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ABSTRACT

Fall detection in elder persons may result in long-lasting injury that can have severe consequences for the
rest of their lives. Additionally, prolonged delay in emergency treatment after the fall event escalates the
chances of mortality. Hence, fall detection at early stage is critical in terms of providing timely aid with
little complications and minimize hospitalization expenses. This work aims to provide an effective and
efficient healthcare solution to determine the event of fall detection for elderly persons. We aim to
address this fall detection problem for elder persons living lonely and encounter issues in case they fall
and are unable to call for assistance. In this paper, we present a fall detection framework by proposing a
novel feature space mean absolute deviated-local ternary patterns (MAD-LTP) to examine the environ-
mental sounds and used these features to train the BiLSTM for fall events detection. Our proposed
MAD-LTP features successfully address the limitations of existing features i.e., non-robust over dynamic
pattern detection, brute force optimization, intolerance over non-uniform noise, etc., for fall detection.
Performance of our system is evaluated on three diverse datasets i.e., The daily sounds, A3 Fall 2.0,
and our in-house developed MSP-UET fall detection dataset. We compared the performance of the pro-
posed framework against the state-of-the-art methods. We obtained an accuracy of 93.5%, 98.29%, and
98% for the daily sounds, A3 Fall 2.0, and our in-house developed MSP-UET fall detection dataset.

Experimental findings indicate the reliability of our method for fall event detection.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

In current times, we have observed a tremendous rise in elderly
population around the globe due to the improvement in public
health, medication, economic and social development, disease con-
trol and injury prevention mechanisms, and reduction in prema-
ture death rate. According to the National Institute of Health
report [1], 8.5% of the world’s population was 65 years or elder
in 2016 which is likely to rise to 17% of the globe’s population by
2050. In US only, people with 65 and elder is estimated to rise from
48 to 88 million by 2050. Moreover, people with age 80 or more is
expected to increase thrice from 2015 to 2050 while some Asian
and Latin American countries might experience a rise of four times
in the same period. Another report [12] published by the United
Nations show the similar statistics with 1.5 billion aging people
by 2050 across the globe. According to National Council of Aging
[14], falls contribute 2.8 million injuries including 0.8 million hos-
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pitalizations with over 27,000 mortalities every year in the US.
These falls cause head trauma, broken hips and legs, and delay in
surgeries increases the risk of fatality rate from 7.3% to 8.7%. Elder
persons living lonely face agony in case of falling on the floor and
not been able to call for assistance. For elderly people, these falls
specifically on the concrete floor can develop into a long-lasting
and life-threatening injury that can ultimately results in perma-
nent disability. Therefore, fall detection at early stage is vital to
facilitate the patient for timely first aid, prevent complications,
and reduces the chance of any long-term injury and treatment
costs.

Current fall detection techniques can be categorized into
sensor-based, vision-based, or audio-based. The sensor-based
methods for fall detection use different sensors data which are
acquired through either the wearable or environmental sensors
[3-8]. Wearable devices at times are not convenient for elder per-
sons or patients. A doppler radar-based fall detection technique
was designed in [7] for human action recognition. Similarly, radar
sensing fall detection method based on human motion detection
was also proposed in [8]. Radar oriented doppler systems have
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limited applicability. Video analysis-based methods [9,26] have
also been proposed for fall detection. In [26], convolution neural
networks-based approach was used for fall detection. In [9], three
visual features consisting of movement details, variation of human
shape, and histogram were used for falls detection. Video
analysis-oriented methods suffer from different privacy issues
and higher computational cost, thus, less suitable for real-time
applications.

To address the above-mentioned issues associated with the
wearable sensors-based or video analysis-based methods,
acoustic-analysis based fall detection methods have also been pro-
posed. In [11], Mel-frequency Cepstral Coefficients (MFCC) features
were obtained from the acoustic signals to train the nearest neigh-
bor (NN) classifier for fall detection. In [13], floor vibration waves
were analyzed in combination of fall sounds to detect fall inci-
dents. In [15], MFCC features were utilized to train NN, SVM, and
Gaussian mixture model (GMM) models for fall detection. MFCCs
are mostly used due to lower dimensions of features. However,
acoustic data acquisition is affected due to the addition of environ-
mental noise in the acoustic signal. MFCC features can be inte-
grated with other acoustic features to reduce the effect of noise
and performance improvement, however, at the cost of increased
computational complexity.

To address the above-mentioned issues, more effective and effi-
cient fall detection systems are required. This paper introduces an
acoustic-based fall event detection framework that employs a
novel feature representation method i.e., mean absolute
deviated-local ternary patterns (MAD-LTP) to better capture the
attributes of sounds associated with the fall i.e., scream, etc., under
indoor and outdoor environments with the background noise. The
MAD-LTP features are then utilized to train the BiLSTM architec-
ture for classification of the fall as well as non-fall events. We
assessed the performance of our framework on three different
and diverse datasets i.e., The daily sounds [46], A3 Fall v2.0 [47],
and our in-house developed MSP-UET fall detection dataset [48].
The main contributions of the proposed research work are as
under:

e We develop an effective and efficient framework for fall event
detection.

e We design a novel audio feature descriptor i.e., MAD-LTP for
audio representation that is robust to non-uniform noise, rota-
tion, dynamic pattern detection, and outdoor environments.

e We develop an in-house MSP-UET fall detection dataset that is
captured under diverse environments to test the robustness of
fall detection systems.

e Rigorous experimentation was performed on three diverse
datasets to investigate the usefulness of the proposed method
against existing contemporary fall detection systems.

The rest of the paper is organized as follows. Section 2 has pre-
sented the related work based on wearable devices, vision-based,
and acoustic based fall detection systems. In Section 3, we present
the proposed acoustic based fall detection system while in
Section 4 we discuss the experimental setup and results in detail
while the Section 5 concluded our work.

2. Related work

The research community has explored various fall detection
techniques that can be divided into three distinct groups such as
wearable devices/sensors-based techniques, vision-based tech-
niques, and acoustic-based techniques. We discuss all of these
three categories in detail in the subsequent sections. Moreover,
summary of the existing wearable devices/sensor-based, vision-
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based, and acoustic-based fall detection systems are provided in
Table 1.

