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ABSTRACT

Voice-controlled systems (VCSs), a new class of cyber-physical systems (CPS), and Internet of Things
(IoT) devices are increasingly employing smart speakers such as Google Home and Amazon Alexa,
and other voice assistants to enable management of various remote operations at home and offices.
However, these smart speakers and hence VCSs are susceptible to various voice spoofing attacks i.e.
replay, cloning, etc., in a non-network environment as well as in a multi-hop network setup. These
diverse spoofing threats on VCSs require an urgent need to develop a robust spoofing countermeasure
for VCSs capable of detecting a variety of voice spoofing attacks. This paper presents a spoofing
countermeasure that uses novel acoustic ternary patterns (ATP) with Gammatone cepstral coefficients
(GTCC) features to counter the voice spoofing attacks on VCSs in single- and multi-hop network en-
vironments. Our experimental analysis demonstrates that the proposed ATP features when combined
with GTCC can effectively detect the distortions in replayed samples, unnatural prosody present in the
cloned samples, and both distortions and unnatural patterns of stress and intonation in cloned-replay
samples. The proposed ATP-GTCC features are used to train the SVM for development of a spoof-
ing countermeasure to cater all possible forgeries. Experimental results based on highly diversified
ASVspoof 2019 and VSDC datasets signify the effectiveness of the proposed countermeasure for reli-
able detection of 1¥'- and 2"-order replay, cloning, and cloned-replay attacks.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The feature of smart speakers (e.g. Amazon Echo, Google
Home) to control various homej/office appliances and actua-
tors etc., is making them an essential component of Internet
of Things (IoT) and Cyber-physical systems (CPS). Although
smart speakers and other voice assistants, acting as interface
of voice-controlled systems (VCSs), have transformed the IoT
and CPS domains, they have also introduced a variety of new
threats. For example, voice spoofing attacks on VCSs may help
impostors to retrieve sensitive data from healthcare or finan-
cial applications, to commit financial frauds [1], or to gain un-
wanted remote access of smart homes and offices [2]. Addition-
ally, Covid-19 crisis is expected to accelerate the use of voice as
an authentication mechanism for many businesses and service
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industry, as other authentication mechanism (e.g. use of key-
pad, finger scan, etc.) could cause transmission of infection.

Existing voice spoofing attacks, also known as voice presen-
tation attacks [3] i.e. replays, cloning, etc., can easily be used
to spoof the VCSs. Voice replays are generated by playing the
recorded voice of the actual speaker with the intention of de-
ceiving the VCS. Voice cloning, which refers to creating a syn-
thetic voice of the target speaker, can easily be generated due to
the advancement of sophisticated deep learning algorithms.

Various spoofing countermeasures (CMs) have been pro-
posed to detect either replay, cloning, or both attacks. In
[4], constant Q-transform cepstral coefficients (CQCC) were
used, whereas, in [5], constant-Q variance-based octave coeffi-
cients and constant-Q mean-based octave coeflicients were used
with Gaussian mixture model (GMM) for replay attack detec-
tion. Some spoofing CMs [6-7] have examined high-frequency
bands of the audio using different features including the am-
plitude and frequency-based modulation [6] and various cep-
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stral coefficients-based features [7] to train the GMM for replay
detection. These methods [6-7] provide better detection per-
formance over the baseline model [4], however with increased
features computation cost. Existing replay spoofing CMs [8-9]
have also used deep learning models. In [8], MFCC and CQCC
features were used with hybrid classification model consisting
of GMM, deep neural network and ResNet to classify between
the genuine/bonafide and replay signal. In [9], deep generative
variational auto-encoder framework was employed for replay
detection.

Existing techniques [10-16] have used different magnitude-
and phase-based features for voice cloning/synthesis detec-
tion. In [10-11], relative phase shift features were used,
whereas, cochlear filter cepstral coefficients (CFCC) and
CFCC-instantaneous frequency features were used in [12] to
train the GMM for voice cloning detection. In [13], inverted
constant-Q coeflicients, inverted CQCC, inverted C-Q block
coefficients, and inverted C-Q linear block coefficients were
employed for speech synthesis detection. In [14], a non-
learning technique based on higher-order spectral features was
employed for voice cloning detection. Although, this method
[14] achieves better performance, but has a high features com-
putation cost. In [15], an end-to-end ensemble model was pro-
posed to detect the replay and cloning attacks. Light convolu-
tional neural network based on angular margin-based softmax
activation function was proposed in [16] for voice replay and
cloning attacks detection.

