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STRACT

e controlled systems (VCS) in Internet of Things (IoT), speaker verification systems, voice-based
etrics, and other voice-assistant-enabled systems are vulnerable to different spoofing attacks i.e.,

ay, cloning, cloned-replay, etc. VCS are not only susceptible to these attacks in a non-network en-
nment, but they are also vulnerable to multi-order spoofing attacks in networked IoT. Additionally,
pfakes with artificially generated audio pose a great threat to the all systems having voice-inter-
s. Most of the existing countermeasures against these voice spoofing attacks work for only one

cific attack (e.g. voice replay) and fail to generalize this for other classes of spoofing attacks.
itionally, generalization is also crucial for cross-corpora evaluation. Thus, there exists a need to

elop a unified voice anti-spoofing framework capable of detecting multiple spoofing attacks. This
k presents a unified anti-spoofing framework that uses novel (ATCoP-GTCC) features to combat
variety of voice spoofing attacks. The proposed novel acoustic-ternary co-occurrence patterns (AT-
) encode the co-occurrence of similar patterns between the center and neighboring samples. Our

eriments demonstrate that ATCoP can better capture the microphone induced distortions in replays,
atural prosody and algorithmic artifacts in cloned samples, and both the distortions and artifacts
loned-replays including compression on multi-hop attacks in the spoofing samples. The perfor-
ce of ATCoP could be further enhanced by the Gammatone cepstral coefficients. To evaluate the
ctiveness of the proposed anti-spoofing system for multi-order replay and cloned-replay attacks
ction, we created a diverse voice spoofing detection corpus (VSDC) containing multi-order replay
cloned-replay audios against the bonafide and cloned audio recordings, respectively. Experimen-
esults obtained on VSDC, ASVspoof 2019, Google’s LJ Speech, and YouTube deepfakes datasets
strate the effectiveness of the proposed system in terms of accurate detection for a variety of voice
ofing attacks.
words:Acoustic ternary co-occurrence patterns, AI for multimedia security, AI for voice-based

etrics in IoT, Anti-spoofing against multiple attack vectors, Deepfakes, Voice spoofing detection.
© 2022 Elsevier Ltd. All rights reserved.

oduction

rt Speakers (SS), such as Google Home, Alexa, etc., that
e various Voice Controlled Systems (VCSs) of Internet
gs (IoT) and other voice assistants (e.g. Siri, Cortana,
re expected to transform our homes, businesses, and ve-
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il: ali.javed@uettaxila.edu.pk (Ali Javed),
@oakland.edu (Khalid Mahmood Malik), hafiz@umich.edu
alik), aun.irtaza@uettaxila.edu.pk (Aun Irtaza)

hicles to smart ones due to the advancement of voice reco
tion system, high accuracy of knowledge-driven question
swering engines, and integration of smart speakers with
ous cyber-physical/intelligent systems. Additionally, autom
speaker verification (ASV) technology has progressed in re
years and its applications are growing in diverse real-world
thentication scenarios involving both the logical and phy
access (Sahidullah et al.(2019)).

In recent years, we have witnessed a tremendous evolu
in voice biometrics from a basic security feature to be an
abler for remote communications (Hrabi et al.(2020)). A
2 published by Elsevier. This manuscript is made available under the Elsevier user license
/www.elsevier.com/open-access/userlicense/1.0/

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0957417422002330


2

cial Int
voice b
voice c
lik et a
preven
and att
inform
ing), an
biomet
pared t
recogn
deploy
is expe
ever, V
vacy th
sentatio
(Sahidu
ture, th
smart s
online
genera
genera
devices
al.(201
Tensor
WaveN
easing
fake), a
vital co
also clo
potenti
ploit b
has bee
a comp
transfe
(2019)
al.(201
forgeri

VCS
attacks
We hav
Amazo
VCS a
environ
tacks (M
attack i
play th
replay)
ing too
speech
person
shows
tacks, a
more d
bine th
them. S
on VC

aly-
brid
n in
here
ned-
d on
that

etec-
SV
ex-
are

mul-
cent
roup
s of
ar-

with
per-

tion-
ning
ulti-
ther
uni-
ning
radi-
task
that
ther
able
ctor.
and

fing
cate-
ulti-
ustic
cep-
en-
due

eech
lack
nun-
and
de-

hus,
le of

the
e the

the
AT-
hus,
ture

ribu-

P to
(also
elligence (AI)-enabled secure emerging applications use
iometrics for access control (e.g. physical facilities),
ontrolled systems in IoT at home and office setup (Ma-
l. (2019)), transaction authentication (e.g. toll fraud

tion, bank wire transfers), monitoring (e.g. remote time
endance logging), information retrieval (e.g. customer
ation for call centers, forensics (e.g voice sample match-
d so on. Since voice as an authentication mechanism in

rics security has less potential to spread infections com-
o other contemporary authentication methods (e.g. face
ition, finger printing, password entry using keyboard),
ment of ASV and VCS during the COVID-19 pandemic
cted to rise in future generation expert systems. How-
CS and ASV systems pose significant security and pri-
reats as they may be vulnerable to various voice pre-
n attacks e.g. replay, cloning, voice conversion, etc.
llah et al.(2019); Malik et al. (2019)). In the near fu-
ese threats are expected to rise due to proliferation of
peakers and VCS, integration of ASV systems in various
and physical access scenarios, and ease of voice attack
tion on them. For example, voice replay attacks can be
ted easily because of the access of high-quality recording

and non-requirement of technical skills (Sahidullah et
9)). Likewise, the availability of modern-day tools like
flow or Keras, publicly-available trained models such as
et (Mwiti (2019)), and low-cost computing machines is
the creation of AI-synthesized speech (a type of deep-
lso known as cloned voice. Voice cloning is becoming a
mponent of deepfakes where a source speaker’s voice is
ned besides the video. These deepfakes have immense

al to destroy public trust and empower criminals to ex-
usiness deals or family phone calls. Recently one case
n reported where the robbers used the synthetic voice of
any executive’s speech to convince their employees into
rring a massive amount to a confidential account (Harvel
). Therefore, unlike existing approaches like Agarwal et
9) that focus on visual forgeries detection only, audio
es should also be detected.

s in IoT are more vulnerable to voice-based spoofing
compared to traditional devices with voice interfaces.
e demonstrated that various smart speakers, particularly
n smart devices with drop-in feature (Metz (2021)), and
re not only vulnerable to replay attacks in non-network
ment but are also susceptible to multi-order replay at-

alik et al. (2019)). An example of a multi-order replay
s shown in Fig. 1(a) where an intruder uses his phone to
e recorded speech “Alexa, turn off the heat” (first-order
on the baby monitor by hacking the wireless LAN us-
ls such as Aircrack (Aircrack-Ng (2021)). Next, this
is replayed (second-order replay) to the SS of targeted

’s home to switch off the heat. Secondly, our analysis
that VCS in IoT domain are prone to voice cloning at-
nd we emphasize that the speech cloning attacks will be
estructive in IoT environment when intruders will com-
eir social engineering skills in the process of generating
hown in Fig.1(b) is an example of a voice cloning attack

S where a cloned speech is played on VCS through the

SS to open the garage door. Thirdly, our experimental an
sis confirms that VCS in IoT settings are also prone to a hy
of cloned and replay attacks—cloned-replay attacks. Show
Fig.1(c) is an example of a cloned-replay attack on VCS w
a cloned speech is replayed on SS-2 via SS-1 (1st-order clo
replay attack). Later, this 1st-order cloned-replay is replaye
SS3 via SS-2 to generate the 2nd-order cloned-replay attack
is then used to open the garage door.

