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Abstract—The growing number of voice-enabled devices and
applications consider automatic speaker verification (ASV) a
fundamental component. However, maximum outreach for ASV
in critical domains e.g., financial services and health care, is
not possible unless we overcome security breaches caused by
voice cloning algorithms and replayed audios. Therefore, to
overcome these vulnerabilities, a secure ASV (SASV) system
based on the novel sign modified acoustic local ternary pattern
(sm-ALTP) features and asymmetric bagging-based classifier-
ensemble with enhanced attack vector is presented. The pro-
posed audio representation approach clusters the high and low
frequency components in audio frames by normally distributing
frequency components against a convex function. Then, the neigh-
borhood statistics are applied to capture the user specific vocal
tract information. The proposed SASV system simultaneously
verifies the bonafide speakers and detects the voice cloning
attack, cloning algorithm used to synthesize cloned audio (in the
defined settings), and voice-replay attacks over the ASVspoof
2019 dataset. In addition, the proposed method detects the voice
replay and cloned voice replay attacks over the VSDC dataset.
Both the voice cloning algorithm detection and cloned-replay
attack detection are novel concepts introduced in this paper. The
voice cloning algorithm detection module determines the voice
cloning algorithm used to generate the fake audios. Whereas, the
cloned voice replay attack detection is performed to determine
the SASV behavior when audio samples are simultaneously
contemplated with cloning and replay artifacts.

Index Terms—ASVspoof 2019, VSDC, logical access (LA)
attack, physical access (PA) attack, secure ASYV, countermeasures,
and classifier ensembles.

I. INTRODUCTION

UTOMATIC speaker verification (ASV) is an essential
component of voice biometric applications. These ap-
plications authenticate speakers based on their unique vocal
characteristics and protects user accounts against identity theft.
However, due to synthetic audio generation algorithms and
counterfeited audios through digital manipulation, security
breaches occur that fails the ASV systems and, hence, make
the voice biometric applications unreliable. Similarly, smart
speakers e.g. Google Home, Amazon Alexa, Siri etc., and
many voice enabled devices in IoT that rely on the robustness
of the ASV system are also prone to audio spoofing attacks
as elaborated in [1].
Audio spoofing attacks over ASV systems can be catego-
rized i.e. 1) imitation [2], 2) voice conversion [2], 3) synthesis
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(voice cloning) [3] 4) and replay [4], attacks. These attacks
can be grouped into the Physical Access (PA) and Logical
Access (LA) attack categories. In PA attacks, physical channel
is accessed to launch the attack, whereas, in case of LA the
audio is considered to be transmitted directly to the ASV
systems. In replay attacks, which fall under the category
of PA attacks, the prerecorded voice of the genuine target
speaker is played back to deceive the ASV systems. Replay
attack pose a threat as they are easy to launch, and the only
precondition to launch this attack is to have a prerecorded
speaker voice. Voice cloning technologies, which come under
the LA attack category, take the prerecorded voice samples
of a speaker and aims to produce speech samples that are
perceptually indistinguishable from bonafide speech [5]. The
speech samples generated through voice cloning algorithms
are also hard to detect and needs the ASV systems to be
specifically trained to recognize LA attacks.

In research, many state-of-the-art methods have been pro-
posed to counter voice spoofing attacks. In this regard three
community-led challenges of ASVspoof/2015/2017/2019 were
launched to promote the development of countermeasures to
protect ASV systems from the threat of spoofing [5]. The
resulting systems were aimed to combine countermeasures
with ASV in a plug-and-play manner either by placing (i)
the countermeasure step followed by ASV, (ii) the ASV step
followed by countermeasures, or (iii) in parallel [6]. In all
these systems the spoofing detection was performed through
different feature and classifier combinations by considering the
spoofing detection as a binary classification problem [7]. As a
first step, these approaches generate the audio representations
through various feature combinations. Then, binary classifiers
predict an input audio as spoofed or bonafide.

In contrast to the existing approaches, the proposed SASV
system (Figure 1) aims to identify the speaker and liveliness of
the input audio (i.e., the speech is genuine or spoofed) through
a comprehensive framework. Furthermore, an enhanced attack
vector is also introduced in the system to make it robust
against spoofing attacks. The attack vector of conventional
countermeasures are usually comprised of replayed or cloned
audios only. In contrast, in the case of an LA attack, our
method also detects the voice cloning algorithm, and the
replay detection module also detects the cloned replay attacks.
Furthermore, existing approaches consider that the generated
audio through a voice cloning algorithm directly transfers to
the anti-spoofing system, without first going through a physical
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Fig. 1: Block diagram of Secure ASV (SASV) system.

channel. However, we have considered real-world LA attacks
over PA attacks, where a physical channel will be used to
launch the LA attacks.

For any input audio, after feature extraction, our framework
performs the speaker identification step to determine which
user is interacting with the system, and passes the speaker ID
to the speaker profile generation module. Then, our system
determine, if someone has attacked our system through a
replayed audio or not, and pass the binary decision to the
speaker profile generation module as well. If the input audio
is not a replayed audio, then the framework analyzes the
input audio for the voice cloning attack that possibly can
be launched through a smart speaker or a microphone. For
cloned audios, the framework (in the defined settings) also
identifies the voice cloning algorithm that was used to generate
the cloned voice samples. The voice cloning and algorithm
decisions are also passed to the profile generation module. Our
speaker profile generation module, grants the system access to
only those speakers, where both replay and cloned flags are
zero (to represent No). For the bonafide audios, the speaker
profile contains the user information e.g., system-user ID,
name, account number, account type etc., by accessing the
main stream databases as per the application requirements. In
the case of spoofing attack, the framework will return, the
attack details i.e., which user was attacked, which algorithm
or commercial solution was used to generate the fake audios,
etc.

For feature extraction, a novel audio representation scheme
i.e., sign modified acoustic local ternary pattern (sm-ALTP)
features, is proposed. The sm-ALTP features are an extension
of the ALTP features that we earlier proposed in [8]. The sm-
ALTP captures the features corresponding to the vocal tract of
a user and also determines the non-linearity that consequently
comes in a signal due to the recording or voice cloning artifacts
through the local correlation scores. The liveliness of the voice
is determined through the SVM-based classifier ensemble that
is generated through the asymmetric bagging and random
subspace sampling over the feature repository. The classifier

ensemble used in the proposed work takes a series of the weak
classifiers and combines the classification output through the
weighted normalized voting rule (WNVR) to generate a stable
classifier. The generated model then verifies the speakers and
detects the voice cloning attack, the cloning algorithm used for
the attack (in the defined settings), the voice replays, and the
cloned voice replay attacks over the ASVspoof 2019 dataset,
and the voice spoofing detection corpus (VSDC). Through
voice cloning algorithm detection, we want to further analyze
the cases and scenarios that are challenging for our system and
can cause failure to any existing countermeasure approach.
The intention behind algorithm detection is to counter the
commercial solutions that allow even amateurs to generate
cloned audios. With our approach, after algorithm/commer-
cial solution detection, the culprits can be identified easily
depending on the severity of the case.

