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A B S T R A C T

Diabetic retinopathy (DR) is an eye disease that victimize the people suffering from diabetes from many years.
The severe form of DR results in form of the blindness that can initially be controlled by the DR-screening
oriented treatment. The effective screening programs require the trained human resource that manually grade
the fundus images to understand the severity of the disease. But due to the complexity of this process, and the
insufficient number of the trained workers, the precise manual grading is an expensive process. The CAD-based
solutions try to address these limitations but most of the existing DR detection systems are as evaluated over
small sets and become ineffective when applied in real scenarios. Therefore, in this paper we proposed a novel
technique to precisely detect the various stages of the DR by extending the research of the content-based image
retrieval domain. To achieve the human-level performance over the large-scale DR-datasets (i.e. Kaggle-DR), the
fundus images are represented by the novel tetragonal local octa pattern (T-LOP) features, that are then clas-
sified through the extreme learning machine (ELM). To justify the significance of the method, the proposed
scheme is compared against several state-of-the-art methods including the deep learning-based methods over
four DR-datasets of variational lengths (i.e. Kaggle-DR, DRIVE, Review-DB, STARE). The experimental results
confirm the significance of the DR-detection scheme to serve as a stand-alone solution for providing the precise
information of the severity of the DR in an efficient manner.

1. Introduction

Diabetic retinopathy (DR) is a disease that affects the blood vessels
of the eye-retina of the diabetic patients. According to the world health
organization (WHO), 347 million diabetic patients around the world
are at a risk of developing the DR [1]. Only in USA, over 40% of 29.1
million diabetic patients suffers from the different stages of the DR. are
suffering from diabetes and among them 40 to 45% are also the victim
of DR over its different stages. The worst effect the DR causing is the
blindness in its victims, which can be prevented if proper treatment is
provided to the patients at its earlier stages, but it is very difficult to
detect it at its initial stage as it exhibits the few signs [1]. The main
reason of DR is the variations in blood vessels of the eye which causes
the retinal disorder and that eventually leads toward the blindness.
There are the main four levels of DR [2]:

1. Mild non-proliferative retinopathy: In the initial stage of DR, the
small blood vessels inside the eye produce the tiny areas of balloon-
like swelling which are known as micro-aneurysms. This micro-an-
eurysm may cause the leakage of fluid in retina.

2. Moderate non-proliferative retinopathy: In this level the micro-an-
eurysms [3] may cause the leakage of both fluid and blood from
retina due to the hemorrhages.

3. Severe non-proliferative retinopathy: At this stage, the blood supply
from numerous vessels is blocked which also affect the supply of
blood to various areas of retina. These areas exude growth factors
that causes the retina to produce the new blood vessels [4].

4. Proliferative diabetic retinopathy (PDR): Growth factors secreted by
the retina trigger the proliferation of new blood vessels that grow
along the inside surface of the retina and into the vitreous gel, the
fluid that fills the eye. The new blood vessels are fragile that makes
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them more likely to leak and bleed. Accompanying scar tissue can
contract and cause retinal detachment that leads to permanent vi-
sion loss [5].

To deal with the DR, digital fundal photography-based screening
programs are used throughout the world. But, the cost-factor is still
highlighted in these screening practices to enable them to be used for
the larger populations [6]. Meanwhile, the rapid increase in the victims
of DR is also making the capabilities of current DR screening programs
questionable; as these programs are highly dependent over the manual
grading that take the significant amount of time for every case.
Therefore, to support the grading process in large populations, the re-
search has focused on identifying the ways to detect the DR in an au-
tomatic way.