Most of the research has focused on developing robust d
tors to detect either voice replay or cloned voice attacks on A
(Witkowski et al. (2017); Nagarsheth et al. (2017)). These
isting binary-class-based (Bonafide vs Spoofed) detectors
not ready to fully combat the emerging threat of different
tiple attacks on ASV systems. For example, results of re
work show that spoofing detectors trained with a certain g
of spoofing attacks fail to generalize better for other group
spoofing attacks (Goncalves et al. (2017); Korshunov M
cel (2016)). In other words, anti-spoofing systems trained
voice cloning based spoofed speech often offer a degraded
formance for replay detection (Paul et al. (2017)). Addi
ally, no effort has been made to address the replay or clo
attacks in multi-hop/multi-vector attack scenarios where m
ple smart speakers and microphones are chained/linked toge
(Fig.1). Therefore, there exists a strong need to develop a
fied anti-spoofing system to reliably detect the replay, clo
and cloned-replay attacks in multi-hop scenario. Unlike t
tional binary class detectors, our framework models this
as a multi-class problem because there exists a probability
one SS is robust against replay attacks, receives data from o
SS (of different vendor) in a chained scenario that is vulner
to replay attacks because of a fragile or absent replay dete
Therefore, the received audio will be considered bonafide,
the detector will eventually fail for all the linked devices.

To address this need, we present a unified anti-spoo
framework that can effectively be used to detect multiple
gories of voice spoofing attacks (i.e. multi-order replays, m
order cloned-replays, and cloning) using our novel aco
ternary co-occurrence patterns (ATCoP) and gammatone
stral coefficients (GTCC) features. It is important to m
tion that the human speech contains dynamic attributes
to speaker induced variations, whereas, the synthetic sp
contains unusual prosody i.e., absence of natural pauses,
of unvoiced consonants, unusual pitch, and few mispro
ciations, etc. These unnatural prosody in cloned voice
speaker induced variations in bonafide speech demands to
velop those features which can analyze these patterns. T
we propose time-domain ATCoP features that are capab
analyzing and better capturing those distinctive traits of
bonafide and cloned speech. Further, replay audios includ
microphone induced distortions and cloned audios include
artificial ‘whine’ which can be reliably captured by both the
CoP and GTCC due to their tolerance against the noise. T
we fused the ATCoP with the GTCCs to create a robust fea
descriptor for voice anti-spoofing system. The major cont
tions of our work are:

• We propose a novel acoustic feature descriptor ATCo
better capture the microphone induced distortions



3

kn
dy
of

• W
in
pl

• W
ta

• W
w
, a
sc

• O
sp
th

• W
fe
eff

2. Rel

VCS
multipl
audio
ing this
anti-sp
This se
spoofin

ex-
hine
) or

ased

od-
CC)
pre-
lud-
ased
ans-

were
the

ki et
ency

the
cep-
ner-
hese
tion.
FCC
PC-
MM

18);
tion,
Fig. 1. Examples of audio spoofing attacks.

own as microphone signature) from the replay samples,
namic speech variations of bonafide signals and artifacts
cloning algorithms.

e report that VCS are vulnerable to a hybrid voice spoof-
g attack i.e., cloned-replay which can be generated by
aying the synthetic/cloned audio.

e present that multi-order replay and cloned-replay at-
cks are feasible and VCSs are unable to detect them.

e present the baseline for a unified anti-spoofing frame-
ork that is able to detect the multi-order replay-, cloning-
nd cloned-replay attacks through our ATCoP-GTCC de-
riptor.

ur anti-spoofing method effectively detects the voice
oofing attacks in compressed audio samples along-with
e uncompressed audios.

e have performed rigorous experimentation on four dif-
rent datasets including the hybrid dataset to signify the
ectiveness of our anti-spoofing framework.

ated Work

s need a unified anti-spoofing framework to counter
e voice spoofing attacks. The selection of features for
signal representation is an important step in develop-

unified framework. Additionally, none of the existing
oofing methods have considered cloned-replay attacks.
ction presents a thorough analysis of existing up-to-date
g detection systems.

2.1. Replay Spoofing Detection Techniques

Existing approaches for replay spoofing detection have
plored different features using either conventional mac
learning classifiers i.e. Gaussian Mixture Model (GMM
deep learning models like CNN, RNN, etc.

2.1.1. Conventional Machine Learning (ML) Classifiers-b
Approaches

In Yamagishi et al. (2019), two ASVspoof baseline m
els based on constant Q-transform cepstral coefficients (CQ
and linear frequency cepstral coefficients (LFCC) were
sented with the GMM classifier for spoofing detection inc
ing the replays. In Kumar & Bharati (2021), a filtering b
cepstral coefficients (FBCC) based on the discrete cosine tr
form of log compressed energy variations of the audios
employed with the GMM for spoofing detection including
replay attacks.

Few techniques (Nagarsheth et al. (2017); Witkows
al. (2017)) have reported the importance of high-frequ
bands analysis to better capture the attributes available in
replay audios. In Nagarsheth et al. (2017), high-frequency
stral coefficients and CQCC features were employed to ge
ate the embeddings using a deep neural network. Later, t
embeddings were used to train the SVM for replay detec
Witkowski et al. (2017) have employed the inverted-M
(IMFCC), linear predictive cepstral coefficients (LPCC), L
Cres, CQCC, MFCC, and Cepstrum features to train the G
for replay detection.

Existing studies (Mishra et al. (2018); Saranya et al. (20
Yang & Das (2019)) have also highlighted that reverbera
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Fig. 2. 1st-order voice spoofing (replay) attack.

l information, recording and playback device character-
hould be investigated for replay spoofing detection. In
a et al. (2018), MFCC, CQCC, and Mel-Filterbank-
eatures were employed with GMM to capture the charac-
s of channel and reverberation from the audio for replay
on.