2.1. Wearable devices/sensors-based fall detection systems

Research community has introduced numerous fall detection
methods [16-25] established on wearable sensor technology,
which are commonly employed to develop real-time fall detection
systems. Instead of external sensors, body mounted sensors are
attached to the body of person at various locations. Most common
wearable sensors utilized for fall detection systems are accelerom-
eter, gyroscope, magnetometer, heart rate sensor, and so forth. Tri-
axial accelerometer sensors have three axes i.e., X, Y, and Z to
determine the location and motion of person’s body by determin-
ing the change in velocity. The fall event relies on the accidental
increase in negative acceleration that is caused by change in the
orientation from standing to the laying position horizontally. In
[16], fall detection technique based on tri-axial accelerometer sen-
sor was developed to detect the fall events for elderly people. Fall
event was detected when tri-axial accelerometer sensor reported
the surpass of the normal range of acceleration. In [17], threshold
dependent based fall detection system was designed by collecting
data from sensory devices such as cardiotachometer, smart sensor,
and accelerometer. In [18], Convolutional neural network (CNN)
was employed for fall incident detection. This method [18] reduces
the preprocessing work by employing the CNN to extract features
automatically from Gyroscope sensor data instead of feeding hand-
crafted features to the model. Research approaches combine mul-
tiple sensors when using gyroscope sensors for tracking the
angular velocity and many use gyroscopes for fall events detection.
In [19], fall detection system based on threshold reliant algorithm
was designed using the data collected from bi-axial gyroscope sen-
sor. This technique sets the threshold values for angular velocity,
angular acceleration, and resultant values of the trunk angle.
Alarms are triggered and fall events are detected if an event exceed
the threshold values. In [20], multiple sensors, namely, accelerom-
eter and gyroscope were utilized for detection of fall incidents. This
approach used the posture information from sensors to reduce the
false negatives (sitting on stairs) and false positives (sitting down
fast) resulting in the improvement in accuracy for fall events detec-
tion along with minimum computational cost. In [21], body seg-
ments kinematics were explored to detect the fall events using
two inertial sensors i.e., 2D gyroscope and 3D accelerometers. In
[22], multimodal sensors i.e., light intensity, gyroscope, and tri-
axis accelerometer, electroencephalograph helmet, cameras in lat-
eral and front viewpoints, and infrared sensors were used for data
acquisition. Distinct machine learning techniques such as SVM, RF,
multilayer perceptron (MLP), and KNN were used for the classifica-
tion of fall events and activities of daily living (ADL).

Existing methods [23-25] have also used the fusion of sensors
such as micro-Doppler radar, context aware, depth camera, magne-
tometer, barometer, gyroscope, etc., to combine the statistics from
numerous sensors for the development of fall detection systems.
Multi sensors fusion often produces more accurate fall detection
techniques than the single sensor-based techniques. In [23],
sensors fusion based fall detection technique containing multiple
sensors i.e., context aware sensors (e.g., depth camera and micro-
Doppler radar) and tri-axial accelerometer was presented to
enhance the classification accuracy of fall and non-fall events. In
[24], fusion of multiple sensors i.e., magnetometer, barometer,
and gyroscope were employed to detect the fall events with
quaternion filter that extract acceleration relative to the frame of
an earth. Thresholding approach was applied on different features
such as angular velocity, acceleration, and altitude to detect the fall
event. In [25], kinematic sensors were used for data acquisition. A
feature selection algorithm based on the integration of J3 and
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Table 1

Applied Acoustics 192 (2022) 108725

Summary of the Existing Wearable Devices/Sensor Based, Vision-Based, and Acoustic-Based Systems.

Wearable devices/sensor based system

Methods Sensors Classifiers/Technique

Dataset Limitations

Lai CF et. al., [16]
Wang ] et. al,, [17]
Casilari E et. al., [18]

Tri-axial accelerometer SVM
Cardio tachometer
Gyroscope CNN

Threshold-based method

Threshold-based method

Bourke AK el. al., [19]
Li Q et. al., [20]

Bi-axial gyroscope
Gyroscope and
accelerometer

Computer Vision-Based Systems

Methods Features Classifiers
Niiiez-Marcos A et. al., Optical flow image- Kernel-SVM
[26] based motion modeling

system

orientation angle,
aspect ratio, threshold,
and Motion History
Image (MHI)

Gunale K et. al., [27]
Descent (SGD), decision trees

De Miguel K et. al., [30] Kalman filtering, optical KNN
flow, and background
subtraction

Bian ZP et. al,, [33] Pose- invariant SVM

randomized DT
5-dim feature vector
using ellipse model

Thuc HL et. al., [34]

Acoustic based fall detection systems

Methods Features Classifiers
Collado-Villaverde Aet. energy, zero crossing, C4.5 (J48), nearest neighbor
al., [35] spectral centroid, rolloff  (NN), Logistic regression (LR),

factor, and spectral flux  Naive Bayes, PART, Random
Forest, and SVM

Droghini D et. al.,, [36]  MFCC, and Gaussian One-class SVM (OCSVM)
mean super vectors

(GMS)

Li X et. al,, [37] MFCC and spectrogram  heterogenous ensemble learning
(HEL)

Khan MS et. al., [42] MFCC 0CSVM

Adnan SM et. al., [49] Acoustic-LTP SVM

SVM, Threshold-based method

SVM, KNN, Stochastic Gradient

Hidden Markov Model (HMM)

sensors to be worn all the time

Intrusive approach

Detection dependent on short proximity of
a range

Expensive equipment

Complex syncing between devices,
difficulties in equipment setup

Custom Dataset
Custom Dataset
SisFall Dataset

Custom Dataset
Custom Dataset

Dataset Limitations

CASIA false displacement vectors generation due
to variations in the lighting conditions

Le2i Fall Generalizability issue as a small amount of

data was used

(DT), and Gradient Boosting (GB)

Custom Dataset movement patterns of humans change due
to health and age, which makes it difficult
for the algorithm to detect the fall event
correctly

Custom Dataset Human’s privacy issues

NTURGB + DActionRecognition High computational cost

Limitations
requirement of accurate segregation of
scream and normal speech

Dataset
War and non-war sounds clips

A3 Fall v2.0 dependency on microphone quality, device
limitations for embedding,
A3 Fall v2.0 Complexity and computational cost

The Daily Sounds
The Daily Sounds

High computational cost
less robust to background noise

Fisher’s discriminant ration criterion was created to pick the
appropriate characteristics. Hierarchical classifier was trained on
the selected features to detect the fall events. Although wearable
devices-based fall detection systems are frequently used due to
ease in availability of such sensors, however, there are certain lim-
itations of wearable devices-based fall detection systems such as
sensors to be worn all the times, intrusive approach, detection
dependent on short proximity range, expensive equipment, com-
plex syncing between devices, and difficulties in equipment setup.

