,y) <= G;.
Mask 4: Iy(x,y) >= G; and I(x,y) <= G,.
Mask 5: Iy(x,y) >= G4 and I(x,y) <= Gs.
Mask 6:1,(x,y) >= Gs and [,(x,y) <= Gg.
Mask 7: I(x,y) >= G, and [y(x,y) <= G4.
Mask 8: Iy(x,y) >= G3 and [y(x,y) <= Gs.
Mask 9: Iy(x,y) >= G, and Iy(x,y) <= Gg.
where Iy(x,y) represents the black pixels in the image and
G,represents n™ non zero grey level values.

2) Region of Interest (Rol) Segregation and Reduction:
Nine masks’ images are applied to the original images and
only those regions are retained whose area >= 0.1. This helps
in initial reduction of the negative Rols (See Fig. 2). These
Rols are then manually segregated into positive and negative
categories for the entire dataset. In our case, we obtained 297
positive Rols and 39,225 negative Rols from 209 DSA images
of our dataset. We extracted our28-Dfeatures for positive Rols
and identified their min and max range. We retained those
negative Rols that lie within the range of positive Rols that
helped us to reduce the count of negative Rols to 8,235.

3) Rols Classification:We extracted the 28-D features
from the negative and positive Rols. To address the class
imbalance issue, half of negative Rols i.e 4086 is used against
297 positive Rols. We employed our features to train a KNN
for classification of aneurysm and non-aneurysm regions.
Nine Threshold-based Images

9

Fig. 2. Rol Segregation Using Nine Thresholds
B. Location Detection

1) Image Cropping, Masking and Segmentation: Location
detection initially focuses on the identification of regional
boundaries of aneurysm from the positive Rol image I;(x,y).
Based upon these values, a horizontal rectangular cropping
I«(x,y) of the vasculature is performed with aneurysm as the
centroid. Later this rectangular cropped vasculature is up-
scaled by a factor c=max/mean, de-noised via median filter,
binarized, distance transformed and watershed segmented
I,(x,y) based upon the location of water basins. There is a
need to separate these water segments from the aneurysm. For
this purpose, the resultant image I.(x,y)is obtained by
superimposing the positive Rol image cropped 5 pixels more
than the actual width and height of the positive Rol I4(x,y) on
Ly(x,y).

2) Watershed Segments Segregation and Reduction:
Initially all watershed segments are manually segregated to
positive and negative Rols. 6-D shape features for positive
Rols are extracted and their range in terms of max and min

values is identified. The negative Rols are reduced by
retaining only those Rols whose 6-D shape feature values lie
within this range. Depending upon the centroid location of the
positive aneurysm Rol, three smallest in terms of perimeter
and least distanced Rols are identified, as shown in Fig.1.

3) Rols Features Extraction and Classification: A total
of 334 positive Rols are manually identified in a dataset of
171 images with positive aneurysm on 5 locations i.e Anterior
Communicating Artery (ACOM), Basilar, Internal Carotid
Artery (ICA),MCA, Posterior Communicating Artery
(PCOM). A subset of 6-D shape features is extracted for these
Rols. We performed the up-sampling by using the vertical and
horizontal flips (see Table II) to balance the count of each type
of location Rols. We employed our 6-D shape features to train
the KNN for detecting the location of the aneurysm.

TABLE II
DETAILS OF UP-SAMPLING DATASET
Ol New Up-sampling Operation
Type Rol Rol
Count Count OrigRol Hori Flip Vert Flip
1 ACOM | 131 131 v - -
2 Basilar | 25 75 v v v
3 ICA 45 135 v v v
4 | MCA 83 166 v v -
5 PCOM 50 150 v v v
III. EXPERIMENTS AND RESULTS
A. Dataset

The availability of the dataset containing DSA images of both
the saccular and fusiform brain aneurysm was a challenging
task. We acquired 209 phase-contrast digital subtraction
angiograms of patients from Henry Ford Hospital, Bloomfield
Hills, MI, USA (IRB approval No. 11254). Patients’
angiograms and other clinical data was anonymized before
analysis. The data consisted of 158 angiograms with a single
saccular aneurysm, 31 angiograms with a single fusiform
aneurysm, and 20 angiograms without any aneurysm.