Deep Learning-based Techniques
learning (DL) techniques have also been employed for

g detectors apart from the conventional ML based meth-
Cai et al. (2017), the original spectrogram was used

of CQCC to train a deep residual network for features
ion. This method is taxing due to manual data augmen-
and achieves higher equal error rate (EER) due to us-
y the short time Fourier transform based spectrogram.
and CQCC were employed in Chen et al. (2017) with
M, DNN and ResNet for replay spoofing detection. Fu-
CQCC-GMM, CQCC-ResNet, and MFCC-ResNet ob-

the minimum EER. Fusion of the two deep networks and
makes it less practical to deploy on resource constraint

In Bakar et al. (2018), long term average spectrum
and MFCC features were employed to train the DNN

ofing detection. Light-weight CNN was employed for
poofing detection in (Lavrentyeva et al. (2017); Lavren-
t al. (2019)). In Monteiro et al. (2020), an end-to-
NN ensemble model was proposed based on training
l on the predictions of two separately trained models for
and cloning attacks respectively. Although this method
iro et al. (2020)) outperforms the ASVspoof baseline
(Yamagishi et al. (2019)), but with increased features
tation cost.

ice Cloning Detection Approaches
ting approaches have employed various magnitude- and
riented features for synthetic/cloned speech detection.

Phase-oriented Approaches
eon et al. (2012), relative phase shift (RPS) features
xtracted from the speech segments of the audio signal
d with the GMM for speech synthesis detection. Sim-

RPS was used with the GMM for synthetic speech de-
in Saratxaga et al. (2016). In Janicki (2017), long term

prediction residual signals comprised of 23 different para
ters were used with the SVM to classify the human and cl
speech. In Wester et al. (2015), MFCC and cosine-norma
phase (cos-phase) features were used with the GMM-Univ
background model for voice cloning detection.

2.2.2. Magnitude-oriented Approaches
In Patel & Patil (2015), cochlear filter cepstral coeffic

(CFCC) and CFCC-instantaneous frequency (CFCCIF)
tures were used with the GMM for audio spoofing detec
In Wu et al. (2013), modulation features were used to desi
model for synthetic speech detection. For this purpose, M
and modified group delay cepstral coefficients (MGDCC)
tures were extracted from the magnitude and phase spectr
respectively, and used by the GMM to classify the speec
bonafide or clone. Malik (2019) employed the higher-o
spectral analysis (HOSA) features and gaussian and line
tests to capture the traces of generative models for bonafide
cloned audio detection.

3. Analysis of Single- and Multi-order Audio Spoofing

Voice spoofing attacks can be employed to exploit both
ASV and VCSs. We categorize these attacks into rep
cloning, and cloned-replay (Fig.1), and these can be e
single- or multi-order.

We model the first-order voice spoofing attack (replay
picted in Fig.2 (bottom) as microphone-speaker-microp
(MSM) processing chain. This is similar to three second-o
systems in cascade. Therefore, this MSM chain (demons
ing a 1st-order replay attack) is anticipated to add higher-o
non-linearities because of the cascade of the MSM chain. M
specifically, this MSM chain introduces beyond 7th-order
linearity in the replay signal. Higher-order audio replay
cloned-replay attacks are likely to generate stronger hig
order harmonic distortions (HoHDs) in the replay sam
(Fig.1). Conversely, bonafide voice samples lack MSM
cessing chain and likely to present lesser HoHDs. There
we argue that the HoHDs can be used to discriminate betw
a bonafide and spoofed voice sample. Spectral features
MFCC, GTCC, etc., or time-domain features i.e., ATCoP
be employed to capture the artifacts of these HoHDs.



5

Fig. 3. G audio
signal to

Unli
tortion
pected
is beca
parativ
cess th
phonat
recordi
signal
backgr
distorti
the mic
respon

X(t)

Con
recordi
the bon
tain mi
audio s
tral cha
bonafid
these d

In o
have d

ow-
e of
d to
vely
aims
play
) for
ight)
tures
that
ses)
ture
hese
s as
our

ikely

osed
osed
The
TCC features for bona fide, first-, and second-order replay: Twelve coefficients of GTCC features are plotted against the frames of entire
reveal the details of distortions/artifacts.

ke replay and cloned-replay attacks where harmonic dis-
s exist due to MSM chain, voice cloning attacks are ex-
to be more linear compared to the bonafide sample. This
use the process of synthetic speech generation is com-
ely more linear than the bonafide speech generation pro-
at consists of non-linear sub-processes i.e., respiration,
ion, resonance, and articulation. The bonafide audio
ng consists of several components that are input speech
s(t), environment distortion (reverberant signal r(t) and
ound noise η(t)), microphone distortion ηm(t), encoding
on ηe(t), and transcoding distortion ηt(t). Let hm(t) be
rophone impulse response and hr(t) be the room impulse

se; we can express the digital audio recording signal as:

= hr(t) × hm(t) × s(t) + hm(t) × η(t) + ηm(t) + ηt(t) (1)

trarily, cloned voice generation does not include any
ng mechanism and thus considered linear compared to
afide speech. Additionally, cloned voice will not con-
crophone fingerprints like those found in the bonafide
ignal. Therefore, we hypothesize that acoustic and spec-
racteristics of cloned signal should be different than the
e ones, and ATCoP and GTCC should be able to detect
ifferences with high accuracy.
ur prior work (Malik et al. (2019); Malik (2012)), we
emonstrated that replay attacks add HoHDs and em-

ployed the HOSA to capture these nonlinear distortions. H
ever, HOSA features are less feasible for VCSs becaus
higher computational cost. Additionally, there exists a nee
develop robust audio features which are capable of effecti
detecting multiple spoofing attacks. To support our cl
and need of robust features, we discuss an example of re
attacks. We created the plots of GTCC features (Fig.3
bonafide (left), 1st-order (center), and 2nd-order replay (r
audios to show the effectiveness of our ATCoP-GTCC fea
to better capture the harmonic distortions. Fig. 3 reveals
replay attacks add harmonic distortions (highlighted ellip
in the replay samples; and our proposed features can cap
these distortions. From Fig.3, we can also observe that t
distortions are more prominent in 2nd-order replay audio
compared to the 1st-order replay audios. This fact endorses
claim that higher-order audio spoofing attacks are more l
to instigate stronger HoHDs in the audios.

4. Unified Voice Spoofing Detection Framework

This section provides a detailed discussion of the prop
unified anti-spoofing framework. The details of the prop
novel ATCoP-GTCC features are presented in this section.
framework of our system is presented in Fig.4.
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atures Extraction
accurate spoofing detection, we need to develop robust
s that can better extract the unique traits of bonafide and
d audios. For this purpose, we introduce a novel hybrid
-GTCC features to detect various diverse voice spoofing
. We provide the details of the proposed features extrac-
thods below.