2.2. Computer vision-based fall detection systems

To address the limitations of wearable devices-based fall recog-
nition systems, existing approaches have also explored the com-
puter vision-based techniques [26-34] to automatically detect
the fall events. Vision based fall detection methods give more free-
dom to elderly people to perform their daily lives activities without
wearing any sensor on the body. In [26], optical flow images-based
motion modeling method with the CNN was employed for fall
detection. However, this optical flow-based approach has a draw-
back of false displacement vectors generation due to variations in
the lighting conditions. In [27], four visual features i.e., orientation
angle, aspect ratio, threshold, and Motion History Image (MHI)
were obtained and fed to the SVM, KNN, Stochastic Gradient Des-
cent (SGD), decision trees (DT), and Gradient Boosting (GB) sepa-
rately for fall detection. Experimental outcomes showed that DT
performed well with minimum computational time over other
classifiers. Some existing fall detection systems [28,29] depend

on the posture classification techniques where all postures related
to the fall event cannot be incorporated regardless of the amount of
training data. In [30], several algorithms i.e., Kalman filtering, opti-
cal flow, and background subtraction were combined to develop a
fall detection system for aged persons. However, movement pat-
terns of humans change due to health and age, which makes it dif-
ficult for the algorithm to detect the fall event correctly. In [31],
vision-oriented fall detection system using the depth images (3D)
was designed. A dense spatio-temporal context algorithm was
employed to trace the position of head. The centroid height of
the human body, and distance between the floor plane and head
were computed and compared with an adaptive threshold tech-
nique for fall detection. This approach has low computational com-
plexity, but scale tracking process is highly unpredictable. In [32], a
system for fall incidents detection based on the identification of
abnormal velocity and position of subject was designed. The traced
joints of the subject were utilized for measuring the velocity w.r.t
the preceding position. In [33], a system for fall detection was pre-
sented that analyzed the traced key joints of person’s body with
help of a single depth camera. This approach is self-reliant on vari-
ations in the lightning and able to operate even in the low illumi-
nation conditions. Pose-invariant randomized DT was used to
extract the key joints. SVM was employed for classification pur-
pose that used two inputs i.e., head joint and 3D trajectory. In
[34], a video-based fall detection technique was designed for aged
persons. An adaptive-GMM was applied for human detection from
the input frame and later transformed into a five-dimensional fea-
ture vector utilizing an ellipse model. Finally, this feature vector
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was employed for training the Hidden Markov Model (HMM) for
fall event detection. Although vision-based fall event detection sys-
tems are effective, however, at the expense of increased computa-
tional complexity.

2.3. Acoustic based fall detection systems

Existing techniques [35-45] has investigated numerous fall
incidents systems established on analyzing the sounds of people
for fall event detection to address the high computational cost
issue of vision-based systems. These fall detection systems require
to identify the sounds people make while in pain after the fall
event. Recently, wireless body area networks have been employed
to develop large monitoring centers for acquiring data associated
to falls and other hazardous conditions [43,44|. These techniques
concentrate on observing large groups of elder persons at one time,
collecting information of fall events, and then training the classifi-
cation model on the collected data. Acoustic based fall detection
systems use the microphone to record the sounds from environ-
ment. In [35], audio features comprising of energy, zero crossing,
spectral centroid, rolloff factor, and spectral flux were employed
to train different machine learning algorithms such as C4.5 (J48),
nearest neighbor (NN), Logistic regression (LR), Naive Bayes, PART,
Random Forest, and SVM for fall detection. LR classifier performed
the best among other classifiers. In [36], an acoustic based fall
detection technique was developed utilizing a deep convolutional
neural network autoencoder to detect the fall incidents. In [38],
two spectral features i.e., MFCC, and Gaussian mean supervectors
(GMS) were investigated for fall detection. One-class SVM
(OCSVM) was utilized to classify fall and non-fall. In [37], an
audio-based fall detection system using two spectral features i.e.,
MFCC and spectrogram and heterogenous ensemble learning
(HEL) was developed to discriminate the fall and non-fall. In [39],
a siamese neural network (SNN) was presented using an input
audio for detection of fall incidents. In [42], MFCC features were
utilized for the detection of fall events and OCSVM was employed
to classify falls and non-falls. In our prior works [49,51], we
employed the acoustic local ternary patterns and trained the
SVM for classification of fall and non-fall incidents. This technique
performed well in terms of an accuracy and precision, but the
method was susceptible to noisy signals due to using the static
threshold value. In [52], fall detection technique based on MFCC
was designed for elderly people. Three classifiers i.e., SVM, KNN,
and neural networks were employed for the classification purpose.
In [53], two spectral features such as MFCC and linear predictive
coefficients were utilized for training the ensemble classifier to
detect fall event. In [54], four features such as MFCC, energy, zero
crossing, and spectral flux were utilized to train a deep neural
network for categorizing the fall and non-fall incidents. In [10],
MFCC-based fall detection technique was developed and SVM
was utilized as classifier. Although the acoustic-based fall detec-
tion systems are computationally efficient over the vision-based
or hybrid systems, however, these fall detection systems based
on acoustic features have certain limitations such as less robust
to background noise, dependency on microphone quality, device
limitations for embedding, requirement of accurate segregation
of scream and normal speech, etc. To address these limitations,
there exists a need to develop more robust acoustic-based fall
detection systems.