In our prior work [4], we proved that the latest VCSs are
susceptible to replay attacks and can be exploited to cause se-
vere damages in cyber-physical systems e.g. home and of-
fice automation control. Further, we also validated in [4] that
Google Home and Amazon Alexa devices are vulnerable to
multi-order replay attacks even in multi-hop/chained scenarios.
Fig.1(b) shows chained VCS scenario that generate multi-order
replays when input is human speaker or its cloned voice. It oc-
curs when one VCS replays the genuine or synthetic voice to
next connected one in the chain. For example, a hacker uses
his cellphone to replay the recorded voice command of human
speaker e.g.“Alexa, turn off the heat” (1st-order replay) on the
baby monitor (VCS-2) that is accessed by invading the wireless
LAN using tools i.e.Aircrack. Next, the voice command is re-
played (2nd-order replay) to the VCS of targeted person’s home
(VCS-3) to turn off the heat. Unlike traditional applications
which consider spoof detection as a binary problem, we con-
sider this as a multiclass problem for chained VCSs, because,
it is possible for a certain VCS, which itself has robust binary
spoof detection mechanism, to receive cloned or playback voice
from other VCSs that are either compromised or prone to voice
spoofing attacks due to a weak or absent spoof detection mech-
anism. Thus, the received audio will be considered genuine
and the countermeasure will ultimately fail for all the chained
devices. Moreover, this paper introduces a new voice spoofing
threat i.e. cloned-replay that can also be generated in multi-hop
scenarios. We generated the 1¥'- and 2"¢-order cloned-replay
recordings using the cloning samples of ASVspoof 2019 LA
dataset. Similarly, our analysis shows that these VCSs are also
vulnerable to voice cloning attacks. As shown in Fig. 1(a), a
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cloned voice command is directly played on the VCS to gen-
erate a single-order voice cloning attack to control the lighting
system.

Literature shows that countermeasures trained with one class
of spoofing attacks fail to generalize well for other classes of
spoofing attacks [25-26]. For example, systems trained with
speech cloning show poor performance for replay detection
[27]. Additionally, the existing methods are not designed for
detection of multi-order attacks either. Therefore, there is need
to develop model which can capture microphone induced dis-
tortions in the replay/playback samples, differentiate high-order
distortions when same voice is played back in the chain, and
the natural pauses of human model of speech production are
missing from the synthetic voice generated by deep learning
based speech cloning algorithms. To meet these requirements
of VCSs which are connected via single- or multi-hop IoT
and CPS networks, we propose a robust spoofing countermea-
sure that can reliably detect the various single-order and multi-
order (i.e. chained) voice spoofing attacks (i.e. replay, cloned,
and cloned-replay) using the proposed acoustic-ternary patterns
(ATP). The human speaker’s speech has dynamic character-
istics due to speaker induced variations, whereas, the cloned
voice generated by various state-of-art deep learning-based
speech synthesis algorithms [24] contains unnatural prosody
such as emphasis on the wrong syllables or words, absence of
natural pauses, lack of unvoiced consonants, unnatural pitch,
and small percentage of mispronunciation. This introduction of
deviation in patterns of rhythm and sound in synthesized speech
calls for capturing time-domain specific aspects in generated
speech. Therefore, we propose ATP features to better capture
these dynamic attributes of speech variations between genuine
and synthesized speech. Moreover, replay samples contain the
microphone induced distortions, and cloned samples contain
robotic "whine’ which can be effectively captured by both the
ATP and the gammatone cepstral coefficients (GTCC) due to
their robustness against the environmental noise. Therefore, we
fused the ATP with the GTCC features to develop a univer-
sal countermeasure to detect multi-order replay, cloning, and
cloned-replay forgeries. Moreover, since these distortions in-
crease in higher-order replays therefore our proposed features
can provide even better detection performance in such scenar-
i0s. The main contributions of this paper are as follows:

e We propose a novel acoustic ternary pattern features for
audio representation to differentiate spoofed samples from
the bonafide.

e We present the groundwork for a spoofing countermeasure
capable of detecting the multi-order replay, cloning, and
cloned-replay attacks using the proposed ATP-GTCC fea-
tures.

e We present a new voice spoofing attack (cloned-replay)
that can be generated by replaying the cloned audios.

e We performed rigorous experimentation against existing
state-of-the-art voice spoofing countermeasures to indicate
the effectiveness of the proposed method.
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Fig. 1. Voice spoofing attacks scenarios.

2. Proposed Method

This section provides a discussion on the proposed spoofing
countermeasure to detect multiple voice spoofing attacks. The
architecture of our spoofing countermeasure is shown in Fig. 2.

2.1. Features Extraction

To better capture the traits of multiple voice spoofing attacks,
we propose a novel ATP feature descriptor and fused it with
GTCC to represent the audio. The details of ATP and GTCC
features extraction are provided in the subsequent sections.

