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ABSTRACT

Voice controlled systems (VCS) in Internet of Things (IoT), speaker verification systems, voice-based
biometrics, and other voice-assistant-enabled systems are vulnerable to different spoofing attacks i.e.,
replay, cloning, cloned-replay, etc. VCS are not only susceptible to these attacks in a non-network en-
vironment, but they are also vulnerable to multi-order spoofing attacks in networked IoT. Additionally,
deepfakes with artificially generated audio pose a great threat to the all systems having voice-inter-
faces. Most of the existing countermeasures against these voice spoofing attacks work for only one
specific attack (e.g. voice replay) and fail to generalize this for other classes of spoofing attacks.
Additionally, generalization is also crucial for cross-corpora evaluation. Thus, there exists a need to
develop a unified voice anti-spoofing framework capable of detecting multiple spoofing attacks. This
work presents a unified anti-spoofing framework that uses novel (ATCoP-GTCC) features to combat
the variety of voice spoofing attacks. The proposed novel acoustic-ternary co-occurrence patterns (AT-
CoP) encode the co-occurrence of similar patterns between the center and neighboring samples. Our
experiments demonstrate that ATCoP can better capture the microphone induced distortions in replays,
unnatural prosody and algorithmic artifacts in cloned samples, and both the distortions and artifacts
in cloned-replays including compression on multi-hop attacks in the spoofing samples. The perfor-
mance of ATCoP could be further enhanced by the Gammatone cepstral coefficients. To evaluate the
effectiveness of the proposed anti-spoofing system for multi-order replay and cloned-replay attacks
detection, we created a diverse voice spoofing detection corpus (VSDC) containing multi-order replay
and cloned-replay audios against the bonafide and cloned audio recordings, respectively. Experimen-
tal results obtained on VSDC, ASVspoof 2019, Google’s LJ Speech, and YouTube deepfakes datasets
illustrate the effectiveness of the proposed system in terms of accurate detection for a variety of voice
spoofing attacks.
Keywords:Acoustic ternary co-occurrence patterns, Al for multimedia security, Al for voice-based
biometrics in IoT, Anti-spoofing against multiple attack vectors, Deepfakes, Voice spoofing detection.
© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Smart Speakers (SS), such as Google Home, Alexa, etc., that
manage various Voice Controlled Systems (VCSs) of Internet
of Things (IoT) and other voice assistants (e.g. Siri, Cortana,
bixbi) are expected to transform our homes, businesses, and ve-
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hicles to smart ones due to the advancement of voice recogni-
tion system, high accuracy of knowledge-driven question an-
swering engines, and integration of smart speakers with vari-
ous cyber-physical/intelligent systems. Additionally, automatic
speaker verification (ASV) technology has progressed in recent
years and its applications are growing in diverse real-world au-
thentication scenarios involving both the logical and physical
access (Sahidullah et al.(2019)).

In recent years, we have witnessed a tremendous evolution
in voice biometrics from a basic security feature to be an en-
abler for remote communications (Hrabi et al.(2020)). Artifi-
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cial Intelligence (Al)-enabled secure emerging applications use
voice biometrics for access control (e.g. physical facilities),
voice controlled systems in IoT at home and office setup (Ma-
lik et al. (2019)), transaction authentication (e.g. toll fraud
prevention, bank wire transfers), monitoring (e.g. remote time
and attendance logging), information retrieval (e.g. customer
information for call centers, forensics (e.g voice sample match-
ing), and so on. Since voice as an authentication mechanism in
biometrics security has less potential to spread infections com-
pared to other contemporary authentication methods (e.g. face
recognition, finger printing, password entry using keyboard),
deployment of ASV and VCS during the COVID-19 pandemic
is expected to rise in future generation expert systems. How-
ever, VCS and ASV systems pose significant security and pri-
vacy threats as they may be vulnerable to various voice pre-
sentation attacks e.g. replay, cloning, voice conversion, etc.
(Sahidullah et al.(2019); Malik et al. (2019)). In the near fu-
ture, these threats are expected to rise due to proliferation of
smart speakers and VCS, integration of ASV systems in various
online and physical access scenarios, and ease of voice attack
generation on them. For example, voice replay attacks can be
generated easily because of the access of high-quality recording
devices and non-requirement of technical skills (Sahidullah et
al.(2019)). Likewise, the availability of modern-day tools like
Tensorflow or Keras, publicly-available trained models such as
WaveNet (Mwiti (2019)), and low-cost computing machines is
easing the creation of Al-synthesized speech (a type of deep-
fake), also known as cloned voice. Voice cloning is becoming a
vital component of deepfakes where a source speaker’s voice is
also cloned besides the video. These deepfakes have immense
potential to destroy public trust and empower criminals to ex-
ploit business deals or family phone calls. Recently one case
has been reported where the robbers used the synthetic voice of
a company executive’s speech to convince their employees into
transferring a massive amount to a confidential account (Harvel
(2019)). Therefore, unlike existing approaches like Agarwal et
al.(2019) that focus on visual forgeries detection only, audio
forgeries should also be detected.

VCSs in IoT are more vulnerable to voice-based spoofing
attacks compared to traditional devices with voice interfaces.
We have demonstrated that various smart speakers, particularly
Amazon smart devices with drop-in feature (Metz (2021)), and
VCS are not only vulnerable to replay attacks in non-network
environment but are also susceptible to multi-order replay at-
tacks (Malik et al. (2019)). An example of a multi-order replay
attack is shown in Fig. 1(a) where an intruder uses his phone to
play the recorded speech “Alexa, turn off the heat” (first-order
replay) on the baby monitor by hacking the wireless LAN us-
ing tools such as Aircrack (Aircrack-Ng (2021)). Next, this
speech is replayed (second-order replay) to the SS of targeted
person’s home to switch off the heat. Secondly, our analysis
shows that VCS in IoT domain are prone to voice cloning at-
tacks, and we emphasize that the speech cloning attacks will be
more destructive in IoT environment when intruders will com-
bine their social engineering skills in the process of generating
them. Shown in Fig.1(b) is an example of a voice cloning attack
on VCS where a cloned speech is played on VCS through the
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SS to open the garage door. Thirdly, our experimental analy-
sis confirms that VCS in IoT settings are also prone to a hybrid
of cloned and replay attacks—cloned-replay attacks. Shown in
Fig.1(c) is an example of a cloned-replay attack on VCS where
a cloned speech is replayed on SS-2 via SS-1 (1*-order cloned-
replay attack). Later, this 1*'-order cloned-replay is replayed on
SS3 via SS-2 to generate the 2"-order cloned-replay attack that
is then used to open the garage door.