Acoustic Ternary Co-occurrence Patterns
1-D acoustic patterns i.e. local binary patterns (LBP), lo-
ary patterns (LTP) (Adnan et al. (2018)) have been em-
in various audio processing applications including the
poofing detection. However, these descriptors have cer-
itations such as LBP is sensitive to noise, and possibility
rent LBP codes generation for the same class that makes
ffective for bonafide vs spoof classification. On the other
TP employs a fixed threshold-based method that is not
obust over dynamic patterns that exist in the spoofed au-
he limitations of these existing acoustic patterns moti-
s to propose a novel feature representation i.e. ATCoP

acoustic signals. ATCoP encodes the co-occurrence
lar ternary patterns between the center and neighboring
s without needing any threshold. Additionally, ATCoP
s an effective representation of the audio that can reli-
used to better capture the characteristics of bonafide

ofed speeches.
X[n] be an audio signal with N samples divided into m
ping frames F(i) having 17 samples in each frame with

size of 8, where i = 1, 2, . . . , m. In each frame F(i), c
s the central sample (Fig. 5(a)). We divide each frame
o windows w1 and w2 having adjacent neighbors z j

w1 and
y neighbors z j

w2 as shown in (Fig. 5(b)), where j is the
oring index w.r.t the sample c. w1 consists of 4 adja-
ighbors on each side of the central sample c that is high-
in blue color in F(i) (Fig. 5(b)). Whereas, w2 consists of
ing 8 samples in F(i) that is highlighted in green color

5(b). To compute the ATCoP, we first calculate the
er derivative between the central and each neighboring
in w1 and repeat this process for w2 as shown in Eqs.
(3).

D(z j
w1, c) = z j

w1 − c (2)

D(z j
w2, c) = z j

w2 − c

where z j
w1 and z j

w2 represent the neighboring samples o
and w2, respectively. D(z j

w1, c) and D(z j
w2, c) represent the

order derivatives computed between the center and neighbo
samples in w1 and w2 respectively. Next, we code them acc
ing to the sign of first-order derivative as follows:

Pl(z
j
w1, c) =


1, D(z j

w1, c) > 0,
2, D(z j

w1, c) ≤ 0

Pl(z
j
w2, c) =


1, D(z j

w2, c) > 0,
2, D(z j

w2, c) ≤ 0

where Pl(z
j
w1, c) and Pl(z

j
w2, c) represents the assigned c

to the samples of w1 and w2, respectively. Next the sam
of the corresponding locations in w1 and w2 are compare
generate the ternary values as follows:

TCoP(z j, c) =



f (P1(z j
w1, c), P1(z j

w2)),
f (P2(z j

w1, c), P2(z j
w2)), ...,

f (P8(z j
w1, c), P8(z j

w2))

where,

TCoP(z j, c) =



1, i f x = y = 1
2, i f x = y = 2
0, i f x,y

where TCoP(z j,c) represents the ternary patterns. We
ther divide the ternary patterns into two binary patterns tha
upper patterns TCoPu p (.) and lower patterns TCoPlw (.).
retain all values of 1 in TCoPu p (.) and replaced the rest
zeros as follows:

TCoPup(z j, c) =


1, i f TCoP(z j, c) = 1
0, Otherwise

Likewise, we retain all values of 2 in TCoPlw(.) while rep
ing the rest with zeros as follows:
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Fig. 5. ATCoP features extraction method.

TCoPlw(z j, c) =


1, i f TCoP(z j, c) = 2
0, Otherwise

(9)

t, we adopt the concept of picking uniform patterns over
iform patterns (Ojala (1996)). The uniform patterns
gnificant attributes of the signal, whereas, non-uniform
s mostly contain the redundant information. We com-
he uniform patterns, TCoPup

u (.) and TCoPlw
u (.) from the

p(.) and TCoPlw(.) as depicted in Fig. 5(c), and rep-
d these ternary co-occurrence patterns in decimal form

TCoPup
u (z j, c) =

j=7∑

j=0

TCoPup
u (z j, c) × 2 j (10)

TCoPlw
u (z j, c) =

j=7∑

j=0

TCoPlw
u (z j, c) × 2 j (11)

the TCoPu value represents the number of bit-wise tran-
(0/1 changes) in the pattern. The co-occurrence patterns
inimal transitions are considered uniform i.e., 11111111
000001 patterns have uniform values of 0 and 1 respec-
After computing the TCoPup

u and TCoPlw
u , we calcu-

histograms of these uniform patterns. We assign one
am bin for each uniform pattern and include all non-

patterns in a single bin to ensure reducing only the
ant information from the input sample (Fig. 5(d)).

HTCoPup
u (TCoPup, n) =

K∑

k=1

δ(TCoPup
k , n)

HTCoPlw
u (TCoPlw, n) =

K∑

k=1

δ(TCoPlw
k , n)

where n shows the histogram bins corresponding to the uni
ATCoP codes and δ(.) is the Kronecker delta function. We
formed substantial experiments to generate these ATCoP c
by selecting different number of bins for uniform patterns.
ter detailed experimentation, we observe that the first 20
form patterns from each of TCoPup

u and TCoPlw
u were eno

to capture the distortions in replay, artifacts in cloning, and
namic speech variations of bonafide samples. Therefore
create a 20-D ATCoP code each for TCoPup

u and TCoPlw
u

fused them to generate a 40-D ATCoP features as follows:

ATCoP = [HTCoPup
u

⊔
HTCoPlw

u ]

where
⊔

represents the concatenation operator for vectors

Analysis of ATCoP Features. Due to the vulnerability o
smart speakers against different voice spoofing attacks, we
a robust anti-spoofing system that should investigate the
lowing facts while designing the features: (i) the microp
introduces a layer of non-linearity because of inter-modula
distortions, which introduce the discernible patterns, (ii
troduction of the higher-order non-linearities in conseq
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ngs of the given recording make these audios more dis-
iii) voice cloning methods also add the algorithmic arti-
nd iv) presence/absence of dynamic speech variations in
e/cloned voice. Hence, these facts must be considered
roposing a robust voice anti-spoofing system.
ATCoP features are developed to capture the traces of
attributes of bonafide and spoof audios in time domain.
ify the effectiveness of our ATCoP features for distinct
ntation of bonafide and various categories of spoof au-
e created the detailed graphs of ATCoP features for the
e, cloned, replay, and cloned-replay audios as shown
6. For each analysis, we selected the audios of same

r for both the bonafide and spoof categories for fair com-
. We plotted the ATCoP features of bonafide, 1st-order
and second-order replay for VSDC audios in Fig. 6(a).
se, features of bonafide and replay for ASV-spoof PA,
nafide and cloned for ASV-spoof LA corpus are pre-
in Fig. 6(b) and (c) respectively. Finally, ATCoP features
ed, 1st-order cloned replay, and second-order cloned re-

e shown in Fig. 6(d). By analyzing the peaks of these
, we can conclude that our ATCoP features give distinct
ntation for bonafide and different categories of spoof au-
same feature-points. This analysis demonstrate that AT-
atures can reliably be used to represent the input audios
ofing detection problem.

Gammatone Cepstral Coefficients (GTCC)
tral features such as GTCC, MFCC, etc., can be em-
to capture the non-linearities in frequency scale of the

udio signal. MFCC features have been explored for var-
dio processing applications due to its effectiveness to
the significant attributes of the acoustic signal. Re-

GTCC features have also been employed due to their en-
filter response that better resemble the human auditory

. We employed the GTCC features with our ATCoP fea-
r voice spoofing detection due to two reasons: i) GTCC
re tolerant to noise over MFCC (Cooper (2013)), and
vide marginally better classification performance over

with comparable computational cost. The ability of
er to offer more frequency components in low-frequency
d less frequency components in high-frequency band al-
to better capture the non-linearities in the audio signal.