Our framework also detects cloned replay attacks, which is
also a novel concept proposed in this paper. The cloned replays
are comprised of the voice samples recorded by playing syn-
thetic voice samples before the microphone. The applications
of the cloned replays are possible in the scenarios where an
attacker needs to play a recorded voice for impersonation (for
instance before the smart speakers i.e., Google Home), but he
lacks the prerecorded voice samples of the speaker. Thus, the
model evaluation over the enhanced attack vector consequently
empowers the proposed ASV system against various possible
security breaches. Moreover, due to the lightweight nature of
the proposed approach, our system can easily be adopted in
resource constrained environments.

The main contributions of the proposed work can be sum-
marized as follows:

o Development of a secure and lightweight ASV framework

against multiple audio spoofing attacks.

— Extension of the attack vector through cloning algo-
rithm detection, and cloned replay attack detection,
to further strengthen the ASV systems against the
real-world cloning attacks.

o A novel feature extraction approach for audio representa-
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Fig. 2: Detailed architecture of SASV system.

tion capable of capturing speaker as well as attack specific
attributes.

The rest of paper is organized as follows: Section II reviews
the literature in spoofing attacks detection. Section III details
the methodology used in SASV. Section IV provides the
dataset and experimental details for performance evaluation.
Last, the paper is concluded in section V.

II. RELATED WORK

As we elaborated earlier, the research community has con-
sidered audio spoofing attack detection as a binary classifica-
tion problem and aimed to produce countermeasures through
different features and classifier combinations [7]. In feature
domain cepstral coefficient features, i.e., constant-Q transform
(CQT), Log-CQT, constant-Q cepstral coefficient (CQCC),
extended CQCC (eCQCC), inverted CQCC (iCQCC), linear
frequency cepstral coefficient (LFCC), Mel-frequency cepstral
coefficient (MFCC) have been used widely [5], [9]-[12]. The
benefit of CQT-based features stems from a variable spectro-
temporal resolution, and captures the tell-tale signs of manipu-
lation artifacts, which indicate spoofing attacks [13]. The CQT-
based features provide a greater frequency resolution at low
frequencies and a greater time resolution at high frequencies.
However, it is difficult to couple them with traditional cepstral
analysis approaches, which require post-processing to yield a
linear frequency scale. This multi-resolution analysis together
with further post-processing may impose a high computational
load [14]. The CQCC, which is a derivative of CQT features,
provides more spectral detail in the lower-frequency region but
neglects the high-frequency region which provides more dis-
criminative information. LFCC performs the time-frequency
analysis of the entire input signal through discrete Fourier
transform (DFT). However, the spoofing information is mainly
found on low and high frequency sub-bands [15]. Therefore,

the LFCC feature is unable to provide more spectral detail
in the discriminative frequency bands [15]. Other cepstral
features i.e., MFCC, are renowned features, however, their
performance drops for spoofing detection due to sensitivity
towards noise [16].

Phase-based features, e.g., relative phase shift, group delay,
modified group delay, phase difference, and cosine normalized
phase features, have also been explored in spoofing detection
research [17]-[19]. Careful analysis reveals that, phase infor-
mation is lost/changed during the analysis-synthesis step in
some speech-synthesis approaches, which makes bonafide and
spoofed speech different from each other. However, in practice,
such prior knowledge is not available; thus, these features
are not guaranteed to be effective to attacks which have
unchanged phase information [20]. Other popular features are
deep features, which are deep neural network hidden layer
responses, used in [9], [21]-[23]. Although, the deep features
provide competitive results, they cannot be used in resource
constrained environments due to the need for expensive re-
training.

For classification, the Gaussian mixture model (GMM) [5],
[9], [24], [25], deep neural networks (DNN) [7], [12], [21],
and classifier ensembles [26]-[28] have been widely used. The
GMM restates the spoofing detection task as a basic hypothesis
test, where whether an utterance belongs to a true speaker or
not is determined through the likelihood ratio test. Although
the GMM gives promising results, its performance degrades
when high dimensional features are used [18], [29]. In contrast
to the GMM, DNN classifiers can effectively handle high
dimensional features. However, the DNN needs more training
data than GMM. On the other hand, classifier ensembles take a
series of weak classifiers on the subset of the data and generate
a stable classifier by combining the classification outputs [30].
The ensemble approaches hardly overfit, allowing for solutions
that are difficult to reach be achieved with a single hypothesis
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[31].

A. Details of Specific Approaches

In [32] Todisco et al. trained the GMM classifier using the
CQCC features for spoofing attack detection. The features
provide a variable-resolution, time-frequency representation
of the spectrum to capture the detailed characteristics of the
input signal. Then, these characteristics were used to detect
the spoofing attack. CQCC features outperformed earlier ap-
proaches for spoofing detection with a good margin. However,
there was a marked discrepancy between the performance of
the known and unknown spoofing attacks.

Nagarsheth et al. [33] used CQCC and high-frequency cep-
stral coefficients (HFCC) features and applied cepstral mean
and variance normalization (CMVN) to generate the tandem
features for replay attack detection. The CMVN removes the
nuisance channel effects that have primarily been used for au-
tomatic speech recognition [34]. The tandem features were fed
to a DNN to generate feature embeddings. The features were
subsequently passed to a SVM classifier, which determines
the replay attack type. The application of CMVN to detect
the replay attack may seem counter-intuitive. The speech
recording in different acoustic environments using different
devices accumulates additional channel effects. CMVN, which
aims to attenuate channel effects, uses this information to
detect the replay attack. However, this assumption holds only,
if bonafide speech was captured across a common, consistent
channel [34].

The existing literature on voice replay spoofing detection
[4], [35] trained the GMM classifier on various high-frequency
features for replay detection. In [4], transmission line cochlea
(TLC) features were used in conjunction with the GMM
classifier to detect the replay attack. The TLC accurately
resembles the auditory system and effectively uses amplitude
modulation for replay attack detection. However, in TLC, the
input and output signals vary in the same dynamic range.
Therefore, for the large energy variation in the input signal,
it becomes difficult to capture the discriminative information
present in low energy regions. In [35], Witkowaski et al.,
emphasized that replay spoofing introduces spectral alterations
at higher frequencies in the range of 6 to 8 kHz, which can
be considered for replay attack detection. Several methods
e.g., the inverted-MFCC, linear predictive cepstral coefficients
(LPCC), and LPCC residual features in combination of CQCC,
MFCC, and Cepstrum features were scrutinised alongside the
GMM for replay attack detection. Although the method didn’t
solve the spoof detection problem completely, it introduced
a significant improvement over the baseline CQCC-GMM
system in ASVspoof-2017 challenge.