Most of the research has focused on developing robust detec-
tors to detect either voice replay or cloned voice attacks on ASV
(Witkowski et al. (2017); Nagarsheth et al. (2017)). These ex-
isting binary-class-based (Bonafide vs Spoofed) detectors are
not ready to fully combat the emerging threat of different mul-
tiple attacks on ASV systems. For example, results of recent
work show that spoofing detectors trained with a certain group
of spoofing attacks fail to generalize better for other groups of
spoofing attacks (Goncalves et al. (2017); Korshunov Mar-
cel (2016)). In other words, anti-spoofing systems trained with
voice cloning based spoofed speech often offer a degraded per-
formance for replay detection (Paul et al. (2017)). Addition-
ally, no effort has been made to address the replay or cloning
attacks in multi-hop/multi-vector attack scenarios where multi-
ple smart speakers and microphones are chained/linked together
(Fig.1). Therefore, there exists a strong need to develop a uni-
fied anti-spoofing system to reliably detect the replay, cloning
and cloned-replay attacks in multi-hop scenario. Unlike tradi-
tional binary class detectors, our framework models this task
as a multi-class problem because there exists a probability that
one SS is robust against replay attacks, receives data from other
SS (of different vendor) in a chained scenario that is vulnerable
to replay attacks because of a fragile or absent replay detector.
Therefore, the received audio will be considered bonafide, and
the detector will eventually fail for all the linked devices.

To address this need, we present a unified anti-spoofing
framework that can effectively be used to detect multiple cate-
gories of voice spoofing attacks (i.e. multi-order replays, multi-
order cloned-replays, and cloning) using our novel acoustic
ternary co-occurrence patterns (ATCoP) and gammatone cep-
stral coefficients (GTCC) features. It is important to men-
tion that the human speech contains dynamic attributes due
to speaker induced variations, whereas, the synthetic speech
contains unusual prosody i.e., absence of natural pauses, lack
of unvoiced consonants, unusual pitch, and few mispronun-
ciations, etc. These unnatural prosody in cloned voice and
speaker induced variations in bonafide speech demands to de-
velop those features which can analyze these patterns. Thus,
we propose time-domain ATCoP features that are capable of
analyzing and better capturing those distinctive traits of the
bonafide and cloned speech. Further, replay audios include the
microphone induced distortions and cloned audios include the
artificial ‘whine’ which can be reliably captured by both the AT-
CoP and GTCC due to their tolerance against the noise. Thus,
we fused the ATCoP with the GTCCs to create a robust feature
descriptor for voice anti-spoofing system. The major contribu-
tions of our work are:

e We propose a novel acoustic feature descriptor ATCoP to
better capture the microphone induced distortions (also
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Fig. 1. Examples of audio spoofing attacks.

known as microphone signature) from the replay samples,
dynamic speech variations of bonafide signals and artifacts
of cloning algorithms.

We report that VCS are vulnerable to a hybrid voice spoof-
ing attack i.e., cloned-replay which can be generated by
playing the synthetic/cloned audio.

We present that multi-order replay and cloned-replay at-
tacks are feasible and VCSs are unable to detect them.

We present the baseline for a unified anti-spoofing frame-
work that is able to detect the multi-order replay-, cloning-
, and cloned-replay attacks through our ATCoP-GTCC de-
scriptor.

Our anti-spoofing method effectively detects the voice
spoofing attacks in compressed audio samples along-with
the uncompressed audios.

We have performed rigorous experimentation on four dif-
ferent datasets including the hybrid dataset to signify the
effectiveness of our anti-spoofing framework.

2. Related Work

VCSs need a unified anti-spoofing framework to counter
multiple voice spoofing attacks. The selection of features for
audio signal representation is an important step in develop-
ing this unified framework. Additionally, none of the existing
anti-spoofing methods have considered cloned-replay attacks.
This section presents a thorough analysis of existing up-to-date
spoofing detection systems.

2.1. Replay Spoofing Detection Techniques

Existing approaches for replay spoofing detection have ex-
plored different features using either conventional machine
learning classifiers i.e. Gaussian Mixture Model (GMM) or
deep learning models like CNN, RNN, etc.

2.1.1. Conventional Machine Learning (ML) Classifiers-based
Approaches

In Yamagishi et al. (2019), two ASVspoof baseline mod-
els based on constant Q-transform cepstral coefficients (CQCC)
and linear frequency cepstral coefficients (LFCC) were pre-
sented with the GMM classifier for spoofing detection includ-
ing the replays. In Kumar & Bharati (2021), a filtering based
cepstral coefficients (FBCC) based on the discrete cosine trans-
form of log compressed energy variations of the audios were
employed with the GMM for spoofing detection including the
replay attacks.

Few techniques (Nagarsheth et al. (2017); Witkowski et
al. (2017)) have reported the importance of high-frequency
bands analysis to better capture the attributes available in the
replay audios. In Nagarsheth et al. (2017), high-frequency cep-
stral coefficients and CQCC features were employed to gener-
ate the embeddings using a deep neural network. Later, these
embeddings were used to train the SVM for replay detection.
Witkowski et al. (2017) have employed the inverted-MFCC
(IMFCC), linear predictive cepstral coefficients (LPCC), LPC-
Cres, CQCC, MFCC, and Cepstrum features to train the GMM
for replay detection.

Existing studies (Mishra et al. (2018); Saranya et al. (2018);
Yang & Das (2019)) have also highlighted that reverberation,
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Fig. 2. 1*'-order voice spoofing (replay) attack.

channel information, recording and playback device character-
istics should be investigated for replay spoofing detection. In
Saranya et al. (2018), MFCC, CQCC, and Mel-Filterbank-
Slope features were employed with GMM to capture the charac-
teristics of channel and reverberation from the audio for replay
detection.

2.1.2. Deep Learning-based Techniques

Deep learning (DL) techniques have also been employed for
spoofing detectors apart from the conventional ML based meth-
ods. In Cai et al. (2017), the original spectrogram was used
instead of CQCC to train a deep residual network for features
extraction. This method is taxing due to manual data augmen-
tation and achieves higher equal error rate (EER) due to us-
ing only the short time Fourier transform based spectrogram.
MFCC and CQCC were employed in Chen et al. (2017) with
the GMM, DNN and ResNet for replay spoofing detection. Fu-
sion of CQCC-GMM, CQCC-ResNet, and MFCC-ResNet ob-
tained the minimum EER. Fusion of the two deep networks and
GMM makes it less practical to deploy on resource constraint
VCSs. In Bakar et al. (2018), long term average spectrum
(LTAS) and MFCC features were employed to train the DNN
for spoofing detection. Light-weight CNN was employed for
audio spoofing detection in (Lavrentyeva et al. (2017); Lavren-
tyeva et al. (2019)). In Monteiro et al. (2020), an end-to-
end LCNN ensemble model was proposed based on training
a model on the predictions of two separately trained models for
replay and cloning attacks respectively. Although this method
(Monteiro et al. (2020)) outperforms the ASVspoof baseline
model (Yamagishi et al. (2019)), but with increased features
computation cost.

2.2. Voice Cloning Detection Approaches

Existing approaches have employed various magnitude- and
phase-oriented features for synthetic/cloned speech detection.

2.2.1. Phase-oriented Approaches

In Leon et al. (2012), relative phase shift (RPS) features
were extracted from the speech segments of the audio signal
and used with the GMM for speech synthesis detection. Sim-
ilarly, RPS was used with the GMM for synthetic speech de-
tection in Saratxaga et al. (2016). In Janicki (2017), long term

prediction residual signals comprised of 23 different parame-
ters were used with the SVM to classify the human and cloned
speech. In Wester et al. (2015), MFCC and cosine-normalized
phase (cos-phase) features were used with the GMM-Universal
background model for voice cloning detection.