GTCC extraction, we employed the fast Fourier trans-
FT) on the input audio signal. Next, the gammatone fil-

k consisting of different GT filters is applied to the FFT
pute the energy of each sub-band. The discrete cosine
rm is applied on the log of each energy band to extract
CC features as shown in Fig.7, where we obtain a 13-D
features vector. It is to be noted that 13 to 20 coeffi-
re considered enough for optimal audio analysis. Thus,

racted 13 GTCC coefficients and later fused them with
posed novel ATCoP features for audio signal representa-

assification

ddress the multi-class classification problem, we em-
the error correcting output codes (ECOC) framework

(Escalera et al. (2009)) by combining three binary classifi
ECOC model generates a codeword against each class du
encoding and predict the class of given test sample at the
coding phase.

Since we have three classes for replay and cloned-replay
tection, we train three binary learners using two classes
time to obtain a 3-digit codeword for each class. Each b
the codeword specifies the response of the given binary lea
More precisely, we used three codes -1,0,1 during the en
ing to ignore one class and compare the other two in the
vs one approach (Table 1). So, our ternary coding matrix
three classes is shown in Table 1, where the 3-bit error cor
ing output code word is presented for three-class classifica
Each class is assigned a unique 3-bit code-word. One bi
classifier is learned for each column during the training.
shown in Table 1, first learner (L-1) is trained to separate
1 and 2, second learner (L-2) is trained to separate class 1
3, whereas, the third learner (L-3) is trained to distinguish
2 and 3. For each column, 0 is used to ignore the third
while the remaining two classes are used in the classifica
process. Three binary classifiers are trained in this way.

At decoding, all of these three binary classifiers are evalu
to obtain a 3-bit code. We employed the hamming distanc
compute the closest match between this 3-bit code and th
signed code-words of each class. Finally, we select the cla
the input audio as the one whose code-word has minimum
tance with the 3-bit code of the sample. Our ECOC framew
uses three binary SVM learners for spoofing detection.

5. Experimental Setup and Results

5.1. Dataset
Performance of our system is measured on in-house cre

VSDC (Baumann et al. (2021)), ASVspoof 2019 (Yamagis
al. (2019)), Google’s LJ Speech (Ito & Johnson (2021)),
YouTube deepfakes (Agarwal et al. (2019)) datasets. VSD
designed for single- and multi-order voice replay and clo
replay attacks detection for diverse and challenging scena
VSDC comprises both the first- and second-order replay au
against the bonafide ones, unlike ASVspoof (Yamagishi e
(2019)) that contains only the first-order replay samples ag
the bonafide. Our VSDC (Baumann et al. (2021)) is diver
terms of environment, configurations, speaker genre, recor
and playback devices, recording and playback configurat
and number of speakers (Table 2). Each bonafide and re
audio sample in our dataset is 6 seconds in duration. Sinc
introduce a new spoofing threat, cloned-replay, that repres
the recording of cloned voice sample, we used the ASVs
synthetic samples to generate the first- and second-order cl
replay samples. Our VSDC is publicly available and more
tails can be found at (Baumann et al. (2021)).

ASVspoof 2019 dataset (Yamagishi et al. (2019)) con
the logical access (cloning) and physical access (replay)
ples for training, development and evaluation. Training, de
opment, and evaluation sets for replay contain 54 000, 33
and 153 522 samples, respectively. Whereas, training, deve
ment, and evaluation sets for voice cloning contain 25 380
844 and 71 933 samples, respectively.
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Fig. 6. ATCoP features analysis.

Fig. 7. GTCC features extraction method.

peech is a public domain dataset consisting of 13 100
e audio samples. The duration of voice samples of

taset varies from 1 to 10 seconds with a total length of
rs. Each voice sample is recorded with sampling rate
50 Hz. We employed Google’s cloning model (Kang
) to generate 1500 spoofing samples and later used these
e and cloned samples for voice cloning detection.
fakes corpus (Agarwal et al. (2019)) contains different

be videos of various US politicians with average length
ours. The audio streams of these videos are also forged,
used them to evaluate our framework.

rformance Evaluation of Proposed Anti-spoofing Sys-
m

ormance of the proposed system is measured using the
CF, and EER. We designed separate experiments to de-
replay, cloning, and cloned-replay attacks. For replay
ents, we computed the results on both the ASVspoof

nd VSDC. For speech synthesis, we used ASVspoof
LJ Speech, and YouTube deepfakes datasets, whereas,

we used the VSDC corpus for cloned-replay detection. The
tails of datasets division for experimentation are presente
Table 2.

5.2.1. Detection Performance of ATCoP, GTCC, and fusio

We conducted an experiment to investigate the perform
of ATCoP, GTCC, and their fusion for audio spoofing detec
For this purpose, we employed the ATCoP features with S
for replay detection (on ASVspoof 2019 and VSDC dat
separately), synthetic speech/cloning detection (on ASVs
2019 and LJSpeech datasets separately), and cloned-replay
tection on VSDC. The results are provided in Table 3. W
peated this experiment for the evaluation of GTCC and ATC
GTCC features. From these results, we found that the
CoP offers better performance as compared to the GTCC
ATCoP-GTCC fusion performed the best. Thus, we empl
the ATCoP-GTCC features for audio spoofing detection.
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Table 1. Coding matrix design for 3 class classification.
L-1 L-2 L-3

C-1 1 1 0
C-2 -1 0 1
C-3 0 -1 -1

Table 2. Datasets division for experimentation.
Dataset Training Testing

Division Number of Samples Division Number of Samples
ASVspoof-PA Train 54,000 Eval 1,53,522
ASVspoof-LA Train 25,380 Eval 71,933

VSDC 70% 8397 30% 3603
LJSpeech 70% 18,340 30% 7860

YouTubes Deepfakes 70% 63 30% 27

Table 3. Comparative analysis of ATCoP, GTCC, and ATCoP-GTCC.
Spoofing Dataset Features min-tDCF EER%

Replay

ASVspoof
ATCoP 0.097 2.80
GTCC 0.211 8.35
ATCoP-GTCC 0.064 1.00

VSDC
ATCoP 0.079 2.10
GTCC 0.21 7.98
ATCoP-GTCC 0.056 0.90

Synthesis/Cloning

ASVspoof
ATCoP 0.059 0.80
GTCC 0.132 6.10
ATCoP-GTCC 0.011 0.10

LJSpeech
ATCoP 0.007 0.10
GTCC 0.019 0.28
ATCoP-GTCC 0.0 0.0

Cloned
Replay

VSDC
ATCoP 0.05 0.90
GTCC 0.19 3.99
ATCoP-GTCC 0.002 0.03

Table 4. Replay detection results.
Dataset SVM Kernel min-tDCF EER%

VSDC

Linear 0.503 25.00
Quadratic 0.078 2.00
Cubic 0.0576 0.90
RBF 0.05 0.75

ASVspoof

Linear 0.068 1.50
Quadratic 0.064 1.00
Cubic 0.064 1.00
RBF 0.068 1.50

Detection Performance of the Proposed ATCoP-GTCC
Features for Replay Attack Detection

sed our ATCoP-GTCC features to train the SVM using
t kernels on both the VSDC and physical access (PA)

ion of ASVspoof datasets and results are presented in Ta-
For VSDC, we obtained the lowest min-tDCF and EER

and 0.75% on the radial basis function (RBF) kernel,
ively. For ASVspoof 2019 corpus, we obtained the low-
-tDCF and EER of 0.064 and 1% on quadratic and cubic
. We can observe from Table 4 that the SVM tuned with
order polynomial (cubic) and RBF kernels gives supe-
formance over other kernels on both datasets.