Several works [36]—[38] also focused on channel informa-
tion, recording and playback device characteristics for replay
attack detection. Saranya et al. [37] used MFCC, CQCC, and
Mel-Filterbank-Slope (MFS) features to train the GMM for
replay attack detection. Their work emphasized that the dis-
criminative information used to categorize a signal as genuine
or replayed speech is mainly distributed in two sub-bands,
i.e., 0-1 kHz and 7-8 kHz. Yang et al. [38] employed the low

frequency frame-wise normalization approach for voice replay
spoofing detection.

Existing voice replay spoofing detection approaches have
also employed various deep learning models. In [26], a fusion
of GMM, DNN and ResNet classifiers was trained on MFCC
and CQCC features to detect voice replay attacks. However,
this method achieved a lower equal error rate (EER) but at
the expense of increased computational cost. Bakar et al. [39]
used the long-term average spectrum and MFCC features to
train a deep neural network for replay attack detection. To
overcome the limitations of higher computational cost, a light-
weight CNN model originally proposed for face recognition
was used in [40] to detect voice replay spoofing. Despite
the computational cost, CNN and other deep learning model
require large amounts of data to be trained effectively.

In [41]-[43], the GMM classifier was used for voice cloning
attack detection. Leon et al. [41] extracted the relative phase
shift features from the harmonic phase of the input audio signal
and later used these features to train the GMM classifier for
voice cloning detection. The model achieved good results, even
though there were only 283 test samples. Moreover, the system
is sensitive to the vocoder used for synthetic audio generation.
To achieve the good performance, the vocoder used by the
impostor must be used to train the system.

Wester et al. [42] employed the GMM-Universal back-
ground model (GMM-UBM) using the MFCC and cosine-
normalized phase features for cloned voice detection. This
is the first work that compared the performance of a system
against 100 native English listeners. The results indicate that
the automatic detectors outperformed the human listeners for
all of the cases except one. The results also suggest that
human and automatic countermeasures use different cues to
discriminate between spoofed and genuine audios [44].

Patel et al. [43] used MFCCs, cochlear filter cepstral coeffi-
cients in combination with cochlear filter cepstral coefficients-
instantaneous frequency features, to train a GMM to detect
spoofing attack. The main findings of the work was that the
countermeasures are more dependent on the robust features as
compared to the classifiers.

Janicki et al. [45] used long term prediction residual signals
to train SVM for voice cloning attack detection. The work
considered the prediction coefficients such as the energy of
the prediction error, prediction gains and temporal parameters
related to the prediction error signals, etc., to differentiate
between genuine and spoofed signals. The performance of
the method is dependent on tuning the parameters, which
negatively impacts the generalization capabilities. Due to this,
the method showed better performance on known attacks as
compared to unknown attacks.

B. Limitations of the Existing Approaches

As ASV systems are vulnerable to voice replay and voice
cloning attacks, therefore, an effective countermeasure should
consider the following facts during the audio representation
step—(1) The microphone adds a layer of non-linearity due to
inter-modulation distortions, which induces detectable patterns
[36]; thus, an audio representation mechanism should be able
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to characterize these patterns during audio-fingerprinting to
discriminate between original and replayed audios. (2) The
subsequent recordings of the same recording, which is very
common in audio splicing, consequently introduce higher-
order non-linearities and make an audio signal more distin-
guishable. Therefore, pattern analysis of the audio samples
should be considered during the audio representation phase. (3)
Similarly, voice cloning algorithms also introduce artifacts and
need to be captured while selecting any audio representation
schemes. As shown in (Figure 3), the spectral analysis of a
genuine audio and its cloned version reveals that the finer
lines were appearing in the spectral image of the cloned
audio that represents the artifacts caused by the voice cloning
algorithm. These lines were missing in the spectral image of
the genuine audio. The voice cloning algorithm artifacts are
unique; therefore, the cloned audios generated by different
algorithms can be discriminated from each other and also from
the bonafide ones. (4) An audio representation mechanism for
ASV systems should be less sensitive to the noise for speaker
verification under different environments. (5) For real-time
applications, the ASV systems should consider those features
and classifier combinations, which can ensure fast retraining
of the model to incorporate new users.

III. PROPOSED METHOD

The main objective of the proposed work is to present a
secure ASV (SASV) system to verify the registered bonafide
speakers, and counter the voice cloning, voice replay, and
cloned voice replay attacks. Moreover, in case of a voice
cloning attack, it also identifies the cloning algorithm used
to generate the cloned audios. In the proposed SASV sys-
tem, the audio repository comprised of the replayed, cloned,
and bonafide speaker-voices. The cloned-voices are generated
through multiple voice cloning algorithms against each reg-
istered speaker. Thus, for m bonafide speakers and p voice
cloning algorithms, we have (m X p) cloned-speaker classes.
To counter the cloned audio samples, which are generated
through any unseen voice-cloning algorithm, our model may
incorrectly predict the cloning-algorithm type, but it will still
detect the cloning attack successfully; in that case our model
will label the input audio as cloned audio. Similarly, for
replay attack detection, input audio samples are labeled as
replayed/bonafide. Thus, there are g = m + (m X p) + 2+ 2
number of speaker classes that we want to recognize.

As shown in Figure 2, for the bonafide voice samples
of the registered users and the spoofed samples present in
the audio repository, feature extraction is performed through
the novel sm-ALTP features. Once, the feature extraction
is done, we generate the SVM-based classifier ensembles
through asymmetric bagging [30] and subspace sampling. The
asymmetric bagging and subspace sampling also overcomes
the class imbalance problem that naturally occurs, as bonafide
samples are far fewer than the spoofed samples. The classifier
ensembles integrates the outcome of multiple SVM classifiers
by applying the weighted normalized voting rule (WNVR) to
counter the voice cloning and replay attacks. The speaker
identification module determines which registered user is

interacting with the system, whereas, voice cloning algorithm
detection module determines the voice cloning algorithm used
to generate the fake audios. As the speech characteristics
of each speaker and voice cloning algorithm artifacts are
unique, the speaker identification and voice cloning algorithm
detection is performed through a multi-class SVM classifier
using the polynomial kernel. Once our models are trained,
we use trained models to verify the input audio. To grant
the system access to the identified speaker, the voice cloning
and replay detection modules must give negative results. The
details of the proposed method are covered in the following
subsections.

A. Feature Extraction

1) Overview of ALTP Features: An input audio signal Y [n]
with N samples is partitioned into ¢ = {1,2,...,k} non-
overlapping frames/windows F'(*) with length [ = 9. In each
frame F'(¥), ¢ represents the central sample in a frame and has
2\) neighbors, where j represents the neighbor index in the
frame F(). To compute the ALTP response, the difference
between ¢ and zU) is computed by applying the parameter
t;, around the sample c. The value of the parameter t; lies
between 0 and 1, and is obtained by performing linear search
operation. Next, the sample values in F() are quantized to
zero that lie in the range of width +¢; around ¢, whereas
values above and below c + t; are quantized to 1 and —1
respectively. Thus, we obtain a three-valued function as:

0 (C—Fth) < 2\) < (C— th) (L
+1 20 —(c+1t,) >0

p(c,z(j),th) _

The function p(c, z(j),th) is then decomposed into two pat-
terns classes, i.e., upper pattern P“P(.) and lower pattern
Pl () as:

” i 1 ¢, 29 ty) = +1
P p(c,z(]),th) - {0 " OtheTZ))ise } &Y

Similarly

. (7 S
lw (@) _ 1 p(C,Z 7th) =-1
P (c, 2" ) {0 Otherwise ®)
These upper and lower patterns are then used for upper
and lower ALTP representation generation. The upper-ALTP
features Ay are computed using eq. 4.

j=l
Ay =Y P (c, 20, t,) % 20 4)
§=0
whereas, lower-ALTP features Ay are computed through eq.