3. Proposed methodology

This section provides the detailed working mechanism of our
technique to detect fall incidents. The main objective of the
proposed acoustic-based fall detection framework is to accurately
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differentiate between the fall and non-fall incidents. For this pur-
pose, we developed a novel feature descriptor MAD-LTP to repre-
sent the input audio signal. The proposed system comprises of
three stages i.e., preprocessing, features extraction and classifica-
tion. In the first stage, we employed the HMM and Fast-ICA to sup-
press the silence segments from the audio. In the second stage, we
extracted the 20 dimensional MAD-LTP features from input acous-
tic signal. In the third stage, MAD-LTP features are utilized to train
a BIiLSTM architecture for the classification purposes. The detailed
working mechanism of our method is given in Fig. 1.

3.1. Preprocessing for silent segment suppression

The audio signal comprises of both the speech and silence seg-
ments. Since the silence zone do not hold any information that
needs to be analyzed for fall event detection, therefore, we have
eliminated the silent segments from the input audio to further
reduce the content for processing. For this purpose, we employed
the HMM model [2] and the FAST-ICA [41] techniques to segregate
the low and high frequency signals. It is to be noted that the pos-
terior probability of the acoustic events is larger than of the silence
period. We used the FAST-ICA method to segment the audio frames
with higher posterior probabilities from the input full-length sig-
nal. Hence, by suppressing the silent segments in the preprocessing
stage helps to reduce the content needed to be analyzed for further
processing.

3.2. Feature extraction

The key contribution of our work is the proposed novel feature
extraction method MAD-LTP. The main objective of this new fea-
ture representation scheme is to address the issues associated with
our prior acoustic-LTP features [49] that uses a fixed threshold
value during the generation of LTP codes. Our existing acoustic-
LTP features were proposed for indoor applications where it
showed remarkable performance for fall detection event due to
robustness over noise as compared to other acoustic features i.e.,
acoustic-LBP features. However, acoustic-LTP features have certain
limitations due to this fixed threshold scheme, which are (a) not
robust over dynamic pattern detection—spectral analysis of the
fall-event audio under outdoor environment shows that the signal
has dynamic repetitive patterns, which can be better captured via
dynamic threshold scheme. However, the acoustic-LTP uses a fixed
threshold for computing the LTP codes, therefore, there exists a
need to improve the existing acoustic-LTP features for fall detec-
tion applications. (b) brute-force optimization—as in acoustic-LTP
we need a brute-force scheme to optimize the threshold that
makes it difficult to attain better peformance in real-time applica-
tions under diverse conditions. (c) intolerance over non-uniform
noise— acoustic-LTP is robust against the consistent uniform noise
that is available in the indoor audios, whereas, we experience the
non-uniform noise in the outdoor environments, therefore, static
threshold-based acoustic-LTP features are not robust under non-
uniform noise and hence, not suitable for fall detection in outdoor
environments. Therefore, we need more effective features robust
to afore-mentioned limitations and can reliably detect the fall
event in outdoor environments besides the indoor environments.

The feature computation process of MAD-LTP is shown in Fig. 2.
To compute the MAD-LTP, we divide the suppressed audio signal X
[n] obtained after the preprocessing stage with N samples into
non-overlapping frames of length [ = 9. As we use 8 neighbors
around a central sample ¢ to compute the LTP code in our
acoustic-LTP features, therefore, we also considered 8 neighbors
around a center sample to compute the MAD-LTP codes. Hence,
these 8 neighbors along-with the center neighbor makes a frame
of 9 samples. Similar to acoustic-LTP, we quantize the sample
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Fig. 1. Proposed system.

values to three codes i.e., —1, 0, and + 1 based on comparison of the
neighboring samples against the center sample. More specifically,
we assign a code of 0 when the neighboring sample lies in the
range of + Yaround c. Next, we assign a code of + 1 when the neigh-
boring sample is greater than or equals to the central sample +, and
assign a code of —1 when the neighboring sample is less than or
equals to the central sample - ¥. We computed the ternary codes
as follows:

+1,k > c+9
0,|(K —0)] < v (1)
1,k < (c—v)

MAD — LTP(s', ¢, 9) =

where MAD-LTP (s', ¢, ¥) represents the adapted ternary codes, c is
the central sample of the frame with k' neighbors where i repre-
sents neighbor index and ) represents the threshold. In acoustic-
LTP we used the fixed threshold, however, in our novel MAD-LTP,
we propose an adaptive threshold calculation mechanism based
on mean absolute deviation to assign the values of the threshold
dynamically for each frame. More specifically, we computed the
threshold as follows:

9= 1/1213 ki — m(X)| )
i=1

where [ represents the length of the frame, k; denotes values of the
neighboring samples, m (X) represents the mean value of a single
frame, and ¥ represents the mean absolute deviation of any given
frame of our acoustic signal. Next, we transform the ternary codes
into binary codes by splitting the MAD-LTP into upper
(MAD — LTPY) and lower (MAD — LTP") patterns. For (MAD — LTPY),
we quantize + 1 to 1 and rest values to 0, whereas, for
(MAD — LTP") we quantize —1 to 1 and rest values to 0 as follows:

1,ifMAD — LTP(s', c,9) = +1
0, Otherwise

MAD — LTPY (s, ¢,9) = { (3)

1,ifMAD — ALTP(s', ¢, 9) = —1
0, Otherwise

MAD — LTP"(s', ¢, ) = { (4)
As we already know from the computer vision domain that the
uniform patterns contain important information in the signal over

non-uniform patterns [40], therefore, we detect the uniform upper
(MAD — LTP},) and lower (MAD — LTP.) patterns over all the

extracted patterns to capture significant attributes from the acous-
tic signal and represent these patterns in decimal form as follows:

7 . .
(s',c,9) = > 2" x MAD — LTPY(s', ¢, 9) (5)

i=0

MAD — LTPY

uni

~

MAD — LTP:

oni(s,C.0) =" 2" x MAD — LTP*(s', ¢, ) (6)
i=0
U .

