
Vol.:(0123456789)1 3

Arabian Journal for Science and Engineering (2021) 46:8509–8523 
https://doi.org/10.1007/s13369-021-05471-4

RESEARCH ARTICLE-COMPUTER ENGINEERING AND COMPUTER SCIENCE 

An improved faster‑RCNN model for handwritten character 
recognition

Saleh Albahli1 · Marriam Nawaz2 · Ali Javed2,3   · Aun Irtaza2

Received: 2 October 2020 / Accepted: 18 February 2021 / Published online: 30 March 2021 
© King Fahd University of Petroleum & Minerals 2021

Abstract
Existing techniques for hand-written digit recognition (HDR) rely heavily on the hand-coded key points and requires prior 
knowledge. Training an efficient HDR network with these preconditions is a complicated task. Recently, work on HDR is 
mainly focused on deep learning (DL) approaches and has exhibited remarkable results. However, effective detection and 
classification of numerals is still a challenging task due to people’s varying writing styles and the presence of blurring, distor-
tion, light and size variations in the input sample. To cope with these limitations, we present an effective and efficient HDR 
system, introducing a customized faster regional convolutional neural network (Faster-RCNN). This approach comprises three 
main steps. Initially, we develop annotations to obtain the region of interest. Then, an improved Faster-RCNN is employed 
in which DenseNet-41 is introduced to compute the deep features. Finally, the regressor and classification layer is used to 
localize and classify the digits into ten classes. The performance of the proposed method is analyzed on the standard MNIST 
database, which is diverse in terms of changes in lighting conditions, chrominance, shape and size of digits, and the occur-
rence of blurring and noise effects, etc. Additionally, we have also evaluated our technique over a cross-dataset scenario to 
prove its efficacy. Experimental evaluations demonstrate that the approach is more competent and able to accurately detect 
and classify numerals than other recent methods.
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1  Introduction

Nowadays, recognizing hand-written data [1] play a vital 
role in the field of information processing, due to the pres-
ence of a vast collection of information. Moreover, digital 
data processing is more economical than handling traditional 

paper information. The goal of handwriting digit recognition 
(HDR) methods is to translate hand-written characters into 
machine-understandable formats. Recently, HDR has been 
given extensive consideration among researchers due to its 
various applications. These systems can understand what is 
written in hand-written documents and enable researchers 
to find meaningful data stored on historic pages and manu-
scripts, which seem unrecognizable through the naked eye 
[2]. Apart from historical revelations, hand-written recog-
nition systems are significant for the digital transformation 
of any organization. Automatic handwriting recognition 
systems can have a range of uses: recognition of hand-writ-
ten medical transcripts to help patients, staff and chemists; 
assisting psychologists who believe that the personality can 
be judged through handwriting; hand-written recognition in 
forensic analyses to interpret handwriting to trace a crimi-
nal and help to drastically reduce the crime rates in a city; 
automatic recognition of vehicle number plates and postal 
codes written on envelopes; or reading bank cheques [2], etc.

All these applications have huge databases and so require 
recognition systems with high recognition power, minimum 
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computational time and reliable accuracy. Recently, several 
HDR methods [3, 4] have been introduced to memorize 
writing patterns [5–7]. The task of the hand-written pattern 
recognition system is to group digits that are involved in 
writing a similar language; however, variations in writing 
styles and patterns, languages, the resemblance between the 
shapes of characters and overlapped digits have increased 
the complexity of recognition systems. Moreover, writing 
pattern recognition frameworks require high recognition 
accuracy and consistency. To cope with these challenges 
associated with automated hand-written digit recognition 
systems, researchers have proposed various solutions using 
systems based on hand-coded features [8], artificial neural 
networks (ANN) [9–11] and deep learning (DL) methods 
[12, 13], etc.

There exist several handcrafted key point-oriented HDR 
systems [14–17]. Hand-coded feature extraction approaches 
are easier to implement and do not require large training 
datasets; however, these approaches are slow and require 
the expertise of trained human experts. Moreover, for hand-
coded-based feature extraction techniques, there is always 
a trade-off between efficacy and recognition accuracy as 
the processing of large feature-sets increases computational 
complexity, while employing small key points degrade the 
performance of the recognition system. Therefore, these 
approaches are not very effective for automated digit recog-
nition systems [18].