2.2.2. Magnitude-oriented Approaches

In Patel & Patil (2015), cochlear filter cepstral coefficients
(CFCC) and CFCC-instantaneous frequency (CFCCIF) fea-
tures were used with the GMM for audio spoofing detection.
In Wu et al. (2013), modulation features were used to design a
model for synthetic speech detection. For this purpose, MFCC
and modified group delay cepstral coefficients (MGDCC) fea-
tures were extracted from the magnitude and phase spectrums,
respectively, and used by the GMM to classify the speech as
bonafide or clone. Malik (2019) employed the higher-order
spectral analysis (HOSA) features and gaussian and linearity
tests to capture the traces of generative models for bonafide and
cloned audio detection.

3. Analysis of Single- and Multi-order Audio Spoofing

Voice spoofing attacks can be employed to exploit both the
ASV and VCSs. We categorize these attacks into replays,
cloning, and cloned-replay (Fig.1), and these can be either
single- or multi-order.

We model the first-order voice spoofing attack (replay) de-
picted in Fig.2 (bottom) as microphone-speaker-microphone
(MSM) processing chain. This is similar to three second-order
systems in cascade. Therefore, this MSM chain (demonstrat-
ing a 1¥-order replay attack) is anticipated to add higher-order
non-linearities because of the cascade of the MSM chain. More
specifically, this MSM chain introduces beyond 7”*-order non-
linearity in the replay signal. Higher-order audio replay and
cloned-replay attacks are likely to generate stronger higher-
order harmonic distortions (HoHDs) in the replay samples
(Fig.1). Conversely, bonafide voice samples lack MSM pro-
cessing chain and likely to present lesser HoHDs. Therefore,
we argue that the HoHDs can be used to discriminate between
a bonafide and spoofed voice sample. Spectral features i.e.,
MFCC, GTCC, etc., or time-domain features i.e., ATCoP can
be employed to capture the artifacts of these HoHDs.
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signal to reveal the details of distortions/artifacts.

Unlike replay and cloned-replay attacks where harmonic dis-
tortions exist due to MSM chain, voice cloning attacks are ex-
pected to be more linear compared to the bonafide sample. This
is because the process of synthetic speech generation is com-
paratively more linear than the bonafide speech generation pro-
cess that consists of non-linear sub-processes i.e., respiration,
phonation, resonance, and articulation. The bonafide audio
recording consists of several components that are input speech
signal s(#), environment distortion (reverberant signal r(¢) and
background noise 7(f)), microphone distortion 7,,(f), encoding
distortion 7,(f), and transcoding distortion 7,(f). Let h,,(f) be
the microphone impulse response and £,(r) be the room impulse
response; we can express the digital audio recording signal as:

X(1) = hp(8) X hn (1) X () + B (2) X () + (1) + 7:(2) - (1)

Contrarily, cloned voice generation does not include any
recording mechanism and thus considered linear compared to
the bonafide speech. Additionally, cloned voice will not con-
tain microphone fingerprints like those found in the bonafide
audio signal. Therefore, we hypothesize that acoustic and spec-
tral characteristics of cloned signal should be different than the
bonafide ones, and ATCoP and GTCC should be able to detect
these differences with high accuracy.

In our prior work (Malik et al. (2019); Malik (2012)), we
have demonstrated that replay attacks add HoHDs and em-

ployed the HOSA to capture these nonlinear distortions. How-
ever, HOSA features are less feasible for VCSs because of
higher computational cost. Additionally, there exists a need to
develop robust audio features which are capable of effectively
detecting multiple spoofing attacks. To support our claims
and need of robust features, we discuss an example of replay
attacks. We created the plots of GTCC features (Fig.3) for
bonafide (left), 1*-order (center), and 2"-order replay (right)
audios to show the effectiveness of our ATCoP-GTCC features
to better capture the harmonic distortions. Fig. 3 reveals that
replay attacks add harmonic distortions (highlighted ellipses)
in the replay samples; and our proposed features can capture
these distortions. From Fig.3, we can also observe that these
distortions are more prominent in 2"-order replay audios as
compared to the 1*'-order replay audios. This fact endorses our
claim that higher-order audio spoofing attacks are more likely
to instigate stronger HoHDs in the audios.

4. Unified Voice Spoofing Detection Framework

This section provides a detailed discussion of the proposed
unified anti-spoofing framework. The details of the proposed
novel ATCoP-GTCC features are presented in this section. The
framework of our system is presented in Fig.4.
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4.1. Features Extraction

For accurate spoofing detection, we need to develop robust
features that can better extract the unique traits of bonafide and
spoofed audios. For this purpose, we introduce a novel hybrid
ATCoP-GTCC features to detect various diverse voice spoofing
attacks. We provide the details of the proposed features extrac-
tion methods below.

4.1.1. Acoustic Ternary Co-occurrence Patterns

The 1-D acoustic patterns i.e. local binary patterns (LBP), lo-
cal ternary patterns (LTP) (Adnan et al. (2018)) have been em-
ployed in various audio processing applications including the
audio spoofing detection. However, these descriptors have cer-
tain limitations such as LBP is sensitive to noise, and possibility
of different LBP codes generation for the same class that makes
it less effective for bonafide vs spoof classification. On the other
hand, LTP employs a fixed threshold-based method that is not
much robust over dynamic patterns that exist in the spoofed au-
dios. The limitations of these existing acoustic patterns moti-
vated us to propose a novel feature representation i.e. ATCoP
for 1-D acoustic signals. ATCoP encodes the co-occurrence
of similar ternary patterns between the center and neighboring
samples without needing any threshold. Additionally, ATCoP
provides an effective representation of the audio that can reli-
ably be used to better capture the characteristics of bonafide
and spoofed speeches.

Let X[n] be an audio signal with N samples divided into m
overlapping frames F(i) having 17 samples in each frame with
a step-size of 8, where i = 1, 2, ..., m. In each frame F(i), ¢
denotes the central sample (Fig. 5(a)). We divide each frame
into two windows w; and w, having adjacent neighbors z;,; and
far away neighbors z/,, as shown in (Fig. 5(b)), where j is the
neighboring index w.r.t the sample c. w; consists of 4 adja-
cent neighbors on each side of the central sample c that is high-
lighted in blue color in F (i) (Fig. 5(b)). Whereas, w; consists of
remaining 8 samples in F(i) that is highlighted in green color
in Fig. 5(b). To compute the ATCoP, we first calculate the
1*"-order derivative between the central and each neighboring
sample in w; and repeat this process for w, as shown in Egs.
(2) and (3). ) )

D(zy1,¢) =z — ¢

(@)

3

where z},; and 2}, represent the neighboring samples of w;
and wy, respectively. D(z},;, ¢) and D(z},», ¢) represent the first-
order derivatives computed between the center and neighboring
samples in w; and w; respectively. Next, we code them accord-
ing to the sign of first-order derivative as follows:

D(Z)n,0) =z — ¢

4
29 D(Z{VI’C) <0 ( )

Pz, ) = {1’ D0 > 0
D(z),¢) > 0,

D(zl2,¢) <0 ©)

. 1,
Pi(z)2,¢) = {2’
where P,(z{'vl,c) and Pl(z{;.z, ¢) represents the assigned codes
to the samples of w; and w,, respectively. Next the samples
of the corresponding locations in w; and w, are compared to
generate the ternary values as follows:

F(Pi(Zh1,0), Pi(zh2)),

TCoP(2/,c) = { f(Pa(z)1, ), Pa(th2)),s s (6)
F(Ps(@1,0), Ps(zha))
where,
I, ifx=y=1
TCoP(Z/,c) =42, ifx=y=2 @)
0, ifx#y

where TCoP(z/,c) represents the ternary patterns. We fur-
ther divide the ternary patterns into two binary patterns that are
upper patterns TCoP,, (.) and lower patterns TCoPy,, (.). We
retain all values of 1 in TCoP,, (.) and replaced the rest with
zeros as follows:

1,
0,

ifTCoP(z/,c) = 1
Otherwise

TCoP*’(/,c) = { (®)

Likewise, we retain all values of 2 in TCoP),,(.) while replac-
ing the rest with zeros as follows:
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Next, we adopt the concept of picking uniform patterns over
non-uniform patterns (Ojala (1996)). The uniform patterns
hold significant attributes of the signal, whereas, non-uniform
patterns mostly contain the redundant information. We com-
puted the uniform patterns, TCoP,"(.) and TCoP"(.) from the
TCoP"(.) and TCoP™(.) as depicted in Fig. 5(c), and rep-
resented these ternary co-occurrence patterns in decimal form
as:

=

TCoP{(Z/,c) = ) TCoPi(,c) x 2/ (10)
Jj=0
J=1

TCoPY(Z/,¢) = Z TCoPY(Z/,c) x 2/ (11)
Jj=0

where the TCoP, value represents the number of bit-wise tran-
sitions (0/1 changes) in the pattern. The co-occurrence patterns
with minimal transitions are considered uniformi.e., 11111111
and 00000001 patterns have uniform values of 0 and 1 respec-
tively. After computing the TCoP,” and TCoPY, we calcu-
late the histograms of these uniform patterns. We assign one
histogram bin for each uniform pattern and include all non-
uniform patterns in a single bin to ensure reducing only the
redundant information from the input sample (Fig. 5(d)).

K
HTCoP""(TCoP",n) = Z S(TCoP"" )
k=1

(12)

K
HTCoP¥(TCoP",n) = Z S(TCoP}",n)
k=1

(13)

where n shows the histogram bins corresponding to the uniform
ATCoP codes and 4(.) is the Kronecker delta function. We per-
formed substantial experiments to generate these ATCoP codes
by selecting different number of bins for uniform patterns. Af-
ter detailed experimentation, we observe that the first 20 uni-
form patterns from each of TCoP,” and TCoP!" were enough
to capture the distortions in replay, artifacts in cloning, and dy-
namic speech variations of bonafide samples. Therefore, we
create a 20-D ATCoP code each for TCoP,"” and TCoP" and
fused them to generate a 40-D ATCoP features as follows:

ATCoP = [HTCoP;’ u HTCoP™™] (14)

where | | represents the concatenation operator for vectors.

Analysis of ATCoP Features. Due to the vulnerability of the
smart speakers against different voice spoofing attacks, we need
a robust anti-spoofing system that should investigate the fol-
lowing facts while designing the features: (i) the microphone
introduces a layer of non-linearity because of inter-modulation
distortions, which introduce the discernible patterns, (ii) in-
troduction of the higher-order non-linearities in consequent



recordings of the given recording make these audios more dis-
tinct, (iii) voice cloning methods also add the algorithmic arti-
facts, and iv) presence/absence of dynamic speech variations in
bonafide/cloned voice. Hence, these facts must be considered
while proposing a robust voice anti-spoofing system.

Our ATCoP features are developed to capture the traces of
unique attributes of bonafide and spoof audios in time domain.
To justify the effectiveness of our ATCoP features for distinct
representation of bonafide and various categories of spoof au-
dios, we created the detailed graphs of ATCoP features for the
bonafide, cloned, replay, and cloned-replay audios as shown
in Fig. 6. For each analysis, we selected the audios of same
speaker for both the bonafide and spoof categories for fair com-
parison. We plotted the ATCoP features of bonafide, 1st-order
replay, and second-order replay for VSDC audios in Fig. 6(a).
Likewise, features of bonafide and replay for ASV-spoof PA,
and bonafide and cloned for ASV-spoof LA corpus are pre-
sented in Fig. 6(b) and (c) respectively. Finally, ATCoP features
for cloned, 1st-order cloned replay, and second-order cloned re-
play are shown in Fig. 6(d). By analyzing the peaks of these
graphs, we can conclude that our ATCoP features give distinct
representation for bonafide and different categories of spoof au-
dios at same feature-points. This analysis demonstrate that AT-
CoP features can reliably be used to represent the input audios
for spoofing detection problem.

4.1.2. Gammatone Cepstral Coefficients (GTCC)

Spectral features such as GTCC, MFCC, etc., can be em-
ployed to capture the non-linearities in frequency scale of the
input audio signal. MFCC features have been explored for var-
ious audio processing applications due to its effectiveness to
capture the significant attributes of the acoustic signal. Re-
cently, GTCC features have also been employed due to their en-
hanced filter response that better resemble the human auditory
system. We employed the GTCC features with our ATCoP fea-
tures for voice spoofing detection due to two reasons: i) GTCC
are more tolerant to noise over MFCC (Cooper (2013)), and
ii) provide marginally better classification performance over
MFCC with comparable computational cost. The ability of
GT filter to offer more frequency components in low-frequency
band and less frequency components in high-frequency band al-
lows us to better capture the non-linearities in the audio signal.

For GTCC extraction, we employed the fast Fourier trans-
form (FFT) on the input audio signal. Next, the gammatone fil-
ter bank consisting of different GT filters is applied to the FFT
to compute the energy of each sub-band. The discrete cosine
transform is applied on the log of each energy band to extract
the GTCC features as shown in Fig.7, where we obtain a 13-D
GTCC features vector. It is to be noted that 13 to 20 coeffi-
cients are considered enough for optimal audio analysis. Thus,
we extracted 13 GTCC coefficients and later fused them with
the proposed novel ATCoP features for audio signal representa-
tion.

4.2. classification

To address the multi-class classification problem, we em-
ployed the error correcting output codes (ECOC) framework

8

(Escalera et al. (2009)) by combining three binary classifiers.
ECOC model generates a codeword against each class during
encoding and predict the class of given test sample at the de-
coding phase.