2.1.1. Acoustic Ternary Patterns (ATP)

This paper presents a novel features representation scheme,
acoustic ternary patterns for audio signals representation. For a
given audio signal X = YO[m)=" . > we partition it into M non-
overlapping frames Y[m] having frame length of L. Let Y[ ]
represents the central sample having N* neighboring samples,
and k represent the neighbor index against the central sample.
To compute the acoustic ternary code for each frame, we calcu-
late the magnitude difference of the signal between Y[ ] and
neighboring samples (N¥) by applying the threshold 7. To com-
pute the value of ¢, we employ a linear search scheme where we
initialize the 7 to zero and optimize it to search the convergence
point in the range of 0 to 1. For our experiments, # = 0.00015
provides the most accurate results. Next, we quantize the sig-
nal values in the range of +¢ around Y[ j] to zero, whereas the
values above Y[ j] + ¢ are quantized to 1 and below Y[j] + ¢
to 1. Hence, we get a three valued ATP function as:

-1, NF=(@?[jl-1<0,
FIN YO[1,0) =30, (YO[j]l+1) < N < (YO[j] - 1)
+1, NE—(YO[j1+t>0)

ey

where F(N*, Y?[j],1) represents the speech signal using a
three valued ternary code/pattern. Later, we split the patterns
(F) into upper (F"P) and lower (F lowy patterns. We retain
all values quantized to +1 in (F"P) and replace all remaining
values with zeros as follows:

1, F(N5,YO[1,0 = +1

. (2
0, Otherwise

F P (NS YO, 0 = {

For lower patterns, we retain all values quantized to -1 in
F'" and replace the other values with zeros as:

; 1, FWNK YO0 = -
FP(NK YOl =14 ’ ’ 3
( L) 0, Otherwise ®)

Thus, we can represent the ternary patterns as:
s=1 - pu (@) @ry
4 | FP[(Y Y
TRy = {Zm Ze e ol 2”.
Zr_le =L F (YO 51 = YO

“4)

Next, we obtain the uniform patterns for acoustic features
representation as uniform patterns represent primitive infor-
mation and hold maximum attributes of the signal over non-
uniform patterns [17]. More specifically, we computed the up-
per uniform and lower uniform ternary patterns from the F*7(.)
and F"(), and transformed these binary representations of
patterns into decimal form as follows:

k=7

UTP?) = > FPNE Y010 x 24 5)
k=0
k=17

U(TPZOW) — Z FI()W(N]C’ Y(i)[j], 1) X 2k (6)

k=0



ATP Features Extraction

7 \Y
T4 ) } N N 20DATP |\
H Audio Frames Ana:l}ysls ‘ ATP Features Features ||
: ) . . Histogram Binning :
| o ATP = [H || Hig” A |
g 1 o7 oo Jior ||| Jer Jor [owt ] 2|

1 » 3 1
1 1
; I *mm :
i Y] l Yim] B
!
i ) i) ||, ||
i < @ A18 i
1 19 1
:( Three-value Ternary Pattern Generation N\ Upper and Lower Uniform Patterns ) A20 !
1 —— 1
H Ternary Codes up 1
1

T A I N i
i Binary Codes » U(TPIDW)mm--m- Decimal Valud i
1 1
1 up —

Wb - EIOEDE | (4 DODDDoDD ;
1 1
1 low Elow —_ 1

F
| oaonnnn | | SDDnnommn— e |
4
D g
"' GTCC Features Extraction 13D-GTCC \\|
1 1
| ( Windowing B ( LOG ) é DCT A Features :
1 1 1 ot
: : 1 1 1 G1 :
> 1 1
: > :Mw : M 1 W I W m “LwM'/rVA/\AN\N‘VVWV* — GZ i
1 1 1 1 i
H 1 1 1 1 ; G o !
: o 1 1 i
i ‘ [
: ( 1
H } FFT GTCC . H
1 . 1
i ——— » [ |
i W‘WMW Gy, H
1
1 G13 1
i \_ ]
\ ———————
N e e i o o o e o T o o S B B S S B o B T S B B B S B B B o S B o B T S B B S B B B B B B o B o o T B o P o o T T T e -
g S (S (L L W L W L L L L L N\
K Voice Replay Detectlon ) \|
[ N I
i |1 Bonafide ) 33D ATP- ||
i ercc |1
1 |1 1s- Order Replay _Features !
1
i A ||
nd_
ik 2nd. Order Replay A, !
L S S 1
' Voice Cloning Detection !
e |
| onafide . 1
o ‘ Ay | |t
]
: 1 Cloned Azo :
N G 1
|| === == e - - - - - - - 1 1
|| - - Cloned-Replay Detection _ _ G ||
| r i
H Cloned !
[} .
! : 1st- Order Cloned G H
i Replay 12 !
M 2nd- Order Cloned J \ G13 J i
[N Replay ]
‘\ \d = e e e e e - ,l