Recently, we observed the utility of DL-based methods 
(Convolutional neural networks (CNN) [19], Recurrent 
neural networks (RNNs) [20], deep belief networks [21] 
and deep Boltzmann machines [22]) in various research 
domains, including the HDR systems. DL-based meth-
ods like CNN are capable of automatically learning the 
representative features of images without any human 
interventions. CNN architectures are an extended form 
of multi-layer perceptron (MLP) framework. The func-
tionality of the CNN framework mimics the processing of 
the human brain. Humans detect and recognize objects by 
their naked eyes through visualizing thousands of object 
images. CNN follows the same patterns for perceiving and 
recognizing objects. Some distinguished CNN instances 
are GoogleNet [23], AlexNet [24], VGG [25] and ResNet 
[26]. CNN networks combine the key point detection and 
classification steps with small preprocessing and com-
putational effort. Additionally, CNN-based techniques 
provide robust performance for object recognition, even 
with a small amount of training data. The main benefit of 
employing CNN architecture is that it exploits the topolog-
ical information from the input sample and is invariant to 
post-processing transformations like scale changes, trans-
lation, etc., whereas their predecessors, like MLP models, 
never considered detailed topology information of input 
and were unable to perform well over higher resolution 

images because of fully interconnected nodes. Therefore, 
CNN frameworks are more effective than MLP [27] for 
various applications, including hand-written digit recogni-
tion systems.

In the past, CNN frameworks have been widely explored 
for HDR systems over the benchmark MNIST database 
[28]. Some works have reported an accuracy of 98% to 99% 
for hand-written digit recognition [29]. In [30], an ensem-
ble technique comprising of various CNN models was 
proposed for hand-written digit recognition and reported 
high accuracy of 99.73% on the MNIST dataset. In [9], the 
CNN model was used in combination with a support vector 
machine (SVM) classifier and achieved impressive recogni-
tion accuracy of 98.1% over the MNIST database. Similarly, 
DL-based ensemble approaches were proposed in [31, 32] 
to improve the classification performance, though at the 
expense of increased computational cost. Although existing 
works have achieved impressive recognition precision, there 
is still room for improvement of handwriting digit recogni-
tion performance in terms of time and accuracy. Therefore, 
there exists a need to thoroughly investigate existing con-
ventional ML- and DL-based approaches that are able to 
effectively recognize hand-written digits with maximum 
efficiency. The ability of machine learning algorithms to 
solve complex real-world problems is amazingly superior 
to human intelligence. The main challenges of HDR tech-
niques are their low efficiency and high computational time. 
ML-based HDR solutions result in lengthy implementation 
codes which increase the computational time. To overcome 
the problem of lengthy codes, deep neural networks (NN) 
have emerged as DL techniques have decreased the coding 
length, but at the expense of increased code complexity.

Efficient and effective automated identification and clas-
sification of numerals is still a challenging task because of 
varying writing styles and the presence of post-processing 
operations like rotation and scaling, etc. In this paper, we 
have tried to overcome these challenges by employing a 
customized faster regional convolutional neural network 
(Faster-RCNN) with DenseNet-41 at the feature extraction 
level to compute the deep features of input images and to 
localize and classify the hand-written digits. The proposed 
method is robust to variations in scale, angles, chrominance, 
intensity, contrast, illumination conditions, blurring and 
high-density noisy images. The major contributions of the 
proposed work are as follows:

1.	 Introduced an improved Faster-RCNN framework 
with DenseNet-41 for computation of features, which 
increased the performance in locating small objects 
while decreasing both training and testing time and 
complexity

2.	 Accurate localization of numerals due to the precise 
region proposal network of Faster-RCNN.
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3.	 Effective classification of hand-written digits because 
of the capability of the Faster-RCNN framework to deal 
with over-fitted training data.

4.	 Rigorous experimentation has been performed against 
several of the latest numeral recognition methods on a 
standard MNIST database containing different distor-
tions, i.e., blurring, high-density noisy images, varia-
tions in chrominance, intensity, rotation and scale, etc., 
to show the efficacy of the introduced framework.