In literature, a lot of attention has been given to develop the auto-
matic grading systems for DR. In [7], an automatic grading system for
DR was proposed through the CNN and pattern matching detector. For
learning the patterns of DR, the training images were annotated, and
suspicious regions were highlighted in the training repository. The
annotated images were then passed to the CNN which in turns predicts
the respective DR severity. In [8], various features i.e. blood vessel
density, blood vessel caliber, and size of the foveal avascular zone were
extracted over optical coherence tomography angiography (OCTA)
images to detect DR through the SVM classifier. In [9], CNN based al-
gorithm was proposed for DR detection. The main contribution of the
paper was Zoom-in-Net process that mimics the zoom-in process to
highlight the suspicious regions and predicts the severity of disease. In
[10], a hybrid statistical framework for DR detection was proposed that
combines the probabilistic SVM-based kernel with scaled Dirichlet
distributions. In [11], sliding band kernel was utilized for the seg-
mentation of optic disk. In [12], infinite perimeter contour model was
used for the segmentation of blood vessels for feature extraction and
moderate retinopathy detection. In [13], segmentation of blood vessels
was done through the morphological bit plane slicing and centerline
detection by obtaining the first order derivative of the Gaussian kernel.
Whereas in [14], the similar goal was achieved through the morpho-
logical operations. In [15] Quellec et al. proposed a CNN-based method
to create heatmaps to reflect pixels in images that play a role in the
image-level predictions. The back-propagation method was used to
produce the high quality heatmaps, and the method was assessed on the
Kaggle-DR dataset. In [16] a basic framework was proposed for solving
multiple-instance problems through CNN and the significance of the
framework was demonstrated in the circumstance of diabetic retino-
pathy screening process through Kaggle-DR. In [17], the network with
CNN structure and data augmentation was presented to identify the
elaborated features involved in the DR-classification task by validating
the method over 5000 Kaggle-DR images. In [18] Lei Zhou et al. im-
proved the model of dense conditional random field (CRF) by dis-
criminative unary features and combined it with CNN to represent long-
range pixel interactions. The proposed method in [18] consisted of four
steps, first was to eliminate the strong edges around the FOV and
normalization was performed inside the FOV. In second step, CNN was
trained by linear model. In Third step, the filters were applied to en-
hance the vessels. Finally, adopted the dense CRF model for segmen-
tation of retinal vessels by the discriminative features of the enhanced
image. In [19] field programmable gate arrays (FPGA) were proposed
for the implementation of blood vessels segmentation, and the perfor-
mance of the method was evaluated over the DRIVE and STARE data-
sets. In [20] the automated detection of red lesions or hemorrhages was
presented through the gamma correction, and global thresholding
techniques. In [21], the Probabilistic Graphical Model (PGM) was
proposed for retinal vascular tree extraction. The proposed algorithm
comprised of a two steps process i.e. tracking and classification. In [22],
the author presented an improved method for vessel centerline tracking
that was the combination of geometrical topology information and in-
tensity distribution information. The method in [31] resolve the issues

of inaccuracy, inflexion and discontinuity of extracted centerline.
Most of the above approaches either detect specific conditions of DR

or need noise-free images with clear anatomical structures for accurate
detection in multi-class environment. However, in real-world scenarios
the ultra-high-resolution images captured in perfect conditions are not
always available; therefore, the actual application of these methods
become limited. Moreover, usually these systems are as evaluated over
the smaller repositories, consequently, in real application scenarios
accuracy of these approaches further decreases.

In this paper we present a reliable method for DR-detection, which
is independent of the anatomical extractions for classifying various
stages of the DR. In the present work, we extend the feature extraction
and multi-category recognition concepts of content-based image re-
trieval (CBIR) research for DR detection. For this, as a first step, we
obtain the anatomy independent feature representation of the fundus
images through the novel tetragonal local-octa patterns. The reason for
the anatomy independent feature extraction is that the powerful image
representations are generated in an efficient way, as we suppress the
known requirements of the precise anatomical structure detection (i.e.
blood vessel extraction and hemorrhage detection) that ultimately re-
duces the feature generation time. Once the feature extraction is done,
we train the extreme learning machine (ELM) classifier over the
training repository to learn the patterns of all known classes of the DR.
ELMs are also unexplored classification methods in the DR detection
research; whereas, the research is competing for more powerful clas-
sification approaches i.e. CNNs to achieve the reliable performance in
the medical solutions. Afterwards, the feature vector of the query
fundus image is classified as one of the DR class members. Additionally,
we also return the associated case histories for making the informed
decisions by computing the distance measure. The proposed method is
then evaluated on several DR-repositories including the Kaggle-DR
having 88,704 images representing more than 44,000 DR-patients. The
DR-datasets used in existing approaches of DR detection [23] also enjoy
the benefits of noise free instances with clear vascular structures over
which DR detection is far simpler then the Kaggle-DR that has also
noisy and low-resolution images. The similar phenomena described in
this work can also be used to make relevant predictions regarding
presence, manifestations, and severity of several retinal diseases in a
deterministic manner. Here is the summary of our contributions.