the results, we observed that SVM tuned on higher-

order polynomial kernel better captures the non-linearities
in multi-order replay audios. As expected, SVM with li
kernel attains the highest min-tDCF. We also found that
order polynomial (cubic) kernel provides better classifica
over 2nd-order polynomial (quadratic) for multi-order re
detection. This demonstrates the effectiveness of the cubic
nel in differentiating the non-linearities available in multi-o
audio replays. Therefore, we argue that the proposed fea
with SVM tuned on the cubic kernel effectively detects the
linearities in the replays.
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Table 5. Speech synthesis detection results.
Dataset SVM Kernel min-tDCF EER%

ASVspoof

Linear 0.078 2.00
Quadratic 0.05 0.75
Cubic 0.047 0.70
RBF 0.05 0.75

LJSpeech

Linear 0.0 0.0
Quadratic 0.0 0.0
Cubic 0.0 0.0
RBF 0.0 0.0

Detection Performance of the Proposed ATCoP-GTCC
Features for Speech Synthesis (Voice Cloning) Detection
ormance of the proposed anti-spoofing framework is also
ed on logical access (LA) collection of ASVspoof 2019
Speech 1.1 datasets for voice cloning detection. For this
e, we used our features to train the SVM for classifica-
audio as bonafide or spoof and results obtained on the
sing different kernels are provided in Table 5.

the results (Table 5), we can observe that the SVM
on higher-order polynomial (cubic and quadratic) and
ernels provide remarkable classification performance. It
e noted that SVM tuned with cubic kernel performs
ally better than quadratic and RBF kernels. More specif-
we obtained min-tDCF and EER of 0.047 and 0.7% on
oof 2019 LA dataset. On the other hand, we obtained
imal 0.0 min-tDCF and 0% EER for voice cloning de-
on LJ Speech dataset. This remarkable performance is
ed to the fact that these cloned samples do not have mi-
ne signatures which our framework successfully detects.

Detection Performance of the Proposed ATCoP-GTCC
Features for Cloned-Replay Attack Detection
sed the ASVspoof 2019 LA dataset of cloned voices of
t speakers to create the first- and second-order cloned

recordings. We extracted the features from these cloned
ned-replay samples (1st- and 2nd-order) and train the

or classification, and results are reported in Table 6. We
de from these results that SVM provides remarkable re-

all kernels to classify among the cloned, 1st- and 2nd-
loned audio replays. However, higher-order polynomial
(cubic) achieves best results with a small margin. More
ally, we obtained min-tDCF of 0.002 and EER of 0.03%

cubic kernel of SVM.

Evaluation of Proposed ATCoP and Spectral Features
Fusions
ustify the robustness of our features for voice spoofing
on, we created different combination of features using
CoP and spectral features (Table 7). For classification,
ployed the SVM and results are presented in Table 8 to

results of replay attack detection are presented in Ta-
From Table 8, we can see that our proposed ATCoP-
features outperform others and attained the min-tDCF
R of 0.0576 and 0.9% on VSDC, and 0.064 and 1% on

the ASVspoof dataset. Whereas, we obtained the highest
tDCF of 0.084 and 0.137 on MFCC-GTCC-spectral feature
VSDC and ASVspoof PA datasets respectively.

Similarly, we provided the results of voice cloning/sp
synthesis detection in Table 9. Again, our ATCoP-G
features provide better results over other features by at
ing min-tDCF of 0.043 and 0.0. Whereas, MFCC-GT
spectral achieved the highest min-tDCF of 0.099 and 0.02
ASVspoof and LJ Speech datasets, respectively. It is impo
to mention that for LJ Speech dataset, all features fusion
taining ATCoP features achieve an optimal min-tDCF of
However, our ATCoP-GTCC features outperform other fea
on the ASVspoof LA dataset.

Finally, we evaluated the performance of all feature c
binations for cloned-replay detection on VSDC cloned-re
collection, and results are provided in Table 10. Simila
the other experiments, we also achieved the best results
cloned-replay detection using our proposed features. M
specifically, we obtained min-tDCF of 0.028 on MFCC-GT
spectral, 0.064 on ATCoP-spectral, 0.021 on ATCoP-MF
and 0.002 on our ATCoP-GTCC features.

We can observe from the results presented in Table
10 that the proposed ATCoP-GTCC features outperform o
features-sets. More specifically, we obtained the lowest
tDCF of 0.0576 for replay attacks detection, optimal 0.0
voice cloning detection, and 0.002 for cloned-replay d
tion. These results illustrate the effectiveness of the prop
features for accurate spoofing detection. In short, our n
ATCoP-GTCC features lay the foundation for a unified
spoofing framework capable of reliable detection of mul
types of voice spoofing attacks.

5.3. Comparative Analysis using Different Classifiers

We designed an experiment to compare the performanc
the proposed features on other machine learning classifier
replay, cloned-replay, and speech synthesis detection. For
we used our ATCoP-GTCC features to train the conventi
ML and DL classifiers and results are reported in Table 11

5.3.1. Decision Trees Classification
For decision trees (Breiman et al. (2017)), we computed

classification results on different depths i.e. fine, medium
coarse, where fine-level has more depth and coarse-level
least depth in tree structure. It is to be noted that decision
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Table 6. Cloned replay detection results.
Dataset SVM Kernel min-tDCF EER%

ASVspoof

Linear 0.011 0.17
Quadratic 0.007 0.10
Cubic 0.002 0.03
RBF 0.01 0.15

Table 7. Feature vectors.
ure-vector Features
ctral-MFCC-GTCC GTCC [1-13], MFCC [1-13], Spectral (Kurtosis, Skewness, Slope, Centroid, Flatness, Entropy, Decreas

Rolloff point, Flux, Crest, Spread), Energy
oP-Spectral 51-D ATCoP [40-D], Spectral [11-D]
-MFCC 53-D ATCoP [40-D], MFCC [13-D]
-GTCC 53-D ATCoP [40-D], GTCC [13-D]

Table 8. Comparative analysis of the proposed and other spectral features for replay attacks detection.
Dataset Features min-tDCF EER%

