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In this paper, we propose a framework that detects falls by using acoustic Local Ternary Patterns (acoustic-LTPs)
by analyzing environmental sounds. The proposed method suppresses silence zones in sound signals and dis-

SVM tinguishes overlapping sounds. Acoustic features are extracted from the Separated source components by using

Fall detection
Classification

the proposed acoustic-LTPs. Subsequently, fall events are detected through a support vector machine (SVM)
based classifier. The performance of the proposed descriptor is evaluated against state-of-the-art methods that

are applied on well-known sound databases. A comparative analysis demonstrates that the proposed descriptor is
more powerful and reliable in terms of fall detection than other methods, and it also performs well in a multi-
class environment. Moreover, the proposed descriptor possesses a rotation invariant property, and therefore, it
demonstrates significant resistance against the rotated sound signals.

1. Introduction

Elderly people living alone face distress when they fall and are
unable to call for help. In the case of elderly people, a fall may result in
life changing injury, severely affecting the quality of life. Moreover, a
protracted delay in first aid after a fall further increases the risk of
mortality [1,2]. Therefore, early fall detection is crucial to provide
timely necessary help, avoid complications, and reduce hospitalization
Ccosts.

In the literature, fall detection for elderly people has been proposed
using either wearable devices with sensing technologies based on ac-
celerometers or through environmental sensors, i.e., pressure sensors,
microphones, video cameras, and floor vibration sensors installed at
various locations throughout a building [3-6]. Wearable devices used
for fall detection are inconvenient and obtrusive for patients. In [7], a
Doppler radar-based fall detection method was proposed to recognize
human activity. In [8], fall detection was performed using Radar’s ef-
fective non-intrusive sensing modality by detecting human motion. In
[6], a wavelet transform based method was used to detect human falls
using a ceiling mounted Doppler range control radar. The major
drawback of using a radar-based Doppler system is their limited ap-
plicability. On the other hand, the privacy issues are convoluted in
video based methods.

* Corresponding author.

Of the various environmental sensor-based approaches, an acoustic
analysis of environmental sounds provides an effective alternative to
overcome the drawbacks of both wearable and non-wearable solutions
[9,10]. Li, Ho et al. proposed an acoustic analysis for fall detection
using the Mel-frequency Cepstral Coefficients (MFCC) features and
nearest neighbor (NN) classifier [11]. Shaukat, Ahsan et al. performed
daily sound recognition for elderly people using the MFCC, Linear
Predictive Coding (LPCs) and non-spectral features [12]. The main
drawback of these methods is the selection of many irrelevant features
that negatively affect the results of the classification [13]. Another
drawback is the inherent complexity that makes the combination less
suitable to implement with real time systems. Zigel, Litvak et al. ana-
lyzed floor vibration waves and fall sounds in combination for fall de-
tection [13]. Khan, Yu et al. presented a fall detection system using
acoustic signals collected from sounds of footsteps [14]. Popescu and
Mahnot classified MFCC features through a nearest neighbor (NN),
support vector machines (SVM), and Gaussian mixture classifiers for fall
detection [15]. The common reason to use MFCCs for fall detection are
the lower dimensionality of features [16]. However, during the audio
signal acquisition, several environmental factors affect this process and
induce noise in the collected sound data. Also, various operating con-
ditions also influence the extracted MFCC features and deteriorate their
quality, and these limitations can result in a mismatch when MFCCs are
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used for classifier training and recognition of a fall event [14]. In ad-
dition, MFCC feature extraction is also a computationally complex
process and consequently becomes difficult to implement using hard-
ware devices. Different feature extraction techniques can be combined
with MFCC to improve the performance by reducing the effects of noise,
further increasing the hardware implementation costs. For such rea-
sons, a more effective feature extraction technique needs to be carried
out to ensure a better classification performance in fall detection.

In this letter, we propose a novel feature extraction scheme for
acoustic signals through acoustic Local Ternary Patterns (acoustic-LTP).
The LTP feature descriptors were initially proposed for face recognition
[17]. However, such features have never been reported to represent
audio signals, which are predominantly 1-D in nature. In addition, the
concept of uniform and rotation invariance for audio signals has also
been introduced. We emphasize that the rotation invariance is also a
fundamental requirement for audio descriptors.