Fig. 2. Architecture of proposed method.

where the U value of the ternary patterns represents the number
of bitwise transitions (0/1 changes) in the pattern, and those
having minimal discontinuities are denoted as uniform, i.e.
00000000 and 01000000 patterns have U values of O and 2,
respectively. During histogram encoding, we can considerably
reduce the histogram bins by assigning all non-uniform patterns

to a single bin without losing significant information. For this,
we computed the histogram of TP* and TP", and assigned
one histogram bin for each uniform pattern, placing all non-



uniform patterns in a single bin. Histograms are calculated as:

0
Hr(TP',b) = Z (TP, b) @)
g=1
0
Hg"(TP".b) = ) (T P{™.b) ®)
g=1

where b represents the histogram bins corresponding to the uni-
form TP codes, and 6(.) is the Kronecker delta function. After
performing extensive experiments, our analysis showed that the
first ten uniform patterns (both upper and lower) were enough
to capture all traits available in the genuine and spoof samples,
as we didn’t achieve any performance improvement when used
more patterns. Thus, we concatenated the 10-D HT;',” and 10-D
HTéi,’W to create a 20-D ATP features descriptor as:

ATP = [Hr\P||Hr 0" ©)

ATP Features Analysis. As the voice interfaces of VCSs and
IoT devices are vulnerable to replay, cloning, and cloned-replay
attacks, therefore, an effective countermeasure should consider
the following facts during audio representation: (1) The micro-
phone adds a layer of non-linearity due to inter-modulation dis-
tortions, which induce the detectable patterns [19], thus must be
exploited to develop an effective countermeasure, (2) The sub-
sequent recordings of the same recording thus introduce higher-
order non-linearities and make an audio signal more distin-
guishable, (3) Voice cloning algorithms also introduce artifacts.
Thus, all these observations can be utilized to develop a noise
resistant and robust countermeasure for real-time applications.
As the proposed ATP approach performs the pattern analysis
of the audio, thus effectively captures these artifacts to distin-
guish the spoofed signals from the bonafide. To suppress the
additive noise, upper and lower threshold values are also con-
sidered with the central sample Y’ O[j]lin M r that also lowers the
probability of wrong ternary code generation. Moreover, due to
less complex features, fast model retraining is possible; thus,
makes our approach effective for applications involving auto-
matic speaker verification with continuous user enrollment.

2.1.2. Gammatone Cepstral Coefficients (GTCC)

GTCC features [18] can be used to capture the distortions
in the frequency scale of the audio. Since the voice spoofing
datasets contain audio samples collected in noisy environments,
we need a descriptor capable of effectively capturing the traits
of spoof signals under noisy conditions. GTCC is more robust
to noise [18] over other spectral features i.e. MFCC, therefore,
we used GTCC features along-with ATP for audio represen-
tation. To extract the GTCC features, we computed the fast
Fourier transform (FFT) of the audio. Next, we computed the
energy of each sub-band E, by applying the gammatone filter
bank on the FFT of signal. The logarithm of each energy band
E, is computed, and discrete cosine transform is employed to
extract the GTCC features as:

2 & nz 1
GTCC, = J B Z log Ey cos[—(p = 5)] (10)
z=1
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where E,, Z, and P represents the signal energy for nth spec-
tral band, number of gammatone filters and number of GTCC
respectively. We obtain a 13-dimensional GTCC vector using a
window length of 30ms and overlap factor of 20ms. Finally, we
fused the 13D GTCC features with the 20D ATP features to cre-
ate a 33D ATP-GTCC feature vector to effectively capture the
attributes of genuine and spoof samples. The implementation
of the proposed features can be found at [20].

2.2. Classification

For classification, we employed the multi-class SVM classi-
fier to distinguish between the bonafide, 1%-order, and 21d_order
spoofing samples. More specifically, replay and cloned-replay
spoofing are detected for both 1%- and 21d_order, whereas, for
voice cloning we trained a binary SVM classifier to detect the
genuine and cloned samples. We selected the SVM in the pro-
posed method due to the following reasons: 1) SVM has a
property of convex optimization which helps to achieve opti-
mal results via global minimum rather than the local minimum.
2) SVM is also effective in case of imbalance dataset. Since
the ASVspoof 2019 dataset contains more spoofing samples
as compared to the bonafide ones (Table I), therefore, SVM
was considered to handle the data imbalance problem for the
ASVspoof 2019 dataset. We used the proposed features to train
the SVM for classification. We tuned the SVM using different
kernels and achieved best results with higher-order polynomial
kernel (cubic). Therefore, we used the SVM tuned with the cu-
bic kernel. We tuned two parameters during the experiments.
The penalty parameter a.k.a box constraint was set to 1, and the
kernel scale a.k.a gamma was set to 1.4, as we achieved optimal
results with these parameter settings.