5. _
j=l

A=) P"(c, 2D 1) % 2 (5)
j=0
Then, the histograms of Ay and A, are computed by applying
the Kronecker delta function §(.) as described in eq. 6 and eq.
7

H(b) =) 8(Af,b) 6)
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a=k
H'(b) = 5(A%,b) @)
a=1
Where b represents the bin and a represents the frame index.
After computing the H*(b) and H'(b), the ALTP features are
obtained by concatenating (||) both histograms as:

Hy = [H"(b)|| H'(b)] (8)

2) Limitations of ALTP Features: The ALTP features were
originally proposed for indoor applications, i.e., fall detection
[8], [46]; and due to the tolerance against noise showed very
good performance as a feature descriptor against state-of-the-
art feature extraction methods. However, there are some vul-
nerabilities of ALTP that needs to be overcome for application
in ASV systems. These vulnerabilities are— (a) non-static
pattern detection—as shown in Figure 3 the spectral analysis
of the cloned audio reveals that the artifacts have a non-
static repetition pattern, which can be more effectively cap-
tured through a dynamic threshold mechanism. However, the
ALTP has only the static threshold, i.e., +th; thus, room for
improvement exists in ALTP for ASV applications. (b) Signal
volatility—To effectively capture the artifacts in cloned and
replayed audios, it is important to know how quickly the signal
is changing in terms of artifacts [47]. However, the ALTP
features lack this attribute. Hence, the performance drops
against the spoofed audios. (c) Brute-force Optimization—in
ALTP a brute-force approach for threshold optimization was
required; consequently, error reduction was not guaranteed in
time critical applications. (d) Noise uniformity—ALTP was
robust against the uniform noise that remains consistent in
the audio scenes e.g. indoor audios. In contrast, in outdoor
environments as the noise is non-uniform, therefore, the static
threshold-based feature extraction becomes inconsistent and,
hence, demands a different approach for noise suppression.

3) Motivation for the sm-ALTP Features: In order to over-
come the limitations of ALTP features and to detect the
liveliness of the voice in an effective way, sm-ALTP features
are proposed. The sm-ALTP features use the dynamic opti-
mizable threshold that effectively captures signal artifacts and
generates different representations for bonafide and spoofed
voices. Thus, the difference of representation for bonafide and
spoofed vices results in the form of a strong CM approach.
Furthermore, the exploitation of the vocal tract information,

which was missing in the ALTP features, can also boost
speaker identification/ recognition capabilities.

4) sm-ALTP Features: sm-ALTP features overcome the
vulnerabilities of ALTP features by defining a dynamic opti-
mizable threshold and capturing the vocal tract of the speaker.
In sm-ALTP we compute the three valued function as:

. -1 20) —(c—0oa) <0
ple,29 . 0a)={ 0 (c+o0a)<zP) <(c—0ca)y 9
+1 20 —(c+0a) >0

where o is the standard deviation of F(*) and « is the scaling
factor, i.e., (0 < a < 1). o can be computed as:

[T

By replacing t, with (o x a) we overcome the limitations
(a),(c), and (d) of the ALTP features (section III-A2), which
demands the incorporation of the signal variance in terms
of neighborhood statistics. Another limitation of the ALTP
feature was that the ¢; needed the brute-force optimization
through linear search. However, by defining the following
convex function we can optimize the new threshold value, i.e.,
oa.

(10)

=M 2
<g <9Ta(x(Q))> _ y<q>> (11

Where J(-) is the cost function, 6 are the classification

weights, ¢ = {1,2,..., M} are the total number of records in

the training-set, g is the classification function used, i.e., relu,

sigmoid, tanh etc., and y(? represents the actual class-label

of the audio record. The probabilistic interpretation of the cost
y(@ — x(q))

function is:
1 (
exp| —
V2ro 202

The parameter o can then be optimized by applying the
gradient descent algorithm as:

( ) >zl
Opew — 0 — QL %k 82’ (\/Z & 1( L ) ) (13)

(0%
min—

Ilo) = 2M

p(y(q)|x(q); o) = (12)
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Where
Oo oo Oo oo
920 lazm ERe) aza)] (14)
Thus 12
Oo 1 0 ..
9:00 ~ =1 020) [A+ B} (as)
Where
R G\ 2 )\ 2
A= = (B) e e (B
(16)
And
E — (Z(c+l))2 _ (Z';(J)) + + (z(l))2 (Z;U))
(17)

or in compact form we can write it as:

do 1 0 Gz (D212
2200 -1 * 9.0 Z (=7)" = l
(13)

thus, the partial derivative will return:
AN 2\ —1/2
870_:;* Z(z(i))Q_ L *
020 921 =1 l
) 2 ()
<2Zm _ Zl; )
(19)

or
oo 1 1
*

0:00 ~ 211 , N
\/<Z(zm)2‘ (=) e
. QEZ(j)
<22(J) _ l2>

By replacing the eq. 2-5 with (o x a)) we get the H*(b) and
H'(b) using eq. 6 and 7 and generate feature representation
as:

H = [H"(0) || 7' (0) @

The feature representation H captures the patterns present
in the input signal, but this representation lacks the vocal
tract information that can be captured through the cepstral
coefficients at Mel-scale [48]. For instance, at 1000 Hz the
cepstral coefficients of a particular speaker always appear
negative due to the phoneme representation attributed to the
vocal structure of that particular speaker, and this frequency
occurs very frequently; in case of sm-ALTP a large posi-
tive histogram-spike will appear, but it will not provide any
information regarding the vocal behavior at this particular
frequency. Therefore, we have further processed the sm-ALTP
representation using eq. 22.

Hy = H x sgn(pu(Cy(1))) x B

Where C.,(t) is the t'" order MFCC of the 4" frame (more
details in [49]), p; is the frame-wise mean of C.,(t), and

(22)
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t ={1,2,...,20}. C,(t) is applied by computing the frame
energy F(f) with index f as represented in eq. 23.