Finally, we compute the histogram of MAD — LTP,,. and

MAD — LTP: ., where we use a separate bin for each uniform pat-
tern and assign all non-uniform patterns to one bin that results
in reduction of redundant information from the signal. We com-

pute the histogram as:

k

HY (MAD — LTPyb) =" (MAD —LTPY, b) (7)
k=1
k
H'(MAD — LTP,,.b) = (MAD — LTPL, b) (8)
k=1

where b is the histogram bin. From our experimental analysis, we
found that the first ten uniform patterns each from the upper and
lower class are enough to capture the salient attributes of the input
audio. This makes our MAD-LTP features more efficient being a 20-
dim feature descriptor than our prior acoustic-LTP features which
comprise of 40-dim features. Finally, we concatenate both his-
tograms to create a 20-dim feature descriptor as:

MAD — LTP = [H"||H"] 9)
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Fig. 2. Feature extraction.

Our analysis reveals that the audio signal for fall events contain
the dynamic repetitive patterns and non-uniform noise under out-
door environment. Our prior static threshold based acoustic-LTP
features are unable to reliably detect the fall events under these
conditions due to employing a fixed threshold during the features
extraction. The proposed MAD-LTP features by employing the
mean absolute deviation for threshold computation better able to
capture the dynamic repetitive patterns of the audios to distin-
guish between the fall and non-fall events even in the presence
of non-uniform environmental noise.

3.3. Classification

As we know that the audio signal is a time-series data and
BIiLSTM being the recurrent network is well suited to classify
sequential data. Moreover, LSTM is also used to classify sequential
data, but it utilizes the preceding context only while BiLSTM over-
come this problem by retrieving the data in two directions i.e., for-
ward and backward. Therefore, in this work we utilized a BiLSTM
architecture for classification purposes. To accomplish this, we
extracted the proposed 20 dimension MAD-LTP features from the
input audio to train the BiLSTM for the detection of fall incidents.
We checked the performance of our approach by employing vari-
ous configurations and tuned different parameters such as 25, 50,
75, and 100 hidden units, different optimizers as adam, sgd, ada-
max, rmsprop, sgdw, and nadam, different layers combination
i.e., two layers, three layers, four layers, five layers, and so on up
to ten layers, different mini-batch sizes as 16, 32, and 64, etc. After
parameter tuning, we obtained the best results on the following:

adam optimizer, max epoch to 15, 100 hidden units, 3 layers,
and mini-batch size of 16. Thus, we used these parameters to tune
our BiLSTM network for model training. Fig. 3. shows the detailed
design of our BiLSTM model used for experiments in this work.

4. Experimental setup and results

In this section, we discuss different experiments performed to
evaluate the performance of our system. Moreover, statistics of
the datasets are also provided in this section. We measured the
performance of our approach using the accuracy, precision, recall,
and F1-score as also adopted by the comparative methods.

4.1. Dataset

We assessed the performance of the proposed system on the
three publicly available datasets i.e., the daily sounds [46], A3 Fall
v2.0 [47], and our in-house MSP-UET fall detection dataset [48].

The daily sounds dataset [46]| comprises of a total of 1049 audio
non-speech samples recorded at 16khz in a carpeted room of size
7 m by 12 m. This dataset consists of eighteen classes of sounds
i.e., breathing, dishes, door clapping, electrical shaver, glass break-
ing, hair dryer, keys, paper tear, female scream, water falling, yawn,
sneeze, male scream, laugh, hand clapping, female cry, door open-
ing, and cough that are produced by different humans. Most of the
sound’s events are recorded at night-time to avoid the external
interferences.

The A3 Fall v2.0 dataset [47] comprises of 720 events of fall and
non-fall comprising of seven classes. Among the seven classes, six
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Fig. 3. BiLSTM architecture.

are non-speech audio such as ball, basket, chair, fork, book, and bag
while the seventh class is of real human fall incidents. Audios were
recorded using the three aerial microphones.

The third dataset MSP-UET fall detection [48] is our in-house
dataset specifically designed to record the fall and non-fall events.
We have used multiple human subjects of different age and gender
to record this dataset that includes different tones of scream for fall
events and normal conversation or silence for non-fall events. It is
important to mention that we have recorded the samples on both
the indoor and outdoor environments containing the background
noise as well. This dataset has normal speech audio considered
as non-fall events and voices of human screams during falls in
indoor and outdoor environments as fall events that is recorded
with multiple mobile devices i.e., Lenovo K6 note, infinix note 10
pro, Iphone 7, etc. The statistical details of these three datasets
are given in Table 2.

4.2. Performance evaluation of the proposed method

The key purpose of this experiment is to assess the robust-
ness of our technique on three different and diverse datasets
for fall event detection. For this purpose, we designed a
multi-stage experimentation for evaluating the performance of
our approach (MAD-LTP-BiLSTM) on three different datasets. In
the first stage, we evaluated our system on the daily sounds
dataset for detecting incidents of fall and non-fall. To accom-
plish this, we employed 20 dimensional proposed MAD-LTP
features from the audios of the daily sounds dataset [46] to
train the BiLSTM network. We used 80% samples (839 audios)
to train the model and 20% samples (209 audios) for model
evaluation. We considered the fall and panic sounds i.e., female
cry, female scream, male scream, and sneeze etc., for fall event.
Whereas breathing, cough, dishes, door clapping, door opening,
and electrical shaver for non-fall event. We achieved an accu-
racy of 93.5%, precision, recall, and Fl-score of 100%, 91.59%,
95.61%, respectively, as shown in Fig. 4. These results show

Table 2
Statistics of daily sounds, A3 fall v2.0, and in-house fall detection datasets.

the usefulness of our approach to detect fall events on a diverse
daily sounds dataset.

In the second phase of this experiment, we evaluated the per-
formance of our approach on A3 Fall v2.0 dataset [47] for detection
of fall incidents. To accomplish this, we extracted the proposed 20-
dim MAD-LTP features from the audios of A3 Fall v2.0 dataset [47].
We split the dataset into 80-20 ratio to train the BiLSTM network
for classification purpose. We used 80% of the data (576 samples)
for training the model and remaining 20% (144 samples) for the
testing. Fig. 4 illustrates the experimental results of the proposed
system in terms of accuracy, precision, recall, and F1-score. Our
approach obtained an accuracy, precision, recall, and F1-score of
98.29%, 97.53%, 100%, 98.75%, respectively. From the results
reported in Fig. 4, we can observe that our method can reliably
be used for the detection of fall events on A3 Fall v2.0 dataset.