Since we have three classes for replay and cloned-replay de-
tection, we train three binary learners using two classes at a
time to obtain a 3-digit codeword for each class. Each bit of
the codeword specifies the response of the given binary learner.
More precisely, we used three codes -1,0,1 during the encod-
ing to ignore one class and compare the other two in the one
vs one approach (Table 1). So, our ternary coding matrix for
three classes is shown in Table 1, where the 3-bit error correct-
ing output code word is presented for three-class classification.
Each class is assigned a unique 3-bit code-word. One binary
classifier is learned for each column during the training. As
shown in Table 1, first learner (L-1) is trained to separate class
1 and 2, second learner (L-2) is trained to separate class 1 and
3, whereas, the third learner (L-3) is trained to distinguish class
2 and 3. For each column, O is used to ignore the third class
while the remaining two classes are used in the classification
process. Three binary classifiers are trained in this way.

At decoding, all of these three binary classifiers are evaluated
to obtain a 3-bit code. We employed the hamming distance to
compute the closest match between this 3-bit code and the as-
signed code-words of each class. Finally, we select the class of
the input audio as the one whose code-word has minimum dis-
tance with the 3-bit code of the sample. Our ECOC framework
uses three binary SVM learners for spoofing detection.

5. Experimental Setup and Results

5.1. Dataset

Performance of our system is measured on in-house created
VSDC (Baumann et al. (2021)), ASVspoof 2019 (Yamagishi et
al. (2019)), Google’s LJ Speech (Ito & Johnson (2021)), and
YouTube deepfakes (Agarwal et al. (2019)) datasets. VSDC is
designed for single- and multi-order voice replay and cloned-
replay attacks detection for diverse and challenging scenarios.
VSDC comprises both the first- and second-order replay audios
against the bonafide ones, unlike ASVspoof (Yamagishi et al.
(2019)) that contains only the first-order replay samples against
the bonafide. Our VSDC (Baumann et al. (2021)) is diverse in
terms of environment, configurations, speaker genre, recording
and playback devices, recording and playback configurations,
and number of speakers (Table 2). Each bonafide and replay
audio sample in our dataset is 6 seconds in duration. Since we
introduce a new spoofing threat, cloned-replay, that represents
the recording of cloned voice sample, we used the ASVspoof
synthetic samples to generate the first- and second-order cloned
replay samples. Our VSDC is publicly available and more de-
tails can be found at (Baumann et al. (2021)).

ASVspoof 2019 dataset (Yamagishi et al. (2019)) contains
the logical access (cloning) and physical access (replay) sam-
ples for training, development and evaluation. Training, devel-
opment, and evaluation sets for replay contain 54 000, 33 534,
and 153 522 samples, respectively. Whereas, training, develop-
ment, and evaluation sets for voice cloning contain 25 380, 24
844 and 71 933 samples, respectively.
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LJ Speech is a public domain dataset consisting of 13 100
bonafide audio samples. The duration of voice samples of
this dataset varies from 1 to 10 seconds with a total length of
24 hours. Each voice sample is recorded with sampling rate
of 22050 Hz. We employed Google’s cloning model (Kang
(2021)) to generate 1500 spoofing samples and later used these
bonafide and cloned samples for voice cloning detection.

Deepfakes corpus (Agarwal et al. (2019)) contains different
YouTube videos of various US politicians with average length
of 1.5 hours. The audio streams of these videos are also forged,
and we used them to evaluate our framework.

5.2. Performance Evaluation of Proposed Anti-spoofing Sys-
tem

Performance of the proposed system is measured using the
min-tDCF, and EER. We designed separate experiments to de-
tect the replay, cloning, and cloned-replay attacks. For replay
experiments, we computed the results on both the ASVspoof
2019 and VSDC. For speech synthesis, we used ASVspoof
2019, LJ Speech, and YouTube deepfakes datasets, whereas,

we used the VSDC corpus for cloned-replay detection. The de-
tails of datasets division for experimentation are presented in
Table 2.

5.2.1. Detection Performance of ATCoP, GTCC, and fusion

We conducted an experiment to investigate the performance
of ATCoP, GTCC, and their fusion for audio spoofing detection.
For this purpose, we employed the ATCoP features with SVM
for replay detection (on ASVspoof 2019 and VSDC datasets
separately), synthetic speech/cloning detection (on ASVspoof
2019 and LJSpeech datasets separately), and cloned-replay de-
tection on VSDC. The results are provided in Table 3. We re-
peated this experiment for the evaluation of GTCC and ATCoP-
GTCC features. From these results, we found that the AT-
CoP offers better performance as compared to the GTCC, but
ATCoP-GTCC fusion performed the best. Thus, we employed
the ATCoP-GTCC features for audio spoofing detection.



Table 1. Coding matrix design for 3 class classification.

L-1 L-2 L-3
C-1 1 1 0
C-2 -1 0 1
C-3 0 -1 -1
Table 2. Datasets division for experi tation
Dataset Training Testing
Division  Number of Samples  Division ~ Number of Samples
ASVspoof-PA Train 54,000 Eval 1,53,522
ASVspoof-LA Train 25,380 Eval 71,933
VSDC 70% 8397 30% 3603
LJSpeech 70% 18,340 30% 7860
YouTubes Deepfakes 70% 63 30% 27

Table 3. Comparative analysis of ATCoP, GTCC, and ATCoP-GTCC.

Spoofing Dataset Features min-tDCF EER%
ATCoP 0.097 2.80
ASVspoof ~ GTCC 0.211 8.35
Replay ATCoP-GTCC  0.064 1.00
ATCoP 0.079 2.10
VSDC GTCC 0.21 7.98
ATCoP-GTCC  0.056 0.90
ATCoP 0.059 0.80
ASVspoof  GTCC 0.132 6.10
Synthesis/Cloning ATCoP-GTCC  0.011 0.10
ATCoP 0.007 0.10
LJSpeech GTCC 0.019 0.28
ATCoP-GTCC 0.0 0.0
Cloned ATCoP 0.05 0.90
Replay VSDC GTCC 0.19 3.99
ATCoP-GTCC  0.002 0.03

Table 4. Replay detection results.

Dataset SVM Kernel

Linear
Quadratic
Cubic
RBF

VSDC

Linear
Quadratic
Cubic
RBF

ASVspoof

min-tDCF EER%
0.503 25.00
0.078 2.00
0.0576 0.90
0.05 0.75
0.068 1.50
0.064 1.00
0.064 1.00
0.068 1.50

5.2.2. Detection Performance of the Proposed ATCoP-GTCC
Features for Replay Attack Detection

We used our ATCoP-GTCC features to train the SVM using
different kernels on both the VSDC and physical access (PA)
collection of ASVspoof datasets and results are presented in Ta-
ble 4. For VSDC, we obtained the lowest min-tDCF and EER
of 0.05 and 0.75% on the radial basis function (RBF) kernel,
respectively. For ASVspoof 2019 corpus, we obtained the low-
est min-tDCF and EER of 0.064 and 1% on quadratic and cubic
kernels. We can observe from Table 4 that the SVM tuned with
higher-order polynomial (cubic) and RBF kernels gives supe-
rior performance over other kernels on both datasets.