() = Zlog[E(f)]cos[t(f — %)g] (23)
f=0

The parameter 5 = 0.1 in eq. 22 is used for the feature
normalization in H,. Our final representation of sm-ALTP
features then can be represented as:

Hop, = [pu(C (1)) H] (24)

B. Classifier Comity Learning for Ensembles

No matter how powerful a feature extraction method is, the
characteristics of data in terms of data-quality, data-collection
mechanism, and dataset size affects the classification perfor-
mance in ASV systems. For instance, if a training-set is com-
prised of fewer bonafide representations, and far more spoofed
representations, it may cause a classifier to tend towards the
spoofed class. In this particular case, higher classification
accuracy may be an outcome of the bias towards the spoofed
class; in reality, the classifier is giving far lower performance
for the bonafide samples, which is a primary goal of any
ASV system. Thus, even the higher classification accuracy
will become insignificant. Meanwhile, it is fundamentally
important to identify the reasons why classifiers generate the
wrong output. In order to achieve this objective, for cloning
attack detection we also identify the cloning-algorithm used
for spoofed audio generation. By capturing the correlation
between spoofed samples and the cloning-algorithm, classi-
fication models can be further improved. Furthermore, we
have ensured that the complexity of the testing process may
not increase in a way that makes the classification model
inappropriate for a real-time application.

1) Training-Phase—Asymmetric Bagging and Subspace
Sampling: In order to generate multiple classifiers, asymmetric
bagging and subspace sampling are used [30]. In asymmetric
bagging, bootstrapping is executed over the spoofed class
samples as there are far more spoofed samples as to bonafide
samples. This way each classifier is trained over a balanced set
using the complete bonafide-set and a subset of spoofed sam-
ples, thus improving unstable SVM classification performance.
The stable SVM classifiers then become able to discriminate
well even the unseen bonafide and spoofed samples. However,
if instead of using the asymmetric bagging, other data balanc-
ing methods are used, i.e., up-sampling, or down-sampling,
the classifier either becomes over-fit or under-fit. After the
asymmetric bagging, the aggregation of multiple classifiers
is performed through the weighted normalized voting rule
(WNVR) over the development-set.

2) Weighted Normalized Voting Rule (wNVR): After train-
ing multiple classifiers, wWNVR is applied to aggregate the
outcomes of all of these classifiers. The reason to choose
wNVR over majority voting rule (MVR) is that MVR is unable
to take advantage of the accurate classifiers and give equal
weight to all of the classifiers [50].
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Fig. 4: sm-ALTP representation (eq. (21)) for genuine and
cloned audios.

Let w = {1,2,...,Q} classifiers are used to generate
the ensemble classifier by applying weighted cross-entropy
function as described in eq (25):

0

Q M K el Tn
Clz) = Z )\wZZ[yb = k| IOgW

w=1 b=1 k=1 v=1

(25)

Where ) is the weight, to take the advantage of more accurate
classifier for ¥k = {1,2,..., K} number of classes to be
classified, b = {1,2,..., M} are the number of instances x
in the development-set. The final class-label C*(z) is then
generated through the eq. (26):

K-1
2Xs

C*(z) = sgn|C(x) — (26)

The parameter s is the normalization factor to control the
bias/variance effect.

3) Testing Phase: After the training and model optimiza-
tion, the trained model can be used for the evaluation purposes.
The evaluation-set is comprised of the examples having seen
and unseen bonafide speakers, and in case of a voice-cloning
attack having samples generated through seen and unseen
algorithms. After model evaluation, any query audio sample
can be passed to the final model, and it can perform the ASV
tasks in the real-time scenarios.

C. Overcoming the Limitations of Existing Approaches

As described in section II-B, the existing approaches ignore
some important signal characteristics during feature extraction,
which consequently lowers their performance. For instance,
the first three limitations emphasize that during replay and
voice cloning, the inter modulation and algorithm artifact
appear, which exhibits distinguishable patterns. The proposed
approach performs the pattern analysis of the input signal, thus
effectively capturing these artifacts to distinguish the spoofed
signals from the bonafide. For instance, as shown in Figure 4,
the bonafide and cloned signals exhibit the peak at the same
feature points, but due to the difference of peaks, these signals
are still easily distinguishable. Moreover, at some feature
points e.g., feature 16 in Figure 4, the bonafide and spoofed
signals exhibit the peaks at opposite directions. The difference
of the feature values in Figure 4 shows that the cloned audio

TABLE I: Number of non-overlapping target speakers and
number of utterances in training and development sets of the
ASVspoof 2019 database.

#Speakers #Utterances
Logical Access Physical Access
Subset Male | Female Bonafide | Spoof Bonafide | Spoof
Training 8 12 2,580 22,800 | 5,400 48,600
Development | 8 12 2,548 22,296 | 5,400 24,300

appears similar to the genuine one, but the essential signal
components i.e., pitch, loudness, etc., are still not perfectly
replicated. However, the lower level analysis of the input signal
through the proposed approach easily reveals this difference.

Another limitation of the audio representation approaches
was that their robustness against noise was not easily quantifi-
able. However, the proposed approach is robust against noise,
and we can easily verify this claim. For instance, consider
the audio frame shown in Figure 5. We can observe that the
additive noise, which can either increase or decrease the value
of central sample ¢ in a frame F() and become a cause to
generate the wrong code against ¢, will become ineffective.
The reason is that, the value of the sample ¢ now lies in a
range of upper and lower threshold values; hence, becomes
more tolerant against additive values by noise. Moreover, due
to the less complex features, fast model retraining is possible;
thus, it makes our approach effective for the applications that
have continuous user enrollment requirements.

1V. EXPERIMENTS AND RESULTS
A. Dataset

Performance of the proposed method is evaluated on
ASVspoof 2019 [51] dataset, and voice spoofing detection
corpus (VSDC) [52].

ASVspoof 2019 dataset (Table I) is further comprised of
two datasets, i.e., logical access (LA) dataset for voice-cloning
attacks detection, and physical-access (PA) dataset for replay
attack detection. The LA-dataset has 25,380 samples for
training-, 24,844 samples for development-, and 71,933 sam-
ples for evaluation- purposes. The training- and development-
set contains the voice samples of 20 speakers (different speak-
ers in both sets) that serves as the bonafide classes whereas, the
spoofed-set has cloned samples of the same speaker utterances
generated through 2 voice-conversion and 4 speech synthesis

Audio Frame Analysis

(¢ +oa)
®

(¢ — oa)

AR _
l c l n

Fig. 5: Effect of the dynamic threshold over the audio frames.
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TABLE II: Details of Voice Spoofing Detection Corpus (VSDC).

| Audio Samples Sample Rate | Environment | Microphone

| Recording Device | Recording Source | Recording Device |

| Bonafide | 4000 | Recording Chamber | Make

| Model

| 1st Order Replay | 2nd Order Replay |

Kitchen Table Living Room
Office Desk

‘ Dining Room

Vehicle Ground

e Behinger
| Cloned Replay | 4000 | Bieero-Voce

\
\

| Replay | 4000 | 96K |
\

| Total | 12000 |

| Audio-Technica shure | ST95 MKII | Zoom R16

S
‘ ECM 8000
| 635 A/B | |

| Male Speakers 10 | Zoom R16 Laptop
Audio Asus GL 504
‘ Female Speakers 10 ‘ GM-DS74 USB Audio Card ‘ Echo plus Gen-3 ‘

‘ Ugreen 30521 ‘

| Echo plus Gen-2 |
| Olympus LS-12

algorithms comprised of 120 (20 x 6) cloned speaker-plus-
algorithm classes. The voice-conversion algorithms are based
on (i) neural-network-based, and (ii) transfer-function-based
methods. In contrast, the speech synthesis algorithms are an
implementation of (i) waveform concatenation, (ii) neural-
network-based parametric speech synthesis using source-filter
vocoders, and (iii) neural-network-based parametric speech
synthesis using Wavenet [51]. The evaluation-set includes
unseen bonafide and spoofed speech samples collected from
67 speakers, and the spoofed-set includes samples generated
through 19 algorithms including the GAN-based, and deep
neural network-based methods. The PA-dataset comprises of
54,000, 33,534, and 1,53,522 training, development, and evalu-
ation samples, respectively (Table I). The details of ASVspoof
2019 corpus can be found at [51].