In the third stage of this experiment, we measured the perfor-
mance of our approach on our in-house developed MSP-UET fall
detection dataset [48] to demonstrate the robustness of the pro-
posed system on a diverse and challenging conditions. Again, we
employed our proposed MAD-LTP features to train the BiLSTM net-
work for classification of fall and non-fall events. We used 80% of
data (408 samples) for training and rest 20% (100 samples) for
evaluation and results are demonstrated in Fig. 4. From the above
conclusions, we can examine that the proposed system achieved
remarkable accuracy of 98%, precision of 100%, recall of 96.15%,
and F1-score of 98.03%. Experimental results demonstrate that
the proposed system has lowest false alarm rate of 4% for real
human falls while 0% for non-fall events. This signifies the robust-
ness of our system for fall event detection in the diverse indoor and
outdoor environments.

Experimental outcomes of our approach on three different data-
sets using the computationally efficient MAD-LTP features signify
that our method can reliably be used in real time and is able to cap-
ture the acoustic variations present in audio signals of fall events
even in the presence of background noise. Moreover, our proposed
system can be installed in cell phones and wearable devices i.e.,

Dataset Total no of samples No of fall event samples No of non-fall event samples Training Samples Testing Samples
MSP-UET Fall detection 508 234 274 408 100
The Daily sounds 1049 326 723 839 209
A3 Fall v2.0 720 154 412 576 144
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Fig. 4. Detection performance on The Daily Sounds, A3 fall v2.0 and proposed MSP-
UET fall detection datasets.

smart watches, smart bracelet, etc., to successfully detect the fall
and non-fall events.

4.3. Performance evaluation in multi-class environment

The key goal of this experiment is to assess the performance of
our approach (MAD-LTP-BiLSTM) in a multi-class setting for
detecting the panic, fall, and eco-friendly audios. There is signifi-
cant correlation among all the classes of daily sounds dataset that
becomes difficult to discriminate the fall incidents more accu-
rately. Moreover, misclassification among various classes creates
problem of class imbalance due to high correlation among multiple
classes. To accomplish this, we extracted the MAD-LTP features
from the audios of ten distinct classes i.e., breathing, dishes, door
clapping, electrical shaver, glass breaking, hair dryer, keys, paper
tear, female scream, and water falling of the daily sounds dataset.
We utilized 80% (566 samples) of audios to train while the remain-
ing 20% (140 samples) of the data for evaluating the trained model.
From the outcomes illustrated in Table 3, we examined that our
approach accurately detected the four classes i.e., breathing,
dishes, electrical shaver, and keys with an accuracy, precision,
recall, and F1-score of 100%. The proposed approach accomplished
the second best performance on paper tear class and attained an
accuracy of 98.72%, precision of 100%, recall of 96.55%, and F1-
score of 98.24%. Our approach worked the worst on scream class
and attained an accuracy of 89.16%, precision of 95.45%, recall of
100%, and Fl-score of 97.67%. Overall, our system worked well
and achieved an accuracy of 97.8%, precision of 98%, recall of
97.55%, and F1-score of 98.17% for all the ten classes. The detailed
results of all the 10 classes are given in Table 3. Experimental out-
comes signify that our approach is capable of detecting the fall
events in multi-class environment.

4.4. Confusion matrix analysis

The key role of the confusion matrix is to illustrate the catego-
rization assessment of approach. The accuracy metric alone can be
misleading when there are unequal number of samples in each
class. For example, we can achieve an accuracy of more than 90%,
but this accuracy will not be considered good in case 90% of the
samples belong to one class. Computing a confusion matrix can
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provide a better projection of the classification model in terms of
correct or incorrect prediction for each class. Considering these
facts, we designed a multi-stage experiment to visualize the classi-
fication performance of our system on the selected three datasets.

In the first stage, we created a confusion matrix to present the
classification performance of our approach on the daily sounds
dataset [46] as shown in Fig. 5. From the Fig. 5, we can see the pro-
jection of target (actual) and output (predicted) classes of fall and
non-fall events. The true positives (TP) and true negatives (TN) are
shown in the green diagonal blocks, whereas, the false negatives
(FN) and false positives (FP) are shown in pink blocks. FP of zero
indicates that the proposed system achieves 100% precision by
not assigning any non-fall sample to fall sample, whereas, the FN
of 10 among the total of 119 samples of fall event indicates that
only 8% of the fall events are wrongly predicted as non-fall events.
These outcomes demonstrate the reliability of our system to accu-
rately detect the fall incidents.

Next, we provided the confusion matrix of our system for A3
Fall v2.0 dataset [47] and results are shown in Fig. 6. From this,
we can see that our system obtained zero FNs that means 100%
optimal recall rate. This recall rate signify that our system never
detects the fall event as non-fall event. Moreover, FP of just 2 from
the total true samples of 87 also show better precision rate of
97.53%.

In the third stage, we designed the confusion matrix of the pro-
posed system on our own MSP-UET fall detection dataset as shown
in Fig. 7. From this, we examine that FP rate is equal to 0% while FN
rate is 4%. These results indicate that our approach effectively dis-
tinguish all the fall incidents and incorrectly classified 2 fall events
as non-falls.

The lowest FN and FP rates on our MSP-UET fall detection data-
set signifies the effectiveness of our approach for accurate fall
events recognition on the indoor as well as outdoor environments.

In the last stage, we designed a confusion matrix of our method
for multi-class environment of the daily sounds dataset for 10
classes such as breathing, dishes, door clapping, electrical shaver,
glass breaking, hair dryer, keys, paper tear, female scream, water
falling as shown in Fig. 8. From the confusion matrix on ten classes,
we can observe that the FP values of seven classes such as breath-
ing, dishes, door clapping, electrical shaver, key, paper tearing, and
water falling are equal to 0 while FN values of seven classes such as
breathing, dishes, electrical shaver, glass breaking, hair dryer, keys,
and scream are equal to 0. Our method misclassified 3 glass break-
ing events into door clapping, 1 event of hair dryer into paper tear,
and 1 event of scream into water falling event. These remarkable
results demonstrate that our method is robust in multi-class envi-
ronment problem and able to classify the complex and correlated
environmental sounds with higher accuracy.