From the results, we observed that SVM tuned on higher-

order polynomial kernel better captures the non-linearities exist
in multi-order replay audios. As expected, SVM with linear
kernel attains the highest min-tDCF. We also found that 37%-
order polynomial (cubic) kernel provides better classification
over 2"-order polynomial (quadratic) for multi-order replay
detection. This demonstrates the effectiveness of the cubic ker-
nel in differentiating the non-linearities available in multi-order
audio replays. Therefore, we argue that the proposed features
with SVM tuned on the cubic kernel effectively detects the non-
linearities in the replays.



Table 5. Speech synthesis detection results.

Dataset SVM Kernel

Linear
Quadratic
Cubic
RBF

ASVspoof

Linear
Quadratic
Cubic
RBF

LJSpeech

min-tDCF EER%
0.078 2.00
0.05 0.75
0.047 0.70
0.05 0.75
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

5.2.3. Detection Performance of the Proposed ATCoP-GTCC
Features for Speech Synthesis (Voice Cloning) Detection
Performance of the proposed anti-spoofing framework is also
evaluated on logical access (LA) collection of ASVspoof 2019
and LJ Speech 1.1 datasets for voice cloning detection. For this
purpose, we used our features to train the SVM for classifica-
tion of audio as bonafide or spoof and results obtained on the
SVM using different kernels are provided in Table 5.

From the results (Table 5), we can observe that the SVM
tuned on higher-order polynomial (cubic and quadratic) and
RBF kernels provide remarkable classification performance. It
is to be noted that SVM tuned with cubic kernel performs
marginally better than quadratic and RBF kernels. More specif-
ically, we obtained min-tDCF and EER of 0.047 and 0.7% on
ASVspoof 2019 LA dataset. On the other hand, we obtained
the optimal 0.0 min-tDCF and 0% EER for voice cloning de-
tection on LJ Speech dataset. This remarkable performance is
attributed to the fact that these cloned samples do not have mi-
crophone signatures which our framework successfully detects.

5.2.4. Detection Performance of the Proposed ATCoP-GTCC
Features for Cloned-Replay Attack Detection

We used the ASVspoof 2019 LA dataset of cloned voices of
different speakers to create the first- and second-order cloned
replay recordings. We extracted the features from these cloned
and cloned-replay samples (1*- and 2"?-order) and train the
SVM for classification, and results are reported in Table 6. We
conclude from these results that SVM provides remarkable re-
sults on all kernels to classify among the cloned, 1¥'- and 2"¢-
order cloned audio replays. However, higher-order polynomial
kernel (cubic) achieves best results with a small margin. More
specifically, we obtained min-tDCF of 0.002 and EER of 0.03%
on the cubic kernel of SVM.

5.2.5. Evaluation of Proposed ATCoP and Spectral Features
Fusions

To justify the robustness of our features for voice spoofing
detection, we created different combination of features using
our ATCoP and spectral features (Table 7). For classification,
we employed the SVM and results are presented in Table 8 to
10.

The results of replay attack detection are presented in Ta-
ble 8. From Table 8, we can see that our proposed ATCoP-
GTCC features outperform others and attained the min-tDCF
and EER of 0.0576 and 0.9% on VSDC, and 0.064 and 1% on

the ASVspoof dataset. Whereas, we obtained the highest min-
tDCF of 0.084 and 0.137 on MFCC-GTCC-spectral features for
VSDC and ASVspoof PA datasets respectively.

Similarly, we provided the results of voice cloning/speech
synthesis detection in Table 9. Again, our ATCoP-GTCC
features provide better results over other features by attain-
ing min-tDCF of 0.043 and 0.0. Whereas, MFCC-GTCC-
spectral achieved the highest min-tDCF of 0.099 and 0.021 for
ASVspoof and LJ Speech datasets, respectively. It is important
to mention that for LJ Speech dataset, all features fusion con-
taining ATCoP features achieve an optimal min-tDCF of 0.0.
However, our ATCoP-GTCC features outperform other features
on the ASVspoof LA dataset.

Finally, we evaluated the performance of all feature com-
binations for cloned-replay detection on VSDC cloned-replay
collection, and results are provided in Table 10. Similar to
the other experiments, we also achieved the best results for
cloned-replay detection using our proposed features. More
specifically, we obtained min-tDCF of 0.028 on MFCC-GTCC-
spectral, 0.064 on ATCoP-spectral, 0.021 on ATCoP-MFCC,
and 0.002 on our ATCoP-GTCC features.

We can observe from the results presented in Table 8 to
10 that the proposed ATCoP-GTCC features outperform other
features-sets. More specifically, we obtained the lowest min-
tDCF of 0.0576 for replay attacks detection, optimal 0.0 for
voice cloning detection, and 0.002 for cloned-replay detec-
tion. These results illustrate the effectiveness of the proposed
features for accurate spoofing detection. In short, our novel
ATCoP-GTCC features lay the foundation for a unified anti-
spoofing framework capable of reliable detection of multiple
types of voice spoofing attacks.

5.3. Comparative Analysis using Different Classifiers

We designed an experiment to compare the performance of
the proposed features on other machine learning classifiers for
replay, cloned-replay, and speech synthesis detection. For this,
we used our ATCoP-GTCC features to train the conventional
ML and DL classifiers and results are reported in Table 11.

5.3.1. Decision Trees Classification

For decision trees (Breiman et al. (2017)), we computed the
classification results on different depths i.e. fine, medium and
coarse, where fine-level has more depth and coarse-level has
least depth in tree structure. It is to be noted that decision trees



Table 6. Cloned replay detection results.

Dataset SVM Kernel
Linear
. Quadratic
ASVspoof Cubic
RBF

min-tDCF EER%
0.011 0.17
0.007 0.10
0.002 0.03
0.01 0.15

Table 7. Feature vectors.

Feature-vector Features

Spectral-MFCC-GTCC
40-D

ATCoP-Spectral 51-D
ATP-MFCC 53-D
ATP-GTCC 53-D

ATCoP [40-D], Spectral [11-D]
ATCoP [40-D], MFCC [13-D]
ATCoP [40-D], GTCC [13-D]

GTCC [1-13], MFCC [1-13], Spectral (Kurtosis, Skewness, Slope, Centroid, Flatness, Entropy, Decrease,
Rolloff point, Flux, Crest, Spread), Energy

Table 8. Comparative analysis of the proposed and other spectral features for replay attacks detection.

Dataset Features min-tDCF EER%
MFCC-GTCC-Spectral ~ 0.084 2.33
ATCoP-Spectral 0.108 4.60

VSbe ATCoP-MFCC 0.065 1.16
ATCoP-GTCC 0.0576 0.90
MFCC-GTCC-Spectral ~ 0.137 6.75

) ATCoP-Spectral 0.064 1.00

ASVspoof  \rcop-MECC 0.064 1.00

ATCoP-GTCC 0.064 1.00

Table 9. Comparative analysis of the proposed and other spectral features for speech cloning detection.