VSDC was designed for replay and cloned replay attack
detection. Cloned-replay represents the recording of cloned
voice samples; for this the ASVspoof cloning samples were
used to generate the replay samples in a manner similar to what
was done for the bonafide voice recordings. The samples in
the dataset are diverse in terms of environment, configurations,
speaker-genre, recording, playback-devices, and number of
speakers (Table II). More specifically, the samples contain
noise and interference as well. To generate the replays, dif-
ferent playback devices were used to combat the effect of a
specific playback device. VSDC includes the voice samples
of ten male and nine female speakers who volunteered their
services for data collection.

B. Experiment [—Performance Evaluation for Speaker Verifi-
cation

In this experiment, the performance of the proposed method
is evaluated for bonafide speaker verification. Bonafide speaker
verification is the primary task performed by any ASV system.
For this experiment, all the 2580 audio samples corresponding
to the 20 bonafide speakers were selected from the ASVspoof
2019 dataset. Amongst these samples 70% of the data (i.e.,
1806 records) was used for training of the model and 30%
data (i.e., 774 records) was used for the testing purposes.
As shown in Table III, the proposed method achieved on
average 99% precision, recall, fl-score, and accuracy values.
For most of the classes the evaluation rates were 100%,
whereas there was no class that had more than 1 misclassified
sample; and amongst 774 testing samples only 7 samples
were misclassified, Moreover, even if we changed the training
and testing ratios as 30-70 (i.e., 774 records for training and
1806 records for testing), our method still gave 98% average
precision, recall, f1-score, and accuracy values, which clearly
signifies that our method effectively captures the unique vocal

TABLE III: Performance of the proposed method for bonafide
Speaker Verification over LA-training dataset.

Precision Recall f1-Score Accuracy

0.99 0.99 0.99 0.99

tract information of the registered speakers; thus, our method
is reliable for the in-domain ASV tasks.

C. Experiment II—Voice Cloning Algorithm Detection

In this experiment, we evaluated the performance of the
proposed method for synthetic audio generation algorithms
detection using ASVspoof 2019 LA-training dataset. The
synthetic audio generation algorithms is comprised of both
voice conversion, and speech synthesis algorithms as described
in section IV-A. For this experiment, amongst 22,800 samples,
70% of the data (i.e., 15,874 samples) was used for model
training to recognize 6 algorithm classes, and 30% of the
data (i.e., 6,803 samples) was used for model testing. From
the results presented in Table IV, it can be observed that our
method gave approximately 100% performance in terms of all
the performance evaluation measures. Even if we increased
the testing samples from 6,803 to 15,874 and decreased the
training samples from 15,874 to 6,803, the algorithm detection
performance of the proposed method still remained constant.
Hence, the results confirm that each algorithm induces its
specific properties/artifacts in the generated cloned audios that
usually differ from the other audio generation algorithms, and
a good audio representation with an effective classification
mechanism can exploit these artifacts to perform the algorithm
level detection; consequently, the attack detection profile be-
comes more reliable. This feature can also benefit the audio
forensics applications by inciting more credibility particularly
in court cases.

D. Experiment [II—Performance Evaluation for Compromised
Speaker Identification

The objective of this experiment is to identify which reg-
istered user voices have been compromised to attack the ap-
plication. Through compromised user identification additional
security measures could be taken to further protect the target
user accounts. Thus, in this experiment, we combined the
algorithm and speaker information and used this information to
generate the true labels for model evaluation. The algorithms
are represented with the label A01° to *A06’ as described in
Table IV, and users IDs are represented as L A_00xx’ and the
term ’spoof” is included to show that the audios are synthetic.
Thus, using 6 voice cloning algorithms, against 20 registered
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TABLE IV: Performance evaluation of the proposed method
for synthetic algorithm recognition over LA-training dataset.

Algo. ID Algorithm Precision | Recall | Fl-score
A01 Neural waveform model 0.998 0.996 0.997
A02 Source filter vocoder-1 0.996 0.999 0.997
A03 Source filter vocoder-2 0.994 1.000 0.997
A04 Waveform concatenation | 0.990 0.987 0.989
A0S Source filter vocoder-3 0.997 0.995 0.996
A06 Spectral filtering 0.998 0.997 0.998
Accuracy 0.996

TABLE V: Speaker identification whose voices were used to
attack the system with a certain voice cloning algorithm over
LA-training dataset.

Algo + Speaker ID Precision | Recall | Fl-score
AO01_LA_0079_spoof 0.99 1.00 0.99
A02_LA_0086_spoof 0.98 1.00 0.99
A03_LA_0091_spoof 0.98 1.00 0.99
A04_LA_0095_spoof 1.00 1.00 1.00
A05_LA_0081_spoof 1.00 1.00 1.00
A06_LA_0095_spoof 0.96 0.91 0.94
Accuracy for 120 classes 0.97

speakers, present in ASVspoof 2019 LA-training dataset, we
generated 120 audio classes. In Table V we present the results
of the 6 randomly selected classes, from the results, we can
observe that our method gives 97% accuracy, and the average
value of all the performance evaluation measures is also 97%.
The difference between the accuracy values of Table IV and
Table V is 2.6%, which is due to the probability of a sample’s
partial association with a particular output label; for instance, a
miss-classified sample in terms of the real target speaker can
still be associated with the correct voice cloning algorithm.
Moreover, as in case of algorithm detection (table IV) as there
were only 6 classes, the margin of error was lower. However,
our approach still gives high performance even by applying
the drill down operation. Thus, on the basis of the results we
can say that our method reliably provides us the information
regarding the compromised speakers, which is also a unique
attribute of our method.