• A novel technique is proposed to precisely detect the various stages
of the DR by extending the research of the content-based image
retrieval domain.

• For feature extraction, the concept of tetragonal local octal patterns
(T-LOP) is introduced. T-LOP is a novel image representation
scheme that particularly is designed for analyzing the fundus images
that is a composition of blood vessels and textured lesions.

• To achieve the human-level performance over the large-scale DR-
datasets (i.e. Kaggle-DR), the fundus images are represented by the
proposed tetragonal local octa pattern (T-LOP) features, that are
then classified through the extreme learning machine (ELM).

Rest of the paper is organized as follows: in Section 2 motivation
behind using CBIR for DR detection and the proposed methodology of
DR detection are discussed in detail. Experimental results are provided
in Section 3. Finally, in Section 4, we conclude our work.

2. Proposed methodology

2.1. Motivation

The block diagram of the proposed scheme is shown in Fig. 1. In the
proposed method, the DR detection is considered as a two-step process.
In the first step we represent images in a robust way and train extreme
learning machine (ELM) classifier over the feature repository. For fea-
ture extraction, we introduce the concept of tetragonal local octal
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patterns (T-LOP). T-LOP is a novel image representation scheme that
particularly is designed for analyzing the fundus images that is a
composition of blood vessels and textured lesions. Once the training is
done, we present a query image to the trained model that classifies the
input fundus image as one of DR class members. For DR positive images
we obtain the pathological information in the image by involving the
query neighborhood and return the system output.

In the second step pathology detection is performed by in-
corporating the query neighborhood. In content-based image retrieval
(CBIR) the query image contents are analyzed and semantically similar
images are returned from large image collections [24]. Image semantics
are determined based on the intrinsic features by estimating the objects
comprising the query image or generating the global image re-
presentations [25]. The obtained feature representations are then
compared against the feature representations of the repository images
and top-matched images are returned as the semantic response of the
system [25]. But as the image semantics are concerned with the analysis
of images with dense objects, complex backgrounds, and overlapping
semantics, thus, state-of-the-art in CBIR also utilize the supervised
learning capabilities. Thus, in modern CBIR systems, image retrieval is
considered as an image classification problem where semantic classi-
fiers are defined to determine the underlying semantics of the images.
Moreover, a guided approach in the form of feedback rounds by the
system user can also be incorporated to ensure the precise image re-
trieval output [25].

The application of the concept of semantic classification in CBIR for
DR detection is the main motivation behind the proposed scheme. In
the proposed method, the DR detection occurs in the similar way as
semantic response occurs in CBIR. In both domains, image re-
presentation occurs in the form of low level features as a first step that
are then considered for the association with a particular class [23]. But
as CBIR is intended to deal with far larger repositories and semantic
categories compared to the DR detection, therefore, the efficiency in
feature extraction and semantic association of CBIR can particularly be
adopted to fulfill the need to deal with larger number of patients to
facilitate the human graders. In CBIR relevant images are returned as
semantic response of the CBIR system, whereas in DR-detection we can
return the relevant case histories to support the informed decisions for
determining the prescriptions.

2.2. Input data

Given an image-base having fundus images belonging to the cate-
gories of DR. The DR detection system generates the low-level feature
representations of all the images and divides the image-base into li
subsets (where i=1, 2, …, n) known as bag of images (BOI). Each BOI
contains =D D n q( / )*i image representations considered as positive
examples and all other examples present in other BOIs as negative ex-
amples. The parameter q ranges from 0 to 1 determines the size of the
positive BOI in respect to the ith category. The positive and negative
examples are defined as follows:

= …+D x x x{ , , , }i D1 2 l (1)

and

= … ∩ = ∅−
−

+ −D x x x D D{ , , , | }i D D i i1 2 i l (2)

where Di
+ represents the positive examples, and Di

− represents the
negative examples in the ith BOI and xi represents the feature vectors
present in the corresponding BOI. For effective screening of DR, we
need to ensure that the classifier learning occurs on the robust re-
presentation of fundus images. Hence, a more principled scheme of
fundus image representation in form of feature vectors is required to
ensure precise DR detection.