Dataset Features min-tDCF EER%
MFCC-GTCC-Spectral ~ 0.099 3.00
ATCoP-Spectral 0.053 0.80

ASVspoof rcop-MFCC 0.05 0.75
ATCoP-GTCC 0.043 0.65
MFCC-GTCC-Spectral ~ 0.021 0.30
ATCoP-Spectral 0.0 0.0

LiSpeech  xrcop-MFCC 0.0 0.0
ATCoP-GTCC 0.0 0.0

Table 10. Comparative analysis of the proposed and other spectral features for cloned replay detection.

Dataset Features min-tDCF EER%
MFCC-GTCC-Spectral ~ 0.028 0.40
ATCoP-Spectral 0.064 1.00

VSbC ATCoP-MFCC 0.021 0.30
ATCoP-GTCC 0.002 0.03

trained at fine-level performed best for all types of spoofing de-
tection. The results on decision trees tuned at fine-level are
shown in Table 11.

5.3.2. Naive Bayes Classification

For Naive Bayes (Fu et al. (2010)), we computed the re-
sults using the gaussian and kernel distributions. For replay
detection, we obtained the min-tDCF of 0.651 and 0.478 with
gaussian distribution, and 0.528 and 0.421 with kernel distri-
bution on VSDC and ASVspoof PA datasets, respectively. For
voice cloning, we obtained the min-tDCF of 0.139 and 0.0 on
gaussian and 0.097 and 0.0 on kernel distribution for ASVspoof
LA and LJ Speech datasets. Similarly, for cloned replay detec-

tion, we obtained the min-tDCF of 0.106 and 0.067 on gaussian
and kernel distributions, respectively. We observed from the
experiments that Naive Bayes using the kernel distribution out-
performs the gaussian distribution for voice spoofing detection,
however with higher computational cost and memory. The re-
sults on Naive Bayes using the kernel distribution are shown in
Table 11.

5.3.3. K-Nearest Neighbor (KNN) Classification

For KNN (Zhang et al. (2017)) experiments, we tuned three
parameters i.e number of neighbors k,, distance weights d,,,
and distance metric d,. We measured the performance on
three different values of k, (1, 10, 100), three different d,,



(Euclidean, cubic, cosine), and two variations of d,, (equal,
squared inverse). For all three spoofing categories, we obtained
best results on weighted-KNN (k,=10, d,, = squared inverse,
d,,=Euclidean) for all datasets, as shown in Table 11.

5.3.4. Ensemble Learning Models

We also evaluated our method on different ensemble classi-
fiers (Dietterich (2000)) i.e. bagged trees (Sun et al. (2018)),
boosted trees (Hubacek et al. (2019)), RUSBoosted trees
(Moeyersons et al. (2017)), subspace discriminant (Hang et al.
(2015)), and subspace KNN (Zhang et al. (2019)). We achieved
best results on ensemble bagged trees and worst on RUSboosted
trees for all types of spoofing detection. For replay detec-
tion, we obtained the min-tDCF of 0.115 and 0.104 on bagged
trees, and 0.512 and 0.601 on RUSboosted trees for VSDC and
ASVspoof PA datasets, respectively. For cloning detection, we
obtained the min-tDCF of 0.068 and 0.0 on bagged trees, and
0.448 and 0.142 on RUSboosted trees for ASVspoof LA and
LJ Speech datasets, respectively. For cloned-replay detection,
we obtained the min-tDCF of 0.032 and 0.097 on bagged- and
RUSboosted-trees. The results on ensemble bagged trees are
presented in Table 11.

5.3.5. Deep Learning Classification

For deep learning, we selected the BiLSTM recurrent deep
learning method (Graves et al. (2005)). As recurrent DL mod-
els are better suited to analyze the sequential and time series
data, therefore, we selected the BIiLSTM framework among
other deep learning models. For experimentation, we tuned the
network on 200 hidden units, tanh state activation function, sig-
moid gate activation function, maximum epochs of 200, mini-
batch size of 64, and 5 hidden layers, as optimal results were
obtained on these settings (Table 11).

5.4. Hybrid Dataset Evaluation

The objective of this experiment is to assess the performance
of proposed anti-spoofing framework on more diverse audio
samples. Since both the ASVspoof 2019 and VSDC datasets
have different characteristics (e.g. sampling rate, speakers, mi-
crophone and playback devices, environments, etc), therefore,
we have created a hybrid dataset comprising of bonafide and
spoof samples of the ASVspoof and VSDC. Since the VSDC
consists of only the bonafide and replay samples, therefore, we
have also selected the replay collection (PA) of ASVspoof 2019
dataset. For this experiment, we have taken 8,000 audio sam-
ples from the training set of ASVspoof PA collection and 8,000
bonafide and 1¥-order replay audios from the VSDC. Next, we
used 70% audios (11,200) for training and rest 30% audios
(4,800) for testing and achieved the min-tDCF of 0.227 and
EER of 9.1%. From the results, we can observe that our anti-
spoofing framework achieves better classification performance
even on more diverse audio samples.

5.5. Discussion

The proposed ATCoP-GTCC features effectively detect dif-
ferent kinds of voice spoofing attacks that are evaluated on four
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different datasets. We provided the comparative results ob-
tained on different classifiers for audio spoofing detection in
Table 11. From the results, we found that SVM was the best
and Naive Bayes was the worst performer for all types of spoof-
ing. More precisely, SVM achieved the lowest min-tDCF and
EER of 0.0 and 0%, 0.0576 and 0.9%, and 0.002 and 0.03%
for cloning, replay, and cloned-replay detection, respectively.
Thus, we argue that SVM can reliably be used with the pro-
posed features to detect any kind of voice spoofing attack.

We performed one experiment to investigate the effect of
compressed replays generation against the bonafide samples. In
our dataset, we first used Bluetooth speakers for voice replays
generation then we obtained the compressed 1%-order and 2-
order replay audios. For this, we selected 1269 bonafide, first-
and second-order replay audios. We extracted the proposed fea-
tures for these samples and trained the SVM for replay attacks
detection. We obtained lower min-tDCF and EER values on
these samples compared to all samples. More specifically, we
obtained the lowest min-tDCF and EER of 0.032 and 0.5% for
compressed replay samples compared to 0.057 and 0.9% over
all samples. We conclude from this experiment that compressed
spoofing samples are easier to detect than uncompressed sam-
ples due to the fact that the microphone distortions are relatively
weak in compressed samples. This also complements our con-
clusion that cloned replay samples are easier to detect due to
weak microphone distortions.

Additionally, it is also important to understand that micro-
phone non-linearities do contribute to microphone induced dis-
tortions, but it is not the only source of distortion. Separation
and estimation of each distortion component, e.g., device non-
linearity, material or fabrication imperfections, etc., for non-
Gaussian inputs (e.g., speech signals) is a challenging task. In-
tuitively, the replay process amplifies this microphone induced
distortions which can be captured via ATCoP-GTCC features.
Moreover, human voice holds dynamically induced vocal-tract
variations as compared to synthetic speech. For example, nat-
ural pauses of the human speech production model are miss-
ing from the synthetic speech generated by voice cloning al-
gorithms (Mwiti (2019)). On the other hand, cloned voice
sounds similar and contains unusual prosody. The results indi-
cate that our ATCoP-GTCC performs remarkably well for syn-
thetic speech detection which proves that ATCoP-GTCC is able
to reliably capture the dynamically variant characteristics of
bonafide speech and algorithmic traits of the synthetic speech.