VSDC

MFCC-GTCC-Spectral 0.084 2.33
ATCoP-Spectral 0.108 4.60
ATCoP-MFCC 0.065 1.16
ATCoP-GTCC 0.0576 0.90

ASVspoof

MFCC-GTCC-Spectral 0.137 6.75
ATCoP-Spectral 0.064 1.00
ATCoP-MFCC 0.064 1.00
ATCoP-GTCC 0.064 1.00

Table 9. Comparative analysis of the proposed and other spectral features for speech cloning detection.
Dataset Features min-tDCF EER%

ASVspoof

MFCC-GTCC-Spectral 0.099 3.00
ATCoP-Spectral 0.053 0.80
ATCoP-MFCC 0.05 0.75
ATCoP-GTCC 0.043 0.65

LJSpeech

MFCC-GTCC-Spectral 0.021 0.30
ATCoP-Spectral 0.0 0.0
ATCoP-MFCC 0.0 0.0
ATCoP-GTCC 0.0 0.0

Table 10. Comparative analysis of the proposed and other spectral features for cloned replay detection.
Dataset Features min-tDCF EER%

VSDC

MFCC-GTCC-Spectral 0.028 0.40
ATCoP-Spectral 0.064 1.00
ATCoP-MFCC 0.021 0.30
ATCoP-GTCC 0.002 0.03

at fine-level performed best for all types of spoofing de-
. The results on decision trees tuned at fine-level are
in Table 11.

Naı̈ve Bayes Classification
Naı̈ve Bayes (Fu et al. (2010)), we computed the re-
sing the gaussian and kernel distributions. For replay
on, we obtained the min-tDCF of 0.651 and 0.478 with
n distribution, and 0.528 and 0.421 with kernel distri-
on VSDC and ASVspoof PA datasets, respectively. For
loning, we obtained the min-tDCF of 0.139 and 0.0 on
n and 0.097 and 0.0 on kernel distribution for ASVspoof
LJ Speech datasets. Similarly, for cloned replay detec-

tion, we obtained the min-tDCF of 0.106 and 0.067 on gaus
and kernel distributions, respectively. We observed from
experiments that Naı̈ve Bayes using the kernel distribution
performs the gaussian distribution for voice spoofing detec
however with higher computational cost and memory. Th
sults on Naive Bayes using the kernel distribution are show
Table 11.

5.3.3. K-Nearest Neighbor (KNN) Classification
For KNN (Zhang et al. (2017)) experiments, we tuned t

parameters i.e number of neighbors kn, distance weights
and distance metric dm. We measured the performanc
three different values of kn (1, 10, 100), three differen
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ean, cubic, cosine), and two variations of dw (equal,
inverse). For all three spoofing categories, we obtained

sults on weighted-KNN (kn=10, dw = squared inverse,
clidean) for all datasets, as shown in Table 11.

Ensemble Learning Models
lso evaluated our method on different ensemble classi-
ietterich (2000)) i.e. bagged trees (Sun et al. (2018)),

trees (Hubacek et al. (2019)), RUSBoosted trees
ersons et al. (2017)), subspace discriminant (Hang et al.
), and subspace KNN (Zhang et al. (2019)). We achieved
ults on ensemble bagged trees and worst on RUSboosted

or all types of spoofing detection. For replay detec-
e obtained the min-tDCF of 0.115 and 0.104 on bagged
nd 0.512 and 0.601 on RUSboosted trees for VSDC and
oof PA datasets, respectively. For cloning detection, we
d the min-tDCF of 0.068 and 0.0 on bagged trees, and
nd 0.142 on RUSboosted trees for ASVspoof LA and
ech datasets, respectively. For cloned-replay detection,
ained the min-tDCF of 0.032 and 0.097 on bagged- and
osted-trees. The results on ensemble bagged trees are
ed in Table 11.

Deep Learning Classification
deep learning, we selected the BiLSTM recurrent deep
g method (Graves et al. (2005)). As recurrent DL mod-
better suited to analyze the sequential and time series

herefore, we selected the BiLSTM framework among
eep learning models. For experimentation, we tuned the
k on 200 hidden units, tanh state activation function, sig-
ate activation function, maximum epochs of 200, mini-
ize of 64, and 5 hidden layers, as optimal results were
d on these settings (Table 11).

ybrid Dataset Evaluation

objective of this experiment is to assess the performance
osed anti-spoofing framework on more diverse audio

s. Since both the ASVspoof 2019 and VSDC datasets
fferent characteristics (e.g. sampling rate, speakers, mi-
ne and playback devices, environments, etc), therefore,
e created a hybrid dataset comprising of bonafide and
amples of the ASVspoof and VSDC. Since the VSDC
s of only the bonafide and replay samples, therefore, we
so selected the replay collection (PA) of ASVspoof 2019
. For this experiment, we have taken 8,000 audio sam-
m the training set of ASVspoof PA collection and 8,000
e and 1st-order replay audios from the VSDC. Next, we
0% audios (11,200) for training and rest 30% audios

for testing and achieved the min-tDCF of 0.227 and
f 9.1%. From the results, we can observe that our anti-
g framework achieves better classification performance
more diverse audio samples.

iscussion

proposed ATCoP-GTCC features effectively detect dif-
inds of voice spoofing attacks that are evaluated on four

different datasets. We provided the comparative results
tained on different classifiers for audio spoofing detectio
Table 11. From the results, we found that SVM was the
and Naı̈ve Bayes was the worst performer for all types of sp
ing. More precisely, SVM achieved the lowest min-tDCF
EER of 0.0 and 0%, 0.0576 and 0.9%, and 0.002 and 0.
for cloning, replay, and cloned-replay detection, respecti
Thus, we argue that SVM can reliably be used with the
posed features to detect any kind of voice spoofing attack.

We performed one experiment to investigate the effec
compressed replays generation against the bonafide sample
our dataset, we first used Bluetooth speakers for voice rep
generation then we obtained the compressed 1st-order and
order replay audios. For this, we selected 1269 bonafide,
and second-order replay audios. We extracted the proposed
tures for these samples and trained the SVM for replay att
detection. We obtained lower min-tDCF and EER value
these samples compared to all samples. More specifically
obtained the lowest min-tDCF and EER of 0.032 and 0.5%
compressed replay samples compared to 0.057 and 0.9%
all samples. We conclude from this experiment that compre
spoofing samples are easier to detect than uncompressed
ples due to the fact that the microphone distortions are relati
weak in compressed samples. This also complements our
clusion that cloned replay samples are easier to detect du
weak microphone distortions.