2.3. Tetragonal local octa patterns based feature extraction

In order to generate more discriminative features for fundus image
representation, we introduce tetragonal local octa patterns (T-LOP) by
extending the concepts provided in LTrPs [26]. A brief review of local
binary patterns is provide in Appendix A. T-LOP descriptor considers
the horizontal, vertical, and diagonal derivative directions and contains
the uniform patterns of various diagonals to represent a region. Uni-
form patterns at one end reduce the feature vector length and allow us
to generate image representations that are rotation invariant. Whereas,
the diagonals of various sizes make the representation scale invariant.
The main motivation behind the utilization of the diagonal derivative
direction along with LTrPs is that: the LTrPs as consider only horizontal
and vertical directions, therefore, when applied over the fundus images
depict insensitivity against diagonally shaped blood vessels; hence do

Fig. 1. The block diagram for the proposed methodology.
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not encodes them effectively. Therefore, to overcome this shortcoming
we have extended the LTrPs by computing the four derivative directions
instead of two directions. The nth order T-LOP descriptor pre-computes
the (n− 1)th order derivatives along 0°, 45°, 90°, and 135° as suggested
in [26] and then eight distinct values at gc are computed as:
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Once the direction of the referenced pixel is computed, the nth order
T-LOPs can be defined as:

= ′ ′ = …− −g f I g I g p PTLOP ( ) { ( ( ), ( ))} | 1, 2, ,P
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From Eq. (5), we get T-LOP code that is further divided into 7 binary
patterns based on the direction of center pixel.
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where D̄ is the set of all quadrants(except the quadrant of the refer-
enced pixel) and

→
D is the one of the quadrants of D̄. Afterwards, the T-

LOP code can be generated as:
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For each of remaining 7 directions an 8-bit pattern is achieved, that is
merged with magnitude pattern and it is calculated as:
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Fig. 2 illustrates the possible Local Octa Patterns for a center pixel
(shown in red color) in a segment of an image with neighbors (shown in
green color). D(c), D(1), D(2) are the directions of center, first neighbor,
and second neighbor pixels; whereas, M(c), M(1), M(2) are magnitudes
of center, first neighbor, and second neighbor pixels and so on. If di-
rection of neighbor pixel is that of center pixel then TLOP bit is taken as
0 otherwise it is same as the direction of neighbor pixel. So, the TLOP
pattern comes out to be 41383183. This pattern is then subdivided into
seven binary patterns; first pattern is achieved by replacing 2 with 1
and all other values with 0 in TLOP, second pattern is achieved by re-
placing 3 with 1 and other values with 0 and so on. Magnitude pattern
is achieved by comparing magnitude values of neighbor pixels with
center pixel and pattern achieved in this case is 11100001. These eight
patterns are used to describe the texture of an image.

Higher order T-LOP patterns are expected to extract more

information, however it has been found in simulations that the second
order patterns give the best results. Moreover, in the pictorial ex-
planation, nearest neighbors are considered for pattern calculation.
Neighbors at the diagonal 5 and 7 from the center pixel can also be
considered for pattern calculation thus forming tetragonal octa pat-
terns. Fig. 3 shows neighbors at different diagonal locations; red re-
presents center pixel; yellow pixels are nearest neighbors at diagonal 3;
green pixels are neighbor pixels at diagonal 5; blue pixels are neighbors
at diagonal 7; whereas pink pixels represent horizontal, vertical and
diagonal pixels of the blue cornered pixel.

By considering these observations, the feature vectors for robust DR
classification are extracted and normalized as:

=
−

x
x μ

δ
i i

i (11)

where xi the corresponding feature in the feature vector is x, μi re-
presents the mean, and δi represents the standard deviation of the
feature vector.

2.4. Extreme learning machines based classifier

Once feature set is extracted, a classifier is learned by using extreme
learning machines (ELM) [27]. It was originally proposed for single
hidden layer feed-forward networks (SLFNs) where the hidden layer is
not needed like a neuron; hence hidden layer is not tuned. For binary
classification problems the output function of ELM for single output
unit is:

∑= =
=

f x β h x h x β( ) ( ) ( )L
i

L

i i
1 (12)

where β={β1,…, βL}T is the vector having output weights between the
hidden layer of L nodes and the output node and = …aaaah x h x h x( ) { ( ), , ( )}L1 is
the output vector. For binary classification problems the decision
function of ELM is:

=f x h x β( ) sign ( ( ) )L (13)

In order to have the better generalization performance of the net-
work, the ELM targets to reach the smallest training error and smallest
norm of the output weights by minimizing the following objective
function:

−Hβ T βMinimize: || || and|| ||2 (14)

where H represents the hidden layer output matrix
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To minimize the norm of the output weights, ||β|| maximizes the
distance of the separating margins of both classes in ELM feature space:
2/||β|| by defining the minimal least square method as:

=β H T† (16)

where H† is the moore-penrose generalized inverse of matrix that can be
computed through the orthogonalization method, orthogonal projec-
tion method, and singular value decomposition. The multi class sce-
nario consists of minimization of the following objective function:

∑= +
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where ti=[ti,1, …, ti,m]T is the target output vector and ξi=[ξi,1, …,
ξi,m]T is the training error vector of the m output nodes. Training of the
ELM consists of solving the following dual optimization problem based
on KKT theorem:
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where βj is the vector of weights linking hidden layer to the jth output
unit and β=[β1,…, βm]. The corresponding optimally conditions based
on KKT are as follows:
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where αi=[αi,1,…, αi,m]T and α=[α1,…, αN]T. From equation (31) we
have:

⎧
⎨
⎩

=

=
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ξ
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H β1 ( )
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T †
(20)

Fig. 2. Illustration of the tetragonal local octa patterns.

Fig. 3. Neighbors at different diagonal locations of a center pixel; yellow pixels
are nearest neighbors at diagonal 3; green pixels are neighbor pixels at diagonal
5; blue pixels are neighbors at diagonal 7; whereas pink pixels represent hor-
izontal, vertical and diagonal pixels of the blue cornered pixel. (For inter-
pretation of the references to color in text, the reader is referred to the web
version of the article.)
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The output function of the ELM classifier is:

= = ⎛
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−
f x h x β h x

C
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1

(22)

For a given testing sample the class-label is the index of output node
that has highest output.

2.5. CBIR based diabetic retinopathy detection

Once the query image is classified through ELM classifier, we obtain
top-query neighborhood within the fundus images of the same class-
label by computing Euclidean-distance based similarity. The purpose of
returning the top-query neighborhood is to support the informed de-
cisions about the associated cases regarding the prescriptions and af-
fects. In the present work, although we do not have the pathology
history of the fundus images, but association of this information is our
target for the future work. The proposed DR-framework also help-out
users to explore various case examples based on feature similarity. For
this we generate a second set of fundus images based on feature simi-
larity between query and repository images and enable relevance
feedback over it [25]. In relevance feedback user label few output
images as relevant through mouse clicks and rest of the output is con-
sidered as irrelevant. The classifier training occurs again on the labeled
output that now serves as the input for classifier training. The process
continues until the reliable output is achieved for the query image.

3. Experiments and results

3.1. Data sets

The system evaluation experiments were performed on following
datasets: Kaggle-DR, DRIVE, STARE, and Review-DB. The Kaggle-DR
dataset was taken from a 2015 DR detection competition sponsored by
the California Healthcare Foundation [1]. The dataset comprises of
88,704 fundus images of either 5184×3456 or 3888×2592 resolu-
tion size and graded into five stages of DR by ophthalmologists [28].
Moreover, the images in the Kaggle-DR dataset were captured through
different fundus cameras under different illumination conditions that
makes the DR detection even more challenging. Other datasets we used
for performance evaluation purposes are of varying lengths as shown in
Table 1. The DRIVE dataset comprises of the images obtained from a
diabetic retinopathy screening program occurred in the Netherlands.
The dataset contains 40 colored retinal images randomly selected from
the screening set of 400 DR patients. The images were grouped into
training and test sets with 20 images in each set. Among these 40
images, 7 images belong to the mild non-proliferative DR class,
whereas, 33 images have no sign of the DR (i.e. No-DR class). The
images are of size 768× 584 pixels, 8 bits per color channel, have a
field of view (FOV) of approximately 540 pixels in diameter, and
compressed in JPEG-format [29]. As the JPEG-compression is the lossy

compression method, therefore images lose significant amount of in-
formation, and feature extraction occurs imprecisely; hence, DR de-
tection becomes a challenging task even in the smaller image re-
positories. Although the main purpose of the DRIVE dataset was to
enable the segmentation of the retinal blood vessels but ultimately the
segmentation results in the form of association of images with either
non-proliferative DR class or the no-DR class, as the images in the da-
taset belongs to only these two classes.