3. Experimental Results and Discussion

3.1. Dataset

We evaluated the performance of the proposed spoof-
ing countermeasure on our voice spoofing detection corpus
(VSDC) [21] and the ASVspoof 2019 dataset [22]. VSDC
consists of two main collections, one contains the 1*'- and 2"-
order replays against the genuine samples, whereas the second
contains the 1%~ and 2"%-order replays of cloned samples. Our
VSDC replays collection is more diverse in comparison of the
ASVspoof 2019 corpus as VSDC contains both the 1%- and 2-
order replay samples against the genuine samples. The details
of the VSDC can be found at [21]. ASVspoof 2019 dataset
comprises of two collections i.e. PA (replay) and LA (cloning);
both collections contain the training, development, and evalua-
tion sets. The training set contains 54000 and 25380 samples;
the development set contains 33534 and 24844 samples; and
the evaluation set contains 153522 and 71933 samples; from
the PA and LA collections, respectively.

3.2. Performance Evaluation of Proposed Countermeasure

Performance of our voice spoofing countermeasure is eval-
uated using the min-tDCF, equal error rate (EER), precision,
recall, fl-score, and accuracy. For replay attacks, we evalu-
ated the results on both VSDC and ASVspoof 2019 datasets.



Table 1. Dataset partition for experiments.

Dataset Training Testing

Sample set No. of samples | Sample set No. of samples
ASVspoof-LA Train set 25,380 Evaluation set 71,933
ASVspoof-PA Train set 54,000 Evaluation set 1,53,522
VSDC 70% 8397 30% 3603

Whereas, we used only the ASVspoof 2019 corpus to evalu-
ate the performance of speech synthesis and VSDC for cloned-
replay detection. For VSDC, we used 70% of the samples
for training and remaining 30% for testing, whereas, for the
ASVspoof 2019 dataset, we used the training set to train the
model and the evaluation set for testing. Moreover, we em-
ployed ten-fold cross validation scheme for model training. The
details of dataset partitioning for experiments are shown in Ta-
ble 1.

3.2.1. Performance Evaluation of ATP and GTCC Features

We designed a multi-stage experiment to investigate the per-
formance of ATP, GTCC, and ATP-GTCC features fusion for
voice spoofing detection. First, we used the proposed ATP fea-
tures to train the SVM on VSDC and ASVspoof 2019 datasets
individually and results are shown in Table 2. Next, we repeat
the same with GTCC features. Finally, we employed the ATP-
GTCC features for voice spoofing detection. From the results
(Table 2), we can observe that the ATP provides better detec-
tion performance over GTCC, however, the fusion of ATP and
GTCC outperforms both the ATP and GTCC features alone.
Therefore, we employed the ATP-GTCC features with SVM to
detect the replay, cloning, and cloned-replay attacks.

3.2.2. Results of the Proposed ATP-GTCC Features for Multi-
ple Voice Spoofing Detection

We designed an experiment to select the best performing ker-
nel for our SVM. For this purpose, we used the proposed ATP-
GTCC features to train the SVM using different kernels on both
VSDC and ASVspoof 2019 datasets. The results are shown in
Table 3. We can observe from the results that the SVM with
higher-order polynomial kernel (cubic) provides better classifi-
cation performance over other kernels. More specifically, we
obtained an EER of 0.6% and 1.1% on VSDC and ASVspoof
datasets respectively for replay detection. Whereas, achieved an
EER of 0.1% and 0.09% for cloning and cloned-replay detec-
tion respectively. This shows the effectiveness of higher-order
polynomial kernel for detecting the distortions in 1%~ and 2"-
order spoofing samples. Radial basis function (RBF) kernel
achieves second best results by a small margin. Whereas, SVM
tuned with linear kernel performs the worst. Thus, we claim
that SVM tuned with the cubic kernel using our ATP-GTCC
features effectively classifies the genuine and spoof samples.