Additionally, it is also important to understand that m
phone non-linearities do contribute to microphone induced
tortions, but it is not the only source of distortion. Separa
and estimation of each distortion component, e.g., device
linearity, material or fabrication imperfections, etc., for
Gaussian inputs (e.g., speech signals) is a challenging task
tuitively, the replay process amplifies this microphone ind
distortions which can be captured via ATCoP-GTCC feat
Moreover, human voice holds dynamically induced vocal-
variations as compared to synthetic speech. For example,
ural pauses of the human speech production model are m
ing from the synthetic speech generated by voice clonin
gorithms (Mwiti (2019)). On the other hand, cloned v
sounds similar and contains unusual prosody. The results
cate that our ATCoP-GTCC performs remarkably well for
thetic speech detection which proves that ATCoP-GTCC is
to reliably capture the dynamically variant characteristic
bonafide speech and algorithmic traits of the synthetic spee

5.6. Comparative Analysis with Existing Methods

To measure the effectiveness of our unified anti-spoo
framework, we compared our system against existing stat
the-art voice anti-spoofing methods (Yamagishi et al. (20
Kumar & Bharati (2021); Li et al. (2021); Monteiro e
(2020); Lavrentyeva et al. (2019)) on ASVspoof 2019 da
(Table 12). We employed the ASVspoof 2019-PA-Train/

sets for training/testing the proposed and all the comp
tive methods for replay spoofing and ASVspoof 2019-
train/Eval for training/testing the cloning spoofing detec
The proposed method outperforms the contemporary v
cloning detection methods by achieving the lowest min-t
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Table 11. Comparative Analysis of different classifiers with ATCoP-GTCC features.
taset Classifiers Replay Cloning Cloned Replay

min-tDCF EER% min-tDCF EER% min-tDCF EER%

DC

Decision Trees 0.389 17.83 - - - -
Naı̈ve Bayes 0.528 27.00 - - - -
KNN 0.058 0.92 - - - -
Ensemble Models 0.115 1.83 - - - -
BiLSTM 0.313 13.10 - - - -
SVM 0.0576 0.90 - - - -

Vspoof
19

Decision Trees 0.216 9.00 0.121 5.00 0.048 0.75
Naı̈ve Bayes 0.421 19.75 0.097 2.80 0.067 1.41
KNN 0.137 6.75 0.078 2.00 0.032 0.50
Ensemble Models 0.104 4.50 0.068 1.50 0.032 0.50
BiLSTM 0.308 12.70 0.081 2.20 0.032 0.50
SVM 0.064 1.00 0.05 0.75 0.002 0.03

Speech

Decision Trees - - 0.0 0.0 - -
Naı̈ve Bayes - - 0.0 0.0 - -
KNN - - 0.0 0.0 - -
Ensemble Models - - 0.0 0.0 - -
BiLSTM - - 0.0 0.0 - -
SVM - - 0.0 0.0 - -

Table 12. Performance comparison with existing contemporary anti-spoofing methods.
ofing Dataset Methods min-tDCF EER%

lay ASVspoof 2019-PA-Eval

CQCC-GMM baseline (Yamagishi et al. (2019)) 0.2454 11.04
LFCC-GMM baseline (Yamagishi et al. (2019)) 0.3017 13.54
FBCC-GMM (Kumar & Bharati (2021)) 0.25 10.36
Stat-SE-Res2Net50 (Li et al. (2021)) 0.027 1.00
LFCC+ProdSpec+MGDCC-CNN (Monteiro et al. (2020)) 0.07 2.015
CQT+LFCC+DCT-LCNN (Lavrentyeva et al. (2019)) 0.0122 0.54
ATCoP+GTCC-SVM (Proposed Method) 0.064 1.00

ning ASVspoof 2019-LA-Eval

CQCC-GMM baseline (Yamagishi et al. (2019)) 0.236 9.87
LFCC-GMM baseline (Yamagishi et al. (2019)) 0.212 11.96
FBCC-GMM (Kumar & Bharati (2021)) 0.155 6.16
Stat-SE-Res2Net50 (Li et al. (2021)) 0.068 2.86
LFCC+ProdSpec+MGDCC-CNN (Monteiro et al. (2020)) 0.198 9.09
CQT+LFCC+DCT-LCNN (Lavrentyeva et al. (2019)) 0.051 1.84
ATCoP+GTCC-SVM (Proposed Method) 0.05 0.75

. Lavrentyeva et al. (2019) was the second best system
ing detection with min-tDCF of 0.051. For replay detec-

avrentyeva et al. (2019) was the top performer, whereas,
posed method along-with Li et al. (2021) was the sec-
st method. Moreover, the LFCC-GMM ASVspoof base-
del (Yamagishi et al. (2019)) was the worst performing
for both the replay and cloning detection. It is important

tion that the proposed method performed better over the
oof baseline model by achieving lower EER of 12.54%
.21% for replay and cloning detection respectively.

rformance of Proposed Features for Deepfakes Detec-
n

objective of this evaluation is to quantify the effective-
proposed anti-spoofing framework for deepfakes detec-

or this experiment, we used deepfakes detection dataset
al et al. (2019)) that comprises of YouTube videos of
US politicians. Agarwal et al. (2019) used this dataset

sure the performance of their visual features oriented

deepfakes detection method. We highlighted the fact tha
can still develop effective deepfakes detection methods u
low-cost audio features. We extracted the audios of the vi
from this dataset (Agarwal et al. (2019)) comprising of bot
bonafide and spoof samples as these videos contain both th
sual and audio forgeries. We used our proposed features to
the SVM classifier and obtained min-tDCF of 0.051 and
of 0.8%. AUC metric was used for performance evaluatio
Agarwal et al. (2019). Therefore, we also computed the A
for this experiment and achieved an AUC of 1 as compare
average AUC of 0.95 achieved by Agarwal et al. (2019). F
these results, we argue that our method provides superior
sification performance as compared to Agarwal et al. (2019
is to be noted that our method achieves better performance
low-cost audio features as compared to Agarwal et al. (2019
which the visual landmark features are employed that are c
putationally more intensive compared to the proposed ATC
GTCC features.
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paper has presented a novel unified anti-spoofing frame-
hat by employing proposed ATCoP-GTCC features, ac-
y captures the non-linearities introduced in the 1st- and
er spoofing samples, traces of generative models for
eech synthesis and cloned replay, and dynamic speech
ns of bonafide audios. The absence of a multi-order re-
oofing dataset motivated us to develop a diverse voice
g detection corpus for multi-order replay and cloned-
attacks. Additionally, we have presented that hybrid
g attacks like cloned-replay can easily be executed in
scenarios to exploit the VCSs. This research work lays

ndation of addressing multi-order replay, cloning, and
-replay voice spoofing attacks, using the unified frame-

protect the ASV and VCSs. Experimental results sig-
effectiveness of our anti-spoofing framework by achiev-

timal results on four datasets having either replay or
forgery. This verifies our claim that the proposed fea-
ectively capture the dynamic speech variations and mi-

ne fingerprints of bonafide audio, algorithm artifacts in
audio, and non-linear distortions in replay recordings.
nally, our proposed features also perform remarkably

r deepfakes detection, and this verifies our claim that au-
nal analysis is an integral part of deepfakes detection.
on the fact that the proposed features can effectively cap-

traces of manipulated voice attributes i.e., frequencies,
the cloned speech, we argue that our ATCoP-GTCC fea-
n provide superior detection performance even for high-
synthesized speech samples.
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