The STARE dataset consists of 400 PPM images that are digitized
slides captured by a TopCon TRV-50 fundus camera with 35° FOV that
is approximately 650×550 pixels [30]. Each slide was digitized to
produce 605×700 pixel image with 24 bits per pixel. The STARE
dataset covers all classes of DR. The images have representation of large
regions of exudates, multiple hemorrhages, and vessel occlusions. An-
notations at image level are available. The Review-DB (Retinal Vessel
Image set for Estimation of Widths database) was used to facilitate the
development and comparison of vessel measurement algorithms and
comprises of 16 images with 193 vessel segments.

The foremost reason for also incorporating the smaller sets for
evaluation of the proposed method is that: the good performance over
smaller training-sets confirms the robustness of a classifier and the
faster convergence; whereas, the weak learners need large training sets
and fails in case of inadequate training. Few healthy and affected
fundus images from different datasets are shown in Fig. 4.

3.2. Evaluation of tetragonal local octa patterns

The performance of the proposed local pattern T-LOP is compared
with other local patterns e.g. LBP [31], LDP [32] and LTrP [26]. In this
experiment, classifiers are trained using various local patterns and ap-
plied to detect DR from the STARE dataset. The results in terms of ac-
curacy, precision and recall are shown in Table 2. From the table, it can
be observed that the T-LOP outperforms the LBP, LDP and LTrP based
methods. Our algorithm overcomes the limitations that other patterns
have e.g. LBP is not invariant to rotations and provides limited struc-
tural information; LDP is rotation invariant but it is also unable to ef-
fectively capture the structural information i.e. blood vessels; and LTrP
can be further improved by considering the diagonal pixels for deri-
vative calculations in addition to horizontal and vertical directions to
capture the finer image regions (i.e. blood vessels). Further, the histo-
grams of patterns (features) obtained from LBP, LDP, LTrP and L-TOP
for an image from STARE dataset are shown in Fig. 5. We can observe
from that the proposed T-LOP features effectively captures the struc-
tural information including the (thin and thick) blood vessels and color
lesions and generates more discriminative features; whereas, LTrP
captures the structural information better than LBP and LDP that ig-
nores the directional information altogether; hence only captures the
color lesions and discounts the blood vessels. Therefore, the LTrP per-
forms better than the LBP and LDP but performs lower than the pro-
posed method.

3.3. Stage-wise performance

The capability of the proposed system in detecting the stage of DR is
also evaluated through the experiments. The trained single classifier
through the ELM is applied on the proposed T-LOP features for the
images from Kaggle dataset. The stage-wise DR-detection performance
of the proposed method, in terms of accuracy, precision, recall, and F1-
score, is presented in Table 3. It clearly shows that the proposed ap-
proach has achieved the remarkable accuracy, precision, recall, and F1-
score values, and exhibited the lower error rates. The reason for the
good classification performance signifies the effectiveness of proposed
feature extraction approach that screens each class in a viable manner.
In addition, features for various stages are shown in Fig. 6. It can be
observed that the No-DR and mild-DR are closely related, but mild-DR
exhibits higher peaks at some points. Whereas, the severe DR grows

Table 1
Data Sets used for comparative study.

Dataset Instances Resolution

Kaggle DR 88,704 5184×3456, 3888×2592
DRIVE 40 565×584
Review-DB 16 3584×2438, 1360×1024
STARE 400 605×700
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from the moderate DR, but in severe-DR due to the bleeding blood
vessels dense texture appears and feature discrimination becomes easier
comparatively. On the other hand, as the proliferative-DR occurs after
severe DR, therefore some association is found between both classes,
but still both classes are recognizable. Hence, due to the effective fea-
ture extraction our classification model gives the robust stage-wise DR
performance that highlights the effectiveness of the proposed approach.

3.4. Comparative analysis

In the present work, we have evaluated the proposed method by a
10-fold cross validation approach, we randomly partitioned the data
into 10 equal size sub samples. The average results in terms of perfor-
mance evaluation measures were then considered. For comparison, we
considered the published results reported in the comparative studies.
The brief description of the comparative analysis based on different
data sets is provided in the following subsections.