2. Proposed fall detection framework
2.1. Silent zone suppression

A general architecture of a fall detection framework is shown in
Fig. 1. In the first step, an input audio signal is processed to suppress the
silence zones. When an analog audio signal y(t) is captured from the
environment for small intervals of time, it is sampled to obtain a dis-
crete-time signal y’[n] consisting of N’ samples. The discrete input
signal is divided into F’ non-overlapping frames/windows with a fixed
length l. Letg, € Q,, i =0, ---,7, and g, is the i* neighboring sample in
the neighborhood Q, centered at p. The discrete audio signal y’[n] has
an amalgamation of various audio streams comprising a living en-
vironment, including the sound of a fall. The audio stream also contains
silence zones which need to be suppressed. By using the HMM model
[18] and the FAST-ICA [19], low and high frequency signals are dis-
criminated. The posterior probability for the acoustic events is larger
than the posterior probability of the silence period. The frames be-
longing to the acoustic events, having higher posterior probabilities, are
segmented from the sources through the FAST-ICA algorithm. Thus, a
source signal y[n] with N samples and F frames is available for further
processing.

2.2. Acoustic Local Ternary Patterns

In the second step, the acoustic features of the y[n] signal are ex-
tracted through the proposed acoustic Local Ternary Patterns (acoustic-
LTP). Acoustic-LTP are locally computed by encoding each frame Q, of
the audio signal y[n]. To compute the ternary pattern, we compute the
magnitude difference between the central p and the surrounding sam-
ples g;. Using a threshold ¢ (t = 0.00008) signal values in the range of
width + ¢ around the central sample p are quantized to zero. Values
above p + t are quantized to 1 and below p—t are quantized to —1.
Hence, a three-valued function s is given by:

+1, g—p+1t)=0

0, (@+1<g <@t
-1, g—(-t)<0

s(q, p, 1) =
1)

where 5(g;, p, t) represents the acoustic signal using a three-valued
ternary pattern. To reduce the number of patterns, they are further split
into upper s,(.) and lower s;(.) patterns. In the s,(.) pattern, only +1
values are retained while all other values are replaced with zeros.

Audio
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Detection

Silent Zone
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Fig. 1. Architecture of the proposed fall detection framework.
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Fig. 2. Acoustic Local Ternary Pattern (acoustic-LTP) Computation.

1, s(g, p,t) =+1
0, otherwise

Su(gy p, ) = {

(2
Similarly, in s5;(.), —1 values are retained as 1 while all other values are
replaced with zeros.

1, s(g,p,)=-1
0, otherwise

s1(q;, p, t) =
1(q;> P> 1) { @)

The procedure of computing acoustic-TLP is shown in Fig. 2. Uni-
form patterns are well-known for computer vision applications [17].
They capture most of the attributes of a signal. The ratio uniform pat-
terns is very high as compared to non-uniform patterns. Among the
patterns in s,(.) and s;(.), the upper uniform patterns s/"(.) and lower
uniform patterns 5" (.) are computed and encoded through their dec-
imal values.

7
Tg(zu) — z S;mi(qi, p, b). i
P i=0 (4)

7
10 = 5q, p. 0. 2
i=0

)

For the feature descriptor, two histograms from the upper and lower
codes are computed. For each uniform pattern, one bin is assigned and
all non-uniform patterns are grouped into a single bin.

F
h(k) = Y 8(Tf, k)

f=1 (6)

F
hk)= Y, 8(T, k)
f=1 @)

where k denotes the histogram bins corresponding to the uniform
acoustic-LTP codes and & (.) is the Kronecker delta function.

We observed that the first twenty uniform patterns from the upper
and lower patterns are sufficient to capture all variations in the data.
Thus, the dimension of the feature vector is two times as long as the
dimension of each histogram. The 40-dimentional feature vector X is
formed by concatenating two histograms.

x = [h, h)] (8)

2.3. Classification

Finally, fall and non-fall events are classified through a classifier
trained using support vector machines (SVM) [20]. For the learning
classifier, training data with fall and non-fall audio features with known
targets, consisting of M pairs (x®, y®), i =1, ---,M, are prepared
where y® € {1, —1} specifies the fall and non-fall classes. Hyperplanes
linearly separating the two classes are given as,

1
-1

{wa(i) +b>1, if y®

wix® + b <1, if y® 9)
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where w is the weighting vector and b is the bias. The objective is to
maximize the separation between two planes by minimizing the norm
[lwll which can be formulated as a quadratic optimization problem.

minlwll s. t.  yw'x® 4+ b) > 1
w

10)
The two events can be classified by using the discriminating function
f(x®) = sign(w'x® + b) such that if f(x?) = +1 then results in fall
event otherwise non-fall event.