3.2.3. Performance comparison of proposed features with dif-
ferent features-combinations

To justify the effectiveness of the proposed features

for spoofing detection, we generated different feature-

combinations of ATP and spectral (i.e. ATP-GTCC, ATP-

MFCC, and MFCC-GTCC). For classification, we used the

SVM tuned with cubic kernel and results are shown in Table
4. From these results, we can observe that the proposed ATP-
GTCC features outperform other features by achieving the low-
est min-tDCF and EER. More specifically, we achieved an min-
tDCF and EER of 0.04 and 0.6% on VSDC, whereas, 0.069 and
1.1% on ASVspoof 2019 dataset respectively. Similarly, we
achieved the lowest min-tDCF and EER of 0.015 and 0.1% for
cloning, whereas, 0.014 and 0.09% for cloned-replay attacks. It
is important to mention that the fusion involving ATP features
achieved better results over spectral features fusion (i.e. MFCC-
GTCC). This shows the effectiveness of ATP features for voice
spoofing detection.

3.2.4. Performance comparison of proposed features on differ-
ent classifiers

To measure the effectiveness of SVM over other classifiers
for voice spoofing detection, we performed a comparative anal-
ysis of SVM against other classifiers such as k-nearest neigh-
bor (KNN), naive bayes, decision trees, ensemble bagged trees,
and BiLSTM deep learning model. For this experiment, we
employed the proposed features to train all of these classifiers
separately and results are reported in Table 5. We followed
the same experimentation protocol as done for other experi-
ments. For the ASVspoof 2019 dataset, we used the training
set to train the model and evaluation set for testing. whereas,
for VSDC, we used 70% of the samples for training and rest
30% for testing. From the results obtained after performance
comparison of our proposed features with different classifiers,
we observed that SVM performs best and Naive Bayes is the
worst in terms of min-tDCF and EER for all three spoofing cat-
egories. More specifically SVM achieves the lowest min-tDCF
and EER of 0.04 and 0.6%, 0.01 and 0.15%, and 0.006 and
0.09%, whereas Naive Bayes achieves the highest min-tDCF
and EER of 1.728 and 27%, 0.172 and 2.8%, and 0.092 and
1.41% for replay, cloning, and cloned-replay spoofing detec-
tion respectively. Therefore, we argue that SVM can reliably
be used to classify the bonafide and spoof samples.
We also observed that all machine learning classifiers achieved
reasonably well for replay attacks detection, however, performs
remarkably well for voice cloning and cloned replay detection.
The main reason of this significant difference in performance
between replay and cloning spoofing attacks is the lack of high-
quality cloning audio samples in ASVspoof 2019 dataset. This
also highlights the need to develop more high-quality cloning
videos that can make this problem reasonably challenging.

3.2.5. Performance comparison with existing countermeasures

To evaluate the significance of the proposed countermeasure
for voice spoofing detection, we compared it with existing state-
of-the-art voice spoofing countermeasures [5, 13, 15, 16, 23].



Table 2. Performance evaluation of ATP, GTCC, and ATP-GTCC features.

Spoofing Type Dataset Features min-tDCF EER% Precision% | Recall% Accuracy%
ATP 0.194 2.9 96.8 97.4 97
VSDC GTCC 0.497 7.5 914 93.5 924
Replay ATP-GTCC 0.04 0.6 99.3 99.3 99.4
ATP 0.24 34 96.4 96.6 96.5
ASVspoof GTCC 0.561 8.4 91.2 92 91.5
ATP-GTCC 0.069 1.1 99.25 99.25 99.2
ATP 0.06 0.9 99 99.1 99
Cloning ASVspoof GTCC 0.42 6.1 93.8 94.3 94
ATP-GTCC 0.015 0.1 99.9 99.9 99.9
Cloned- ATP 0.072 1.2 98.6 99 98.9
Replay VSDC GTCC 0.29 4.1 96 96 96
ATP-GTCC 0.014 0.09 99.9 99.9 99.9
Table 3. Voice spoofing detection of the proposed method on different SVM Kkernels.
Spoofing Type Dataset SVM Kernel EER% Precision% | Recall% F1-Score% Accuracy%
Linear 18 82 82 82 82.2
Quadratic 1.16 98.3 98.3 98.3 98.3
VSDC Cubic 0.6 99.3 99.3 99.3 994
Replay RBF 0.6 99.3 99.3 99.3 994
Linear 2 93.47 93 93.23 93.1
. Quadratic 1.5 98.5 98.5 98.5 98.8
ASVspoof  —F e I 99.25 99.25 99.25 99.2
RBF 1 99 99 99 99.1
Linear 0.5 994 99.5 99.45 994
. Quadratic 0.3 99.6 99.8 99.7 99.6
Cloning ASVspoof  —F e 0.1 99.9 99.9 99.9 99.9
RBF 0.15 99.8 99.9 99.85 99.9
Linear 0.44 99.6 99.6 99.6 99.6
Cloned- -
Replay VSDC Quafiratlc 0.2 99.8 99.8 99.8 99.7
Cubic 0.09 99.9 99.9 99.9 99.9
RBF 0.15 99.8 99.9 99.85 99.8
Table 4. Comparative analysis of different features combination for voice spoofing detection.
Dataset Features Replay Cloning Cloned-Replay
min-tDCF EER% min-tDCF EER% min-tDCF EER%
MFCC-GTCC 0.63 9.25 0.21 3.1 0.19 2.8
ASVspoof ATP-MFCC 0.108 1.75 0.037 0.5 0.031 0.35
ATP-GTCC 0.069 1.1 0.015 0.1 0.014 0.09
MFCC-GTCC 0.49 7.33 - - - -
VSDC ATP-MFCC 0.089 1.33 - - - -
ATP-GTCC 0.04 0.6 - - - -