3.4.1. Performance comparison over Kaggle-DR
For performance evaluation over Kaggle-DR, we compared our

method against the work of Quellec et al. [15], Gargaya et al. [16], and
Prett et al. [17]. The reason to select these methods for comparison is
that these approaches are based on deep learning (DL); and in medical
imaging DL had shown highest accuracy over tasks that previously re-
quired medical experts.

The results presented in Table 4 elaborates that the proposed ap-
proach has achieved the highest precision, recall, accuracy, AUC rates
(i.e. 0.991, 0.9932, 99.96, 0.995 respectively) that signifies the relia-
bility of the proposed approach for DR detection in comparison against
other solutions. Additionally, the comparative approaches have re-
ported the results without quantifying the uncertainty factor in a

decision. In contrast, a physician consults more experienced colleagues
and refers case histories with similar background when needed.
Therefore, in our work we addressed this fundamental requirement by
returning the symmetrical case histories in form of visually-similar
images to effectively mimic the human behavior. Moreover, our method
only takes 20min to train on Kaggle-DR with Intel Core I-5 machine
with 16-GB ram; whereas, the comparative DL-based approaches on
average take 13 h for training over NVIDIA GeForce GTX 970 and a
GeForce 412 GTX 1080 with cuda versions 7.5/8 and cuDNN 4/5 ma-
chines that clearly shows the efficiency of our method. Moreover, as our
solution is independent of the expensive hardware requirements,
therefore, can easily be adopted in environments with budget-con-
straints.

3.4.2. Performance comparison over DRIVE and STARE datasets
Table 5 presents the comparative results of proposed method over

DRIVE and STARE datasets. The results show that the proposed method
outperforms the comparative methods in terms of all performance
measures. The fundamental performance difference can be observed in
terms of Recall rates in both DRIVE, and STARE datasets; where in case
of the DRIVE dataset, our method achieved the average recall rate of
0.9945; whereas the average recall rate of the comparative methods is
0.726. Similarly, in case of the STARE dataset our method achieved the
recall rate of 0.994; whereas, the comparative methods achieved the
average recall rate of 0.7433. Therefore, we can clearly observe that our
method provided approximately 27% performance gain for DRIVE da-
taset, and 25% for STARE datasets. Hence, we can say that our method
is robust in terms of model association for various stages of DR.
Moreover, as described earlier that the images in the DRIVE dataset are
compressed through the JPEG-compression, therefore, the high eva-
luation rates also signify the robustness of the proposed method against
image compression. Hence, the method can easily be applied for the
screening repositories where compression is a mandatory step.

3.4.3. Performance comparison over Review-DB
To further evaluate the performance of proposed system, the retinal

images from REVIEW database were also used. Table 6 presents the
comparison of proposed method against two methods i.e. [21,22]. The
obtained results show the higher performance gain of proposed method
in contrast with comparative methods in terms of average recall rates,
accuracy and time. By inspecting Table 4, it can be observed that our

Fig. 4. Sample images from different datasets.

Table 2
Performance comparison of the proposed tetragonal local octa patterns with
other local patterns.

Methods Accuracy Precision Recall

LBP [31] 90.13 0.892 0.902
LDP [32] 90.33 0.903 0.92
LTrP [26] 94.0 0.941 0.93
Proposed T-LOP 99.5 0.991 0.9932
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proposed method achieved 0.9883 as average recall rate that is ap-
proximately 10% higher than [21] and 32% than [22]. Whereas,
average accuracy of our proposed method is 98.94% that is also higher
than the comparative methods. These statistics clearly demonstrates the
supremacy of our method and its capability to produce acceptable and
competitive accuracies at minimum computational time. The average
processing time for proposed method on an image of REVIEW dataset is
20 s with Intel Core I-5 machine with 16-GB ram; whereas, the average
processing time for Kalaie et al.'s method was 28.1 s and for Xu et al.'s

method was 27.7 s on one image.