5.6. Comparative Analysis with Existing Methods

To measure the effectiveness of our unified anti-spoofing
framework, we compared our system against existing state-of-
the-art voice anti-spoofing methods (Yamagishi et al. (2019);
Kumar & Bharati (2021); Li et al. (2021); Monteiro et al.
(2020); Lavrentyeva et al. (2019)) on ASVspoof 2019 dataset
(Table 12). We employed the ASVspoof 2019-PA-Train/Eval
sets for training/testing the proposed and all the compara-
tive methods for replay spoofing and ASVspoof 2019-LA-
train/Eval for training/testing the cloning spoofing detection.
The proposed method outperforms the contemporary voice
cloning detection methods by achieving the lowest min-tDCF



Table 11. Comparative Analysis of different classifiers with ATCoP-GTCC features.

Dataset Classifiers Replay Cloning Cloned Replay
min-tDCF EER% min-tDCF EER% min-tDCF EER%
Decision Trees 0.389 17.83 - - - -
Naive Bayes 0.528 27.00 - - - -
VSDC KNN 0.058 0.92 - - - -
Ensemble Models 0.115 1.83 - - - -
BiLSTM 0.313 13.10 - - - -
SVM 0.0576 0.90 - - - -
Decision Trees 0.216 9.00 0.121 5.00 0.048 0.75
ASVspoof Naive Bayes 0.421 19.75 0.097 2.80 0.067 1.41
2019 KNN 0.137 6.75 0.078 2.00 0.032 0.50
Ensemble Models 0.104 4.50 0.068 1.50 0.032 0.50
BiLSTM 0.308 12.70 0.081 2.20 0.032 0.50
SVM 0.064 1.00 0.05 0.75 0.002 0.03
Decision Trees - - 0.0 0.0 - -
Naive Bayes - - 0.0 0.0 - -
LJSpeech KNN - - 0.0 0.0 - -
Ensemble Models - - 0.0 0.0 - -
BIiLSTM - - 0.0 0.0 - -
SVM - - 0.0 0.0 - -
Table 12. Performance comparison with existing contemporary anti-spoofing methods.
Spoofing Dataset Methods min-tDCF EER%
CQCC-GMM baseline (Yamagishi et al. (2019)) 0.2454 11.04
LFCC-GMM baseline (Yamagishi et al. (2019)) 0.3017 13.54
FBCC-GMM (Kumar & Bharati (2021)) 0.25 10.36
Replay ASVspoof 2019-PA-Eval Stat-SE-Res2Net50 (Li et al. (2021)) 0.027 1.00
LFCC+ProdSpec+MGDCC-CNN (Monteiro et al. (2020))  0.07 2.015
CQT+LFCC+DCT-LCNN (Lavrentyeva et al. (2019)) 0.0122 0.54
ATCoP+GTCC-SVM (Proposed Method) 0.064 1.00
CQCC-GMM baseline (Yamagishi et al. (2019)) 0.236 9.87
LFCC-GMM baseline (Yamagishi et al. (2019)) 0.212 11.96
FBCC-GMM (Kumar & Bharati (2021)) 0.155 6.16
Cloning ASVspoof 2019-LA-Eval Stat-SE-Res2Net50 (Li et al. (2021)) 0.068 2.86
LFCC+ProdSpec+MGDCC-CNN (Monteiro et al. (2020))  0.198 9.09
CQT+LFCC+DCT-LCNN (Lavrentyeva et al. (2019)) 0.051 1.84
ATCoP+GTCC-SVM (Proposed Method) 0.05 0.75

of 0.05. Lavrentyeva et al. (2019) was the second best system
for cloning detection with min-tDCF of 0.051. For replay detec-
tion, Lavrentyeva et al. (2019) was the top performer, whereas,
the proposed method along-with Li et al. (2021) was the sec-
ond best method. Moreover, the LFCC-GMM ASVspoof base-
line model (Yamagishi et al. (2019)) was the worst performing
method for both the replay and cloning detection. It is important
to mention that the proposed method performed better over the
ASVspoof baseline model by achieving lower EER of 12.54%
and 11.21% for replay and cloning detection respectively.

5.7. Performance of Proposed Features for Deepfakes Detec-
tion

The objective of this evaluation is to quantify the effective-
ness of proposed anti-spoofing framework for deepfakes detec-
tion. For this experiment, we used deepfakes detection dataset
(Agarwal et al. (2019)) that comprises of YouTube videos of
various US politicians. Agarwal et al. (2019) used this dataset
to measure the performance of their visual features oriented

deepfakes detection method. We highlighted the fact that we
can still develop effective deepfakes detection methods using
low-cost audio features. We extracted the audios of the videos
from this dataset (Agarwal et al. (2019)) comprising of both the
bonafide and spoof samples as these videos contain both the vi-
sual and audio forgeries. We used our proposed features to train
the SVM classifier and obtained min-tDCF of 0.051 and EER
of 0.8%. AUC metric was used for performance evaluation in
Agarwal et al. (2019). Therefore, we also computed the AUC
for this experiment and achieved an AUC of 1 as compared to
average AUC of 0.95 achieved by Agarwal et al. (2019). From
these results, we argue that our method provides superior clas-
sification performance as compared to Agarwal et al. (2019). It
is to be noted that our method achieves better performance with
low-cost audio features as compared to Agarwal et al. (2019), in
which the visual landmark features are employed that are com-
putationally more intensive compared to the proposed ATCoP-
GTCC features.



6. Conclusion

This paper has presented a novel unified anti-spoofing frame-
work, that by employing proposed ATCoP-GTCC features, ac-
curately captures the non-linearities introduced in the 1%- and
2"_order spoofing samples, traces of generative models for
both speech synthesis and cloned replay, and dynamic speech
variations of bonafide audios. The absence of a multi-order re-
play spoofing dataset motivated us to develop a diverse voice
spoofing detection corpus for multi-order replay and cloned-
replay attacks. Additionally, we have presented that hybrid
spoofing attacks like cloned-replay can easily be executed in
chained scenarios to exploit the VCSs. This research work lays
the foundation of addressing multi-order replay, cloning, and
cloned-replay voice spoofing attacks, using the unified frame-
work to protect the ASV and VCSs. Experimental results sig-
nify the effectiveness of our anti-spoofing framework by achiev-
ing optimal results on four datasets having either replay or
cloning forgery. This verifies our claim that the proposed fea-
tures effectively capture the dynamic speech variations and mi-
crophone fingerprints of bonafide audio, algorithm artifacts in
cloned audio, and non-linear distortions in replay recordings.
Additionally, our proposed features also perform remarkably
well for deepfakes detection, and this verifies our claim that au-
dio signal analysis is an integral part of deepfakes detection.
Based on the fact that the proposed features can effectively cap-
ture the traces of manipulated voice attributes i.e., frequencies,
etc. in the cloned speech, we argue that our ATCoP-GTCC fea-
tures can provide superior detection performance even for high-
quality synthesized speech samples.
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