E. Cross-Dataset Evaluation

For this experiment, 76,236 unseen examples were selected
for evaluation purposes. Amongst these examples 9,902 ex-
amples are bonafide, and 66,334 examples are cloned. These
76,236 examples are comprised of 5000 examples from the
ASVspoof 2019 development-set, and 71,236 examples from
the evaluation-set, which are never used for the training pur-
poses. All of these examples have unseen speakers (20 speak-
ers from development-set and 67 speakers from evaluation-
set), and 19 different voice-cloning, and voice-conversion
algorithms (including 6 algorithms mentioned in Table IV and
the remaining 13 in Table VII) are used for cloned audio
generation of these 87 speakers. As algorithms used for the
voice cloning are never used for training of our method,
our method cannot predict algorithm labels. Therefore, for
this experiment we trained our model using the training-set
with two labels, i.e., bonafide and cloned. Thus, the aim of
this experiment was to evaluate if our method is able to
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discriminate between any bonafide/cloned audios, no matter
who the speaker is or how the cloning is performed.

From the results presented in Table VI, we can observe that
our method has 88% overall accuracy. By further applying
the drill-down operation on this accuracy value, we found that
the accuracy of the bonafide class is 86%, whereas, for the
cloned class the average accuracy is 90%; hence, the overall
accuracy becomes 88%. Amongst these 87 speakers, for 72
speakers the average accuracy remains above 90%, which is
fairly high considering that only 20 speakers are used for
training purposes, and those 20 speakers are not considered for
evaluation purposes in this experiment. Similarly, as shown in
Table VII, if we analyze the 13 algorithms that were not used
for training, it can be observed that for § algorithms accuracy
is nearly 100%; whereas, for 2 algorithms accuracy is above
90%. The most problematic algorithms are A17-A19, where
accuracy significantly drops. However, it can be observed from
Table VII that the number of samples in all these algorithm
classes have fewest samples. A17, which has lowest accuracy
is just approximately 27% (in terms of sample size) of A09
which has highest accuracy of 100% and also contains the
most samples. Therefore, based on this we can conclude that
model optimization has positive correlation with sample size,
and although external algorithm labels are not used but still our
model identifies the correlation between the specific types of
artifacts that any synthetic algorithm introduce, and it returns
the correct output for most of the samples.

For a good algorithm, a higher accuracy value is one of the
many requirements including algorithm performance in terms
of precision, recall, and f1-score in class dependent scenarios.
The reason for the class dependent analysis is that in case of
imbalanced data, if a classifier even ignores the minor class, it
will still give higher overall accuracy and other performance
evaluation measures. However, such higher evaluation values
are unacceptable, as usually the minor class is the class of
interest that must be considered. By observing the results
presented in Table VI, we can see that our method has a
67% precision rate for the bonafide class and 97% for cloned
class. As the precision measure also takes into account the
false positive rate, for the highly imbalance data (as in our
case where 13:87 ratio exist in both classes) the precision rate
drops for the bonafide class; however, the false positives in
the cloned class are less, thus, they did not impose a very
high negative impact on the precision rate of the cloned class.
However, in case of recall we only considered the correctly
classified examples in a class against all the relevant examples
for that specific class; therefore, in case of the bonafide class,
the recall rates are 91%, which are approximately 24% higher
than those of the precision rate. Similarly, the recall rates
drop by 6% for the cloned class and becomes 91%. Thus, our
method performs well in terms of recall rate for the bonafide
class as well as for the precision rate of the cloned class.
By combining the precision and recall rates through the f1-
score, we get 81% and 94% for bonafide and cloned classes,
respectively. The difference in the fl-score indicates that our
model needs an enhanced training-set to better classify the
unseen bonafide examples. However, in real-world scenarios,
as we need our proposed SASV system to only correctly
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TABLE VI: Performance evaluation for cloning detection for
unseen speakers and seen/unseen algorithms by training over
the LA-training set and testing through LA-development, and
LA-evaluation sets.

Audio Label | Precision | Recall | F1-Score | EER | min t-dcf
Bonafide 0.67 091 0.81

Cloned 0.91 0.91 0.94 522 | 0.132
Accuracy 0.88

TABLE VII: Cross dataset validation using unseen algorithms
of the LA-evaluation set.

Algo. ID | Algorithm No of Samples | Accuracy
A07 Vocoder+GAN 4823 0.98
A08 Neural waveform 4855 0.99
A09 Source filter vocoder-4 4893 1.00
Al10 Neural waveform 4878 0.99
All Griffin lim 4882 0.99
Al2 Neural waveform 4603 0.94
Al3 waveform concat_enation 4908 1.00
+waveform filtering
Al4 Source filter vocoder-5 4904 1.00
Al5 Neural waveform 4747 0.97
Al6 Waveform concatenation | 4442 0.90
Al7 Waveform filtering 1352 0.28
Al8 Source filter vocoder-6 1855 0.38
A19 Spectral filtering 2345 0.48

classify the registered bonafide speakers over which the model
is trained as bonafide (as shown in Table III and discussed in
section IV-B), miss-classifying the unregistered users although
they are bonafide is a good thing from the security perspective.
The overall EER of the system is 5.22%, which is significantly
lower considering the difference in the training and evaluation
set sizes.

F. Replay Attack Detection

In a replay attack, the pre-recorded voice of any bonafide
speaker is played back before the ASV systems. As voice
samples belong to the genuine speakers, the artifacts that
appear during the voice cloning are missing in the replay sam-
ples; thus, the audio fingerprints match the bonafide speakers,
and impersonation occurs. However, deeper analysis of the
replay samples reveals that a recorded voice also contains non-
linear components that can be used as a clue for replay attack
detection. In order to detect replay attacks, we first elaborate
what a replay sample is comprised of:

1) Replay and Cloned Replay Patterns: A first-order voice
replay attack can be modeled as a processing chain of
microphone-speaker-microphone (MSM) which is equivalent
to a cascade of three 2nd—order systems considering that the
speakers also behave in a non-linear manner. The processing
chain representing a first order replay attack is therefore
expected to introduce higher order non-linearity due to the
cascading of the MSM processing chain. The higher-order
harmonic distortions therefore can be used to differentiate
between a bonafide and spoofed audio. However, in case of
cloned replays (introduced in the VSDC), the voice cloning
artifacts further contain the non-linear components and have
a behavior similar to that of the deeper chaining of the
MSM. Moreover, by simultaneously capturing the non-linear
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TABLE VIII: Performance evaluation for replay- and cloned
replay attack detection using PA-evaluation set of ASVspoof
2019, and VSDC dataset.

.. EER/
Datasets Sample Type Precision | Recall | F1-Score min t-def
Bonafide 99 99 99
VSDC Replay 98 98 98 13370.089
Cloned Replay | 98.9 98 98.4 —
< Bonafide 98 98 98
ASVspoof 2019 Replay 98 08 98 1.1/0.0335

TABLE IX: Comparison against other feature extraction ap-
proaches using VSDC, LA- and PA-training sets of ASVspoof
2019.

Dataset Features EER/min t-dcf
Replay Cloning Cloned Replay

MFCC-GTCC-Spectral | 2.33/0.149 - 0.4/0.04
ALTP-Spectral 2.5/0.164 1/0.061
ALTP 2.9/0.194 1.2/0.072

VSDC GTCC 7.5/0.497 4.1/0.29
sm-ALTP 1.33/0.089 - 0.35/0.031
MFCC-GTCC-Spectral | 6.75/0.41 0.6/0.04 -
ALTP-Spectral 1.5/0.091 0.8/0.053
ALTP 3.4/0.24 0.9/0.06

ASVspoof 2019 |—Gree 8400561 | 6.10042

sm-ALTP 0.69/0.0169 | 0.5/0.037

components and cloning artifacts through an effective audio
representation mechanism, cloned replays can be detected.