4.5. Performance evaluation on existing features

The key goal of this experiment is to assess the performance of
our MAD-LTP features over the existing spectral features such as
MFCC, GTCC, fusion of MFCC and GTCC (MFCC-GTCC), and
acoustic-LTP on the same classifier. For this purpose, we extracted
14-dim MFCC, 14-dim GTCC, 28-dim features of MFCC and GTCC,
40-dim acoustic-LTP, and 20-dim MAD-LTP features from all the
three datasets and used them to train the BiLSTM network sepa-
rately for the classification of fall and non-fall events.

In the first phase of the experiment, we evaluated the perfor-
mance of the proposed and existing features on the daily sounds
dataset [46]. We extracted the MFCC, GTCC, MFCC-GTCC,
acoustic-LTP, and the proposed MAD-LTP features and employed
the BiSLTM network separately to distinguish between the fall
and non-fall events. From the Table 4, we can observe that the
MFCC-GTCC fusion performed the worst and achieved an accuracy



A. Banjar, H. Dawood, A. Javed et al. Applied Acoustics 192 (2022) 108725

Table 3

Performance assessment in multi-class setting.
Classes Accuracy% Precision% Recall F1-Score

% %

Breathing 100 100 100 100
Dishes 100 100 100 100
Door Clapping 93.08 100 92.10 95.89
Electrical Shaver 100 100 100 100
Glass Breaking 93.52 91.7 92.44 95.69
Hair Dryer 97.33 92.9 100 97.11
Keys 100 100 100 100
Paper Tear 98.72 100 96.55 98.24
Scream 89.16 95.45 100 97.67
Water Falling 92.2 100 94.44 97.14

Fig. 5. Confusion matrix of the Daily Sounds dataset (1) Fall (2) Non-fall.

Fig. 7. Confusion matrix of MSP-UET fall detection dataset (1) Fall (2) Non-fall.

Fig. 6. Confusion matrix of Fall A3 v2.0 dataset (1) Fall (2) Non-fall.

of 35.8%, precision, recall and F1-score of 0%. This MFCC-GTCC fea-
tures fusion based system detected all the fall events as non-fall.

The MFCC + BiLSTM performed second best and achieved an accu- Fig. 8. Confusion matrix for 10 classes of The Daily Sounds dataset.

racy of 81.7%, precision of 71.42%, recall of 100%, and F1-score of

83.33% while the proposed MAD-LTP achieved the best perfor- From this comparative analysis, we observed that our MAD-LTP
mance with an accuracy of 93.5%, precision of 100%, recall of features achieved 50.6% improved accuracy than our prior features
91.59%, and F1-score of 95.16%. acoustic-LTP on the BiLSTM classifier. The detailed results in terms
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of accuracy, precision, recall and F1-score are reported in Table 4.
From the results of this comparative analysis on the daily sounds
dataset, we concluded that our proposed MAD-LTP features are
more robust for fall event detection over the comparative features
on a diverse dataset.

In the second phase of this experiment, we checked the superi-
ority of the proposed MAD-LTP features on A3 Fall v2.0 [47] against
the comparative features reported in Table 4. For this purpose, we
extracted the features to train BiLSTM network individually and
results are shown in Table 4. From these results, we observed that
fusion of MFCC and GTCC again, performed the worst by achieving
an accuracy of 41%, precision, recall, and F1-score of 0%. Acoustic-
LTP performed second-best by achieving the accuracy of 68%, pre-
cision of 100%, recall of 65.21%, and F1-score of 78.94% while our
MAD-LTP features outperformed all features by achieving an
accuracy of 98.29%, precision of 97.53%, recall of 100%, and
F1-score of 98.75%. It is important to mention that our MAD-LTP
features achieved an improved accuracy of 30.29% and 30.39%
than our prior acoustic-LTP and GTCC features, respectively.
Experimental results on A3 Fall v2.0 dataset illustrate the superior-
ity of our MAD-LTP features for fall detection over the comparative
features.

In the last phase of this experiment, we checked the effective-
ness of the proposed MAD-LTP features against the comparative
features on our in-house MSP-UET fall detection dataset [48].
Again, we employed all of these features to train the BiLSTM sepa-
rately and provided the results in Table 4. From these results on
our MSP-UET fall detection dataset, MFCC was the worst performer
by achieving an accuracy of 72.7%, precision of 22.85%, recall of
100%, and F1-score of 37.20%. Our prior acoustic-LTP features per-
formed second best by achieving an accuracy of 88.6%, precision of
100%, recall of 80.43%, and F1-score of 89.15% while our proposed
MAD-LTP features again produced the best results with an accu-
racy of 98%, precision of 100%, recall of 96.15%, and F1-score of
98.03%. These results on our MSP-UET fall detection dataset proved
that the proposed MAD-LTP features provide superior fall detection
performance over the comparative features.

4.6. Comparison with contemporary methods

The key goal of this experiment is to make a comparison with
existing approaches for fall detection techniques on the daily
sounds [46] and A3 Fall v2.0 [47] datasets. We compared the per-
formance of the proposed system with existing techniques
[10,37,54] on A3 Fall v2.0 dataset and outcomes are reported in
Table 5. From the Table 5, we observed that [10] achieved the
worst results and yielded an accuracy of 85%, precision of 91.48%,

Table 4
Performance comparison with existing features.
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recall of 91.23%, and F1-score of 91.04%. Our proposed method per-
formed the best and achieved an accuracy of 98.29%, precision of
97.53%, recall of 100%, and F1-score of 98.75%. From this compara-
tive analysis, we found that our system achieved an accuracy gain
of 4.02%, 1.29% and 13.29% over the comparative methods
[10,37,54] on the A3 Fall v2.0 dataset.