3. Experiments and results
3.1. Comparative analysis

To evaluate the proposed scheme and the proposed descriptor, ex-
periments were performed on two standard datasets: a) real world
computing partnership (RWCP) sound scene dataset [21,12]" and b)
daily sound dataset [22]. The RWCP dataset contains environmental
sounds that were recorded in an anechoic chamber through a micro-
phone and DAT recorder at 48 kHz [21] and were later down-sampled
to 16 kHz. The RWCP dataset contains a total of 9722 instances and 105
different non-speech dry source sounds. The dry source sounds are the
sounds free from room acoustics [21]. In RWCP 90, the audio classes
are grouped in 14 categories. Almost each class consists of 100 sound
files in RAW format converted into WAV format. The daily sounds
dataset contains all non-speech sound files in WAV format with a
sampling frequency of 16 kHz [22], and the sound files present in the
dataset were downloaded from the internet or recorded using a mi-
crophone [22]. The dataset comprises 1049 sound files grouped into 18
different sound classes. For fall detection experiments, we have re-
corded 100 fall sounds through human subjects with associated events
i.e. scream, and/or object falling e.g. cup breaking etc. The fall events
were recorded in a rectangular room measuring 7m X 2m with car-
peted floor. We have particularly selected the night time for experi-
ments, so that the recorded sounds have minimum amount of external
interventions. The fall events were performed at a distance of 1-6 m
from the microphones with different angles in order to reproduce rea-
listically different fall patterns. The fall events comprise of falls on
hands, sides, back, and knees. The fall sounds were then merged with
the sound files present in the RWCP and daily sound repositories using
the Audacity software” to mimic the real world environments. The
isolated sound files were used for the classifier training purposes;
whereas, the merged sound files were used for the evaluation purposes
of the proposed framework.

To evaluate the fall detection performance, we compared our
method against other state-of-the-art audio representation schemes, i.e.,
MFCC [14], acoustic-LBP [23], and LPC [24]. To evaluate the perfor-
mance, quantitative measures including the precision, recall, F-1 score,
accuracy, and error rates were used, and these measures are computed
using true positive (TP), true negative (TN), false positive (FT) and false
negative (FN) rates. For fall detection evaluation the classifier training
occurs over the balanced training sets having 70% data for training and
30% data for testing purposes. For this we consider fall and panic sound
examples as one class, and samples of various other environmental
sounds present in the datasets as other class. The results presented in
Fig. 3 shows that the proposed method has the highest recall, accuracy,
and Fl-score rates, as well as the lowest error rate as compared to the
above mentioned schemes. However, for precision, acoustic-LTP and
acoustic-LBP have a similar performance, and the foremost reason be-
hind this performance overlap is that the precision measure ignores the
false negative (FN) rates. However, by considering all other measures,
we can conclude that the proposed method is far more efficient in terms
of fall detection. Apart from the challenging nature of the audio streams

1 Available online at: http://www.openslr.org/13/1.
2 Available at the link: http://www.audacityteam.org/2.
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Fig. 3. Fall detection evaluation over RWCP and Daily sounds datasets.
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Fig. 4. Comparison in terms of accuracy over RWCP, and daily sounds datasets.

in Daily sounds dataset, the results presented in Fig. 3 clearly shows the
superiority of the proposed method in terms of the precision, recall, F1-
score, and accuracy rates. The proposed method also has provided the
lowest error rates that clearly signify the reliability. In addition, we
have also compared our method against other state-of-the-art methods.
Fig. 4, shows the comparison between our method and the methods
presented in [12,25-31]. The results indicate that the proposed
acoustic-LTP features are robust in terms of the audio stream re-
presentation and classification.