2) Replay and Cloned Replay Attack Detection: In this
experiment, we evaluated the performance of the proposed
method for the replay and cloned replay attack detection on
VSDC and PA-evaluation set of ASVspoof 2019. From the
results presented in Table VIII, we can observe that our method
achieves remarkable performance on both datasets for audio
replay attack detection. More specifically, we obtained an
average precision of 98.3% and 99%, recall of 98.5% and
99%, and Fl-score of 98.4% and 99%, EER of 1.33 and
1.1 and min t-dcf score of 0.089 and 0.0335 on VSDC and
ASVspoof datasets, respectively. We can observe from the
results that the proposed method performs slightly better on
ASVspoof dataset over VSDC due to the fact that samples
of VSDC are generated in more challenging and diverse
conditions as compared to ASVspoof dataset. In VSDC, our
method achieves better performance for the cloned replay
attack detection as compared to the first order replay attack,
confirming our findings that cloned signals become more
distorted after replay as compared to normal samples; thus,
they become more distinguishable as well.

G. Comparison Against Other Feature Extraction Approaches

To further elaborate the effectiveness of the proposed sm-
ALTP features, we compared our features to several acoustic
features for spoofing attack detection. The selected features
were comprised of various combinations of MFCC, GTCC,
ALTP, and spectral features. The performance of various
feature combinations was then evaluated on both VSDC, and
ASVspoof 2019 LA and PA training datasets. From the results
presented in Table IX, it can be observed that the proposed
features outperformed all the comparative features for all types
of spoofing attacks in terms of EER and min t-dcf scores.
Hence, the comparison results confirm again the robustness of
the proposed sm-ALTP features.
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H. Comparison Against State-of-the-art Methods

To further evaluate the effectiveness of the proposed method
for spoofing attack detection, we compared our method to
single-model approaches i.e., [21], [51], [53], [54], [55] over
LA and PA the evaluation-set scenarios of ASVspoof 2019.
From the methodological details and results presented in Table
X, it can be observed that the comparative methods deployed
large variety of acoustic features, with GMM, and deep
learning models. In comparison, our model is much simpler
and more accurate with min t-dcf score of 0.1321; and amongst
all the different methods used by the comparative studies, only
FFT-LCNN in [54] performs better than our method in LA
attack detection, but our method supersedes in terms of PA
attack detection. Similarly, DKU [10] outperforms our method
in PA attack detection, however their LA attack detection
results are unavailable. Although achieving the minimum value
of t-dcf measure is the desired goal, by doing so the overall
cost of the system should not increase in a way that the
integration of the spoofing detection system may become
difficult in real-time applications. If we consider the case of
FFT-LCNN [54], the model may suffer from slow training
which may span from hours to days as established in deep
learning research. However, as the feature extraction time of
our method is O(N), due to the linear time operation, our
proposed feature extraction approach is very efficient.

In order to compare our method to top challenge com-
petitors, we selected the top 10 teams amongst the 50 best
performing teams of LA and PA scenarios [5] (Table XI).
Next, we compared their performance to our proposed method
in terms of min t-dcf score and obtained a ranking of the
proposed system. Our method in both cases i.e., LA and PA
scenarios, was ranked in the 9th position. However, most of
the systems that were ranked higher than our method in the
LA scenario were lower than our method in the PA scenario
and vice versa. Furthermore, regarding the systems which
were amongst the top 10 in the LA scenario but were not
amongst the top 50 of the PA scenario, we assigned them the
ranking score of 51 for the PA scenario; similarly, the systems
which were listed amongst the top 10 of the PA scenario
but were not amongst the top 50 of the LA scenario were
assigned the score 51 for the LA scenario. Then, we obtained
the average ranking score of the comparative systems by
adding the LA and PA ranking values and dividing by 2. The
average ranking score illustrates the cumulative performance
of the comparative systems in both scenarios. Based on the
sorted ranking score, our method was ranked 4th in terms of
cumulative performance for both the LA and PA scenarios.
The ranking score clearly demonstrates the effectiveness of
the proposed approach with additional benefits i.e., lightweight
nature.

V. CONCLUSION

This paper presents a secure automatic speaker verification
(SASV) system that can recognize registered ASV users, and
also counter voice cloning, voice replays, and cloned voice re-
play attacks. Voice cloning detection module discriminates the
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TABLE X: Comparison against state-of-the-art method on LA
and PA evaluation sets of ASVspoof 2019.

Paper Method LA-Eval PA-Eval
EER min-tDCF | EER min-tDCF

Baseline [51] LFCC-GMM 11.96 | 0.212 13.54 | 0.3017
CQCC-GMM 9.87 0.236 11.04 | 0.2454
logSpec-SENet 11.75 | 0.216 1.29 0.036

ASSERT [53] Togspec-CQCC-SENet4-
Mean-std-ResNet- 6.70 0.155 0.59 0.016
SENet50-Dialated ResNet

STC [54] LFCC-CMVN-LCNN 7.86 0.183 4.6 0.105
FFT-LCNN 4.53 0.103 2.06 0.56
logSpec-VGG-SincNet 1 8.0l | 0.208 151 | 00372
-SincNet 2

BUT-Omilia [21] | SincNet with standard
dropout 8.01 0.356 2.11 0.0527
VGG 1-VGG 2 10.52 | 0.279 1.49 0.04
SincNet with high dropout | 22.99 | 0.381 231 0.0591
MFCC-CQCC-FBank-

MEMT [55] multi task leaming 7.63 0.213 0.96 0.0266

DKU [10] GD gram-ResNet - - 1.08 0.0282

Proposed sm-ALTP- . 522 | 0132 11 | 00335
Asymmetric Bagging

original voices against the algorithmically generated synthet-
ic/cloned audios and also provides information about the al-
gorithm that was used for cloned audio generation. The replay
detection module counters the voice replays and cloned-voice
replay attacks. The proposed framework is based on novel
sm-ALTP features and ensemble learning through asymmetric
bagging. Our classifier ensemble approach takes a series of
weak classifiers and generates a stable classifier by overcoming
the class imbalance problem to recognize multiple speakers
and spoofing classes. Our findings suggest that the artifacts
that consequently appear due to microphone characteristics
(in case of replay) or synthetic audio generation algorithms
can be represented by applying the neighborhood statistics.
However, the audio representation approach in this regard must
also capture a speaker’s specific vocal characteristics that are
unique for all the speakers. The evaluation of the ASVspoof
2019 and VSDC datasets reveals that our approach effectively
captures the spoofing patterns even when they are generated
through unseen algorithms, thus providing a comprehensive
security solution for ASV applications.
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