TABLE III
ANEURYSM DETECTION RESULTS ON FLIPPED ROIS
Total To_tal True True Accuracy
PR [ | o | come | 09
1 | ACOM 116 1757 115 1757 | 99.94661
2 | Basilar 21 170 21 164 96.85864
3 | ICA 27 451 27 451 100
4 | MCA 68 772 68 772 100
5 | PCA 18 115 18 115 100
6 | PCOM 25 311 25 307 98.80952
7 | PICA 10 61 7 57 90.14085
8 | Supraclinoid 12 69 9 64 90.12346
9 | Fusiform-ACOM | 13 112 12 112 99.2
10 | Fusiform-MCA 21 372 21 372 100
11 | Fusiform-PCA 18 115 18 115 100
12 | Fusiform-PICA 6 98 4 96 96.15385

B. Performance Evaluation of Aneurysm Detection

For the aneurysm detection part, we segregated the overall
Rols into two categories i.e positive and negative Rols. There
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was a total of 297 positive Rols and 39,217 negative Rols. The
negative Rols were automatically reduced in a way that only
Rols lying within the max and min range of 28-D features of
positive Rols were retained. This helped in reducing the count
of negative Rols to 8,213. This count was still large, so half of
these negative Rolsi.e.4,383 were randomly selected and used
for training purpose. We extracted the features of both the
positive and negative Rols and fed to the classifier. We
obtained an overall accuracy of 95%. It is also important to
mention that we observed an improved classification accuracy
when tested our model on the flipped positive Rols. More
specifically, we achieved an accuracy of 97.9% thus, achieved
a performance gain of 2.9%. Table III shows the results when
tested with flipped positive Rols. From Table III, we can
observe that we achieved optimal results (100%) on 3
locations of saccular aneurysm out of 8. Similarly, we
achieved remarkable results on fusiform aneurysm on 2
locations out of 4. We observed a performance drop in
saccular aneurysm detection for Posterior Inferior Cerebellar
Artery (PICA) and Supraclinoid locations, and ACOM and
PICA locations of fusiform aneurysm detection. This might be
due to less aneurysm samples on those locations that reduces
the accuracy of our system on these locations.

C. Performance Evaluation of Aneurysm Location Detection

For the aneurysm location detection, a rectangular image
containing the aneurysm at the center was cropped from the
original image and later processed using the operations like
binarization, distance transform and watershed segmentation.
The obtained segments are automatically reduced based upon
the max and min range of 6-D shape feature values of positive
Rols. Our system automatically identifies and classifies the
three smallest Rols in terms of perimeter and distance (least
distanced Rols) (See Fig.3).We achieved an overall accuracy
of 82.6%. Table IV shows the results when tested with flipped
positive Rols. From the results, we can observe that we
achieved 100% true positives (TP) rate on fusiform
aneurysms, whereas, we also obtained 100% TP rate on 3
locations of the saccular aneurysm. On the MCA and PCOM
arteries, we observed a slight performance drop due to some
low-resolution images.

TABLE IV
RESULTS — ANEURYSM LOCATION DETECTION — FLIPPED ROIS
Rol Count Tue False — Y%age
Type (Vert- +ve ve True
Hori Flip) | Count | Count Positive
1 ACOM 131 131 0 100%
2 Basilar 25 25 0 100%
3 ICA 45 45 0 100%
4 MCA 83 81 2 97%
5 PCOM 50 49 1 98%
6 Fusiform-ACOM 7 7 0 100%
7 Fusiform-MCA 27 27 0 100%
Original Image Aneurysm Detection Location Detection
Original: MCA
Predicted: MCA: 25% ICA: 25%  ACOM: 50%
. B =

-

Fig.3. Final Results (a) Original Image (b) Detected Aneurysm (c) Detected
Location

IV. CONCLUSION

This paper has presented an automated brain aneurysm
diagnostic framework capable of identifying both types of
aneurysms i.e. Saccular and Fusiform along with the
identification of 5 types of locations i.e ACOM, Basilar, ICA,
MCA, PCOM, where aneurysm may be located. We employ
various morphological and enhancement operations during
preprocessing to reduce the noise and other degradations.
Thus, improves the quality of input DSA image and makes our
system capable of effective vascular extraction, which leads to
effective aneurysm and location detection. For aneurysm
detection, we employed 28-D (Shape and Textural) features-
set to train a KNN classifier and obtained an accuracy of 95%.
Moreover, we achieved a performance gain of 2.9% when
tested our model on the flipped positive Rols. More
specifically, we obtained an accuracy of 97.9%. For location
detection, we employed another KNN classifier trained upon
6-D shape features-set and attained 82.6% accuracy. We
would like to highlight that the proposed system is the first
attempt to develop an automated brain aneurysm diagnostic
tool that is capable of not only detecting two classes of
aneurysms but also the location of identified aneurysm. In the
future, we plan to extend our system to support MRA and
CTA image modalities, and also to improving the accuracy of
our system.
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