The results obtained on the ASVspoof 2019 dataset are shown
in Table 6. For PA set, [S] performs worst and [23] performs the
best, whereas, the proposed method also achieved remarkable
results with min-tDCF of 0.069 and EER of 1.1%. Similarly,
for LA set, [13] performs worst, whereas, the proposed method
performs best and achieved min-tDCF of 0.015 and EER of
0.1%. From this analysis, we can conclude that our spoofing
countermeasure can reliably be used to detect a variety of voice
spoofing attacks.

3.2.6. Performance comparison with existing features

To evaluate the significance of ATP and our fused ATP-
GTCC feature descriptor, we compared it against the compar-
ative features for voice spoofing detection. We selected those

features that was used for both PA and LA attacks detection.
More specifically, we compared our proposed features against
the baseline (CQCC and LFCC), and CQT-LFCC-DCT fea-
tures using the SVM classifier. Performance obtained on the
ASVspoof 2019 dataset is presented in Table 7. The proposed
features achieved the best results by obtaining min-tDCF and
EER of 0.069 and 1.1% for PA, and 0.015 and 0.1% for LA col-
lection of ASVspoof 2019 dataset over other features. LFCC
features perform second best and achieves the min-tDCF and
EER of 0.762 and 29.44% for PA, and 0.769 and 29.75% for LA
collection. Whereas, CQCC performed the worst and achieved
the highest min-tDCF and EER of 0.982 and 36.82% for PA,
and 0.985 and 36.98% for LA. From these results, we can con-
clude that our proposed features outperform the existing state-



Table 5. Detection performance of different classifiers with proposed features.

Dataset Classifiers Replay Cloning Cloned-Replay
min-tDCF EER% min-tDCF EER% min-tDCF EER%
Decision Trees 1.13 16.33 - - - -
Naive Bayes 1.728 27 - - - -
VSDC KNN 0.045 0.75 - - - -
Ensemble bagged trees | 0.115 1.83 - - - -
BiLSTM 0.832 13.1 - - - -
SVM 0.04 0.6 - - - -
Decision Trees 1.01 15 0.32 5 0.05 0.75
ASVspoof Naive Bayes 1.264 19.75 0.172 2.8 0.092 1.41
2019 KNN 0.432 6.75 0.128 2 0.032 0.5
Ensemble Models 0.549 7 0.03 0.4 0.048 0.75
BILSTM 0.813 12.7 0.14 22 0.007 0.1
SVM 0.064 1 0.01 0.15 0.006 0.09

Table 6. Performance comparison with existing countermeasures for voice spoofing detection.

Spoofing Type Features min-tDCF EER%
Yang et al. [5] (CMOC/A-DNN) 0.208 11.447
Yang et al. [5] CVOC/A-DNN 0.178 9.269

PA Monteiro et al. [15] (LFCC+ProdSpec+MGDCC-CNN) 0.07 2.015
Lavrentyeva et al. [16] (CQT+LFCC+DCT-LCNN) 0.0122 0.54
Yamagishi et al. [22] (CQCC-GMM baseline) 0.2454 11.04
Yamagishi et al. [22] (LFCC-GMM baseline) 0.3017 13.54
Todisco et al. [23] (Deep Features) 0.0096 0.39
Proposed Method (ATP+GTCC-SVM) 0.069 1.1
Yang et al. [13] (ICQC+ICQCC+ICBC+ICLBC-DNN) 0.237 10.44
Monteiro et al. [15] (LFCC+ProdSpec+MGDCC-CNN) 0.198 9.09

LA Lavrentyeva et al. [16] (CQT+LFCC+DCT-LCNN) 0.051 1.84
Yamagishi et al. [22] (CQCC-GMM baseline) 0.236 9.87
Yamagishi et al. [22] (LFCC-GMM baseline) 0.212 11.96
Todisco et al. [23] (Deep Features) 0.0069 0.22
Proposed Method (ATP+GTCC-SVM) 0.015 0.1

of-the-art features for voice spoofing detection. These results
indicate the significance of our ATP-GTCC features for ef-
fectively capturing the dynamic speaker induced variations in
bonafide signal, algorithmic artifacts in cloning algorithm and
microphone distortions in the replay signal.