Next, we assessed the performance of the proposed system on
the daily sounds dataset against the current techniques
[42,49,50,53] and outcomes are stated in Table 5. From these
results, we observed that [42] achieved the lowest results with
an accuracy of 66%, precision of 100%, recall of 60%, and F1-score
of 44%. Our prior work [49] was the second-best system and
yielded an accuracy of 92%, precision of 91%, recall of 94%, and
F1-score of 97% while our approach outperformed against all the
comparative methods by achieving an accuracy of 93.5%, precision
of 100%, recall of 91.59%, and F1-score of 95.16%. We observed that
our method achieved 1.5% accuracy gain than the second-best per-
former [49]. This comparative analysis on two standard datasets
demonstrates the significance of our approach over the contempo-
rary techniques for accurate fall event detection on multiple and
diverse datasets.

4.7. Discussion

This section aims to provide a more in-depth analysis of the
experimental findings of the proposed fall detection method. We
have three hypotheses that MAD-LTP features are capable to cap-
ture the dynamic repetition in the audio signal, robust to non-
uniform noise in environmental sounds, and reliable for outdoor
as well as indoor applications. Moreover, the findings of this study
reveal that our prior work acoustic-LTP [49,51] has limitations
such as non-robust to the dynamic audio signal and non-uniform
noise present in environmental sounds that need to be addressed.
In order to address the limitations, we proposed novel MAD-LTP
features for audio representation to develop an effective system
for the detection of environmental sounds. We conducted exten-
sive experimentation on the three datasets such as the Daily
Sounds, A3 Fall v2.0, and our own MSP-UET fall dataset. The daily
sounds and A3 Fall v2.0 datasets contain the audios recorded in
indoor environments, whereas, our MSP-UET fall detection dataset
contains the audios of both the indoor and outdoor environments.
The remarkable accuracy of more than 98% on The Daily Sounds
and our MSP-UET datasets and above 93% on the A3 Fall v2.0
proves our first and third hypotheses by demonstrating the capa-
bility of our MAD-LTP features for better capturing the traits of
dynamic repetitive patterns in the audios of both the indoor and
outdoor environments for fall event detection.

Dataset Feature Accuracy% Precision% Recall% F1-score %
The Daily Sounds MEFCC 81.7 71.42 100 83.33
GTCC 64.2 100 64.22 78.21
MFCC-GTCC 35.8 0 0 0
Acoustic-LTP 429 100 38.21 98.94
MAD-LTP 93.5 100 91.59 95.16
A3 Fall v2.0 MEFCC 48.7 13.04 100 23.07
GTCC 67.9 100 64.78 78.63
MFCC-GTCC 41 0 0 0
Acoustic-LTP 68 100 65.21 78.94
MAD-LTP 98.29 97.53 100 98.75
MSP-UET Fall Detection MFCC 72.7 22.85 100 37.20
GTCC 87.9 100 74.46 85.37
MFCC-GTCC 73.7 25.71 100 40.90
Acoustic-LTP 88.6 100 80.43 89.15
MAD-LTP 98 100 96.15 98.03
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Table 5
Performance comparison with contemporary systems.
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Dataset Authors Method Accuracy% Precision% Recall% F1-score%
A3 Fall v2.0 Bin et al. [37] MFCC-Spectogram + HEL 94.17 - - -
Alex et al. [54] MFCC-SF-SC + DNN 97 - - -
Principi et al. [10] MEFCC + SVM 85 91.48 91.23 91.04
Proposed MAD-LTP + BiLSTM 98.29 97.53 100 98.75
The daily sounds Adnan et al. [49] Acoustic-LTP + SVM 92 91 94 97
Tuncer et al. [50] LBP-LTP + SVM 89.17 - - -
Khan et al. [42] MFCC + OCSVM 66 100 60 44
Shaukat et al. [53] LPC + DT 56 64 76 25
Proposed MAD-LTP + BiLSTM 93.5 100 91.59 95.16

There is a high correlation between the complex environmental
sounds under the non-uniform noise in an outdoor environment
that makes fall event detection a challenging task. As our MSP-
UET fall detection dataset also contains the audios in outdoor envi-
ronments besides the indoor that includes the non-uniform noise.
Thus, by achieving the remarkable results of 98% accuracy, 100%
precision, 96.15% recall, and 98.03% F1-score on MSP-UET dataset
proves our second hypothesis by illustrating the robustness of
our method for outdoor audios containing the non-uniform noise.

The two datasets such as A3 Fall v2.0 and MSP-UET Taxila Fall
detection dataset have two classes i.e., fall and non-fall while the
Daily Sounds dataset has multiple classes. To reveal the abilities
of our method as a reliable environmental sounds detector, we
have increased the evaluation scope by conducting experiments
to check its performance in multi-class problems. In the multiclass
scenario, the proposed method also performs well and obtained an
average accuracy of 97.8% as shown in Fig. 8. We also conducted
experiments on two classes such as fall and non-fall to check the
superiority and generalizability of the proposed method. We
achieved remarkable accuracy of 93.5%, 98.29%, and 98% on the
Daily Sounds, A3 Fall v2.0, and our MSP-UET fall datasets. This
experiment proves that the dynamic threshold-based MAD-LTP
computed features are able to reliably detect the fall event in both
the binary and multi-class classification scenarios.

5. Conclusion

In this work, we presented an effective and efficient fall detec-
tion method utilizing the MAD-LTP features and BiLSTM. We pre-
sented a novel audio features descriptor MAD-LTP to better
capture the attributes of scream and pain voices. We also devel-
oped a diverse fall detection system to measure the performance
of the proposed system under challenging indoor and outdoor
environments. We evaluated the performance of the proposed sys-
tem on three datasets to check the robustness of our method on
multiple diverse datasets. Experimental results illustrate the relia-
bility of the proposed system over the contemporary methods for
fall detection. We conclude that the proposed system can be
employed in various wearable machines to reliably monitor the
patients in hospitals and elderly persons in houses to detect the fall
incidents. In future, we intend to use our designed MAD-LTP fea-
tures on cross dataset scenario to assess the generalizability of
our approach under more challenging conditions such as multiple
external interferences and significant amount of reverberation.
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