3.5. Cross-dataset validation

We conclude the experimentation section by presenting the cross-
dataset validation of the proposed method. Through cross dataset va-
lidation, we can measure the robustness of the proposed scheme in
terms of overcoming the training and testing challenges and prove it as
a suitable candidate for the real-world scenarios. For the cross-dataset
validation, we considered the following scenarios: (a) training over the
Kaggle and test over the DRIVE datasets (Fig. 7(a)); (b) training over the
DRIVE and testing over the STARE (Fig. 7(b)); (c) training over the
Kaggle and test over STARE (Fig. 8); (d) training over DRIVE and test
over Review-DB (Fig. 9). In cross dataset validation experiment, we
achieved average accuracy of 99.9% for training and 99% accuracy on
test sets (Fig. 7). To further elaborate the performance gain on standard
dataset, we considered box and whisker plots to understand the dis-
tribution of accuracy on validation sets, as shown in Figs. 8 and 9. The
box and whisker plot portrays the spread of accuracy across the number

Fig. 5. Comparison of the feature patterns in terms of histograms: (a) a sample image taken from STARE dataset, (b) LBP, (c) LDP, (d) LTrP, and (e) T-LOP.

Table 3
Stage-wise performance of proposed method.

Stages Accuracy Precision Recall F1-score Error-rate

No DR 99.75 0.987 0.989 0.99 0.01
Mild DR 98.83 0.979 0.995 0.993 0.007
Moderate DR 99.79 0.996 0.987 1 0
Severe DR 99.85 0.999 0.998 0.998 0.002
Proliferative DR 99.76 0.997 0.997 0.997 0.003
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line into four quartiles and median. The achieved results represent the
higher prediction rate in term of accuracy on cross dataset validation.
The median accuracy of our technique is at 0.996 on Kaggle training set

and 0.993 at STARE testing set. Whereas, median accuracy of our
technique is at 0.994 on DRIVE training set and 0.993 at Review-DB
testing set. Hence, on the basis of the cross-dataset validation, we can
say that our method can reliably be applied in real-world scenarios to
address any condition of the DR to support the ophthalmologists.

4. Conclusion

In this paper, we presented a novel technique to precisely detect
various stages of the DR by extending the research of the content-based
image retrieval domain. For feature extraction, the concept of

Fig. 6. Feature patterns of DR stages in Kaggle-DR.

Table 4
Performance comparison over Kaggle-DR.

Methods Accuracy Precision Recall AUC

Quellec et al. [15] 95.4 0.952 0.945 0.955
Gargeya et al. [16] 97.0 0.98 0.94 0.97
Pratt et al. [17] 75 0.3 0.95 –
Proposed T-LOP 99.6 0.991 0.9932 0.995

Table 5
Performance comparison over DRIVE and STARE.

Methods DRIVE STARE

Accuracy Precision Recall Accuracy Precision Recall
Zhou et al. [18] 94.6 0.967 0.827 95.98 0.9761 0.8065
Cavinato et al.

[19]
92.93 – 0.645 90.3 – 0.7291

Mumtaz et al.
[20]

94.5 0.9801 0.7067 95.26 0.9819 0.6944

Proposed T-LOP 99.96 0.997 0.9945 99.95 0.993 0.994

Table 6
Performance comparison over REVIEW-DB.

Methods Accuracy Precision Recall

Kalaie et al. [21] 98.4 0.886 0.886
Xu et al.'s [22] 97 0.642 0.666
Proposed T-LOP 98.94 0.9871 0.9883

Fig. 7. (a) Training over Kaggle and test over DRIVE DB, (b) training over DRIVE and test over STARE.

Fig. 8. Training over Kaggle and test over STARE DB.
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tetragonal local octal patterns (T-LOP) is introduced. T-LOP is a novel
image representation scheme that particularly is designed for analyzing
the fundus images that is a composition of blood vessels and textured
lesions. To achieve the human-level performance over the large-scale
DR-datasets (i.e. Kaggle-DR), the fundus images are represented by the
proposed tetragonal local octa pattern (T-LOP) features, that are then
classified through the extreme learning machine (ELM). The proposed
approach has achieved highest accuracy, precision and recall rates (i.e.
99.6%, 0.991, 0.993 respectively). The proposed technique supports in
diagnosing DR from fundus images and precisely classifies the severity
of the disease by also presenting the similar case histories for effective
prescription. In contrast to the state-of-the-art DR detection methods,
the proposed framework is capable to compute discriminative features
from low-resolution and noisy images; and hence improved the detec-
tion and recognition of Diabetic Retinopathy.
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