3.3. Discussion

To develop a robust method to detect various voice spoof-
ing/presentation attacks is an important requirement for appli-
cations of countermeasure/presentation attack detectors and au-
tomated speaker recognition systems. Literature shows that
countermeasures trained with one class of spoofing attacks fail
to generalize well for other classes of spoofing attacks [25-26].
For example, systems trained with speech cloning show poor
performance for replay detection [27]. The findings of the first
two ASVspoof challenges also reveal that the playback voice
recording in a new replay session is difficult to detect [3]. To ad-
dress this important problem, this paper lay the foundation for
developing spoofing detector to detect speech synthesis, single-
and multiorder-playback, and cloned-replay attacks for VCS by
exploiting novel features descriptor i.e. Acoustic Ternary Pat-
tern and fused with GTCC features.

The human speech contains dynamic speaker induced varia-
tions in comparison to synthetic voice. For example, the natural

pauses of human model of speech production are missing from
the synthetic voice generated by deep learning based speech
cloning algorithms [24]. The human model of speech produc-
tion has 8,000 to 40,000 data points per second. On the con-
trary, synthetic voice sounds similar and does have very low
standard deviation in terms of data points compared to human
models. From the results (Table 2) of our first experiment (Sec-
tion 3.2.1), we can clearly observe that ATP features achieve
remarkable results in terms of detecting the replay, cloning, and
cloned-replay attack. Specifically, ATP performs best for voice
cloning detection which proves our hypothesis that ATP has the
capability to accurately capture the dynamic attributes of hu-
man’s speech variations that are absent in the synthetic speech.
Further, generative approaches, such as Wavenet and Tacotron,
find it hard to differentiate between general noise and speech in
a training dataset resulting in noise packaged in as part of the
cloned voice. From the results it is clear when ATP is com-
bined with GTCC, the overall detection performance is further
increased as this robotic *whine’ is nicely captured by GTCC.

From the results (Table 2), we can observe that the ATP-
GTCC features provide superior detection performance for re-
play detection on both the VSDC and ASVspoof 2019 datasets.
Our results also prove our second hypothesis that the micro-
phone induced distortions in the replay/playback samples can



Table 7. Performance comparison with existing features on SVM for voice spoofing detection.

Spoofing Type Features min-tDCF EER%
CQT-LFCC-DCT [16] 0.748 28.19

PA CQCC baseline [22] 0.982 36.82
LFCC baseline [22] 0.762 29.44
Proposed ATP-GTCC 0.069 1.1
CQT-LFCC-DCT [16] 0.751 28.85

LA CQCC baseline [22] 0.985 36.98
LFCC baseline [22] 0.769 29.75
Proposed ATP-GTCC 0.015 0.1

be effectively captured through ATP-GTCC features. These dis-
tortions become further amplified when same voice is played
back in the chain, thus our model more accurately captures n"-
order replay samples.

It is important to mention that we have also introduced a
novel voice spoofing attack (cloned-replay) which is unknown
to research community. Since the resultant signal of cloned re-
play contains properties of both replay and cloned voice, thus
ATP-GTCC accurately identifies patterns of cloned replay at-
tack. Performance evaluation on a variety of voice spoofing
attacks using two publicly available and diverse datasets (i.e.
ASVspoof 2019 and our own VSDC) signify the effectiveness
of our unified method for voice spoofing detection in VCS.

4. Conclusion

The proposed voice spoofing countermeasure is the first at-
tempt to address the issue of multi-order voice spoofing attacks,
synthetic voice attack, and cloned replay attacks. We proposed
ATP-GTCC features to better capture the distortions of 1*'- and
2"_order spoofing samples, absence of the dynamic attributes
of human’s speech variations in synthetic voice and presence
of robotic noise in it, and cloned replay attacks. The pro-
posed model was evaluated on samples of VSDC and ASV2019
datasets which were recorded under variety of environmental
conditions, diverse recording and play back equipment, and
various state-of-the-art deep learning based generative models.
Additionally, we introduced a novel voice spoofing threat i.e.
cloned-replay that can also be used to spoof the VCSs. We
demonstrated through experiments that our proposed features
can reliably be used to detect multiple voice spoofing attacks.
In the future, we plan to improve our countermeasure more ro-
bust on cross dataset scenario.
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