3.2. Evaluation in multiclass environment

To unveil the capabilities of the proposed acoustic-LTP as a reliable
audio descriptor, we broadened the evaluation scope by performing the
descriptors validation over the multi-category problems. In multiclass
environment, the high correlation between the classes makes the in-
stance recognition problem even more challenging. Due to the high
correlation, the miss-association rate becomes high and class imbalance
also raises a series of issues. In our work, the classification results over
the multiclass problems are also computed and results are shown in
Fig. 5. The proposed methodology achieves 92% accuracy on the daily
sounds dataset and 97.41% accuracy on the RWCP dataset with the one-
against-all classification settings for SVM classifier. Whereas, with si-
milar experimental settings, MFCC achieves 88.6% accuracy on daily
sounds dataset and 83.9% accuracy on RWCP dataset. Therefore, on the
basis of evaluation results, it can be concluded that the proposed
acoustic-LTP features, in multi-class problems, are robust in terms of
audio stream representations as compared against state-of-the-arts.

3.3. Rotation invariance

For this experiment, the classifier is trained with audio samples
having a rotation angle of 0°. Then we have used the audio samples
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Fig. 5. Multiclass evaluation of acoustic-LTP over daily sounds dataset.

rotated 180° for the evaluation. It is important to note that rotation in
audio signals allows representing semantically similar situations of
expressions (i.e., expression of pain) in different tones.

Fig. 6 shows that the acoustic-LTP generates symmetrical re-
presentations for both the original and the inverted signals. To further
investigate this important property, we randomly drew 30 fall and 20
non-fall samples and inverted the audio samples. The features for the
inverted signals are extracted through the conventional and the pro-
posed methods. Then, the classification for the fall and non-fall events is
carried out through a trained classifier. The results of the classification
are reported in Table 1. The results show that the proposed method
outperforms other methods in terms of accuracy, F1-score, recall, and
error rates. However, as precision measure ignores the FPs therefore,
the acoustic-LBP, and MFCC perform better than acoustic-LTP. The
results clearly reveal that proposed features are robust against rotated
signals. The conventional approaches lack this feature. This could be

Orignal Signal Inverted Signal
0.2 gna =g 0.2 v i

0 0
0.2 -0.2

0 1 2 3 4 0 1 2 3 4

x10% x10%

- Discriptor for Orignal Signal Discriptor for Inverted Signal

1000 1000
500 500
0 0

0 10 20 30 40 0 10 20 30 40

bin bin

Fig. 6. Descriptors for original and inverted signals.
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signified from the fact that for all these situations the audio re-
presentation through conventional descriptors will usually disagree. For
example MFCC, which serves as almost a standard descriptor in audio
applications generates different representations for high vs. low audio
signals. Similarly if any event i.e. pain sound is expressed oppositely
e.g. consider a scream that sounds “AAAH” against “HAAA”, the con-
ventional approaches fail to recognize them as similar event and hence
generate different feature representations that can also result in the
form of misclassification. However, the proposed feature descriptor is
able to address all these challenges in an effective manner. For evidence
of the claim we have considered the screams that are expressed oppo-
sitely i.e. a scream that sounds “AAAH” (by breathing outside) is when
rotated at 180° (or expressed oppositely e.g. by breathing inside)
against “HAAA” (Fig. 6 first row), the audio representations remain
constant (Fig. 6 second row); and hence, will be classified correctly.
This constant representation for signals is a concept that is significantly
focused in 2D signals domain i.e. in image representation in form of
rotation invariance; whereas, it is an equally important concept in 1D
signal domain particularly in critical applications. If a descriptor cannot
address the rotation is prone to misclassified output and becomes a
weak candidate for life impacting applications. Therefore, the proposed
discriptor is more effective in fall detection.

4. Conclusion

In this paper, we have presented a framework for automatic fall
detection for elderly people by analyzing the environmental sounds.
Our fall detection framework has attributes of powerful audio feature
extraction and representation mechanisms through acoustic-LTP. The
proposed mechanism is more effective in classification and robust
against the rotation attacks. A comparison of the performance against
the state-of-the-art methods reveals the accuracy and reliability of the
proposed method in terms of the fall detection to improve the quality of
life for elderly people living an independent life.
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Table 1
Classification Results over Rotated Signals.
TN FP FN TP Accuracy % Precision F-1 score Recall Error rate
A-LTP 29 17 3 1 92 0.91 0.97 0.94 0.08
A-LBP 22 20 0 8 84 1.00 0.73 0.85 0.16
MFCC 13 20 0 17 66 1.00 0.43 0.60 0.34
LPC 19 9 11 1 56 0.63 0.95 0.76 0.24
Acknowledgement IEEE Trans Biomed Eng 2009;56(12):2858-67.
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