The rest of the manuscript has the following structure: 
Sect. 2 presents related work, while the proposed framework 
is discussed in detail in Sect. 3. A performance evaluation of 
our framework is presented in Sect. 4, and finally, Section 5 
concludes the proposed work.

2 � Related Work

In the literature, a substantial amount of research has been 
performed in the field of HDR systems [33–42]. In 1995, 
SVM was employed for the first time for recognizing hand-
written characters [43]. Later, the SVM classifier became the 
first choice for several classification problems, i.e., character 
recognition [40–42], face recognition [44, 45] and object 
detection [46–49], due to its ability to efficiently handle 
the curse of dimensionality. Moreover, SVM decreases the 
chances of empirical error, while maintaining the complex-
ity level of the mapping function which allows it to bet-
ter generalize its prediction behavior and perform well for 
unknown data samples. Boukharouba et al. [50] proposed 
an approach for automated HDR. Initially, features were 
computed using the transition information of image pixels 
in the vertical and horizontal directions, along with the Free-
man chain code histogram approach [51]. The computed key 
points were then used to train the SVM classifier for HDR. 
This approach [50] is robust to hand-written numeral recog-
nition, but it requires training on a large dataset.

HDR systems exhibit remarkable performance using 
shallow frameworks [52–55]. Recently, DL-based meth-
ods have proved their robustness in many fields [56–58]; 
therefore, many researchers have used DL-based tech-
niques for numerals, characters and word classification. 
Three-layered deep belief networks (DBN), together with 
the ‘greedy’ algorithm, were analyzed for the MNIST 
database and attained an accuracy of 98.75% [59]. Pham 
et al. [60] employed a regularization technique of dropout 
to increase the robustness of RNNs for HDR. This method 
[60] improves accuracy of using RNN, with a substantial 
decrease in the character and word error rate. Shamim 
et al. [4] introduced a technique to facilitate off-line HDR 
by employing various machine learning approaches, like 
MLP, SVM, Random Forest, Naïve Bayes, J48, Bayes Net 

and Random Tree through WEKA. It was concluded in 
[4] that MLP exhibits better recognition performance than 
other classifiers.

Wang et al. [61] presented the quantum k-neighbor algo-
rithm for hand-written digit recognition. This approach 
[61] reduced the computational complexity compared to 
the simple k-nearest neighbor technique, but still needs to 
improve recognition accuracy. Arbain et al. [62] employed 
the multi-zoning method [63] for feature computation and 
used these features to train the SVM and MLP classifiers for 
numeral recognition. The approach in [62] performs well 
for digit recognition; however, it is unable to perform well 
when numerals form a triangle shape. Assegie et al. [64] 
presented a pixel-based dense approach with Decision Trees 
for numeral classification. This method [64] is simpler to 
implement, but at the expense of increased computational 
cost and comparatively lower recognition performance than 
other approaches.

Recently, CNN has achieved significant performance 
improvement in off-line hand-written character recognition 
of Tamil [65], Arabic [66], Telugu [67], Urdu [68] and Chi-
nese [69] languages. Because of these promising results, 
CNNs have also been tested heavily for numeral recogni-
tion [70–72]. Initially, in 2003, Simard et al. [73] proposed 
a generic CNN framework for document examination and 
refined the complicated approaches of NN training [73]. Shi 
et al. [74] merged the benefits of both the deep CNN and 
RNN, and named the result a ‘convolutional recurrent neural 
network’ (CRNN). This approach [74] was also employed 
for scene text recognition and exhibited better performance 
over traditional approaches of numeral recognition. A hybrid 
model comprised of a BP neural network (NN) model and 
CNN was proposed in [75]. For the BP NN model, the Gabor 
feature extraction technique was employed to compute the 
numeral features. Then both Gabor and deep features were 
combined to train the CNN for HDR. This technique [75] 
improved numeral recognition accuracy; however, it is com-
putationally complex.

Ali et al. [76] introduced a technique for HDR, where the 
Java-based DL4J framework was used for feature extraction. 
Later, the computed key points were used to train CNN for 
HDR classification. It was concluded in [76] that, for small 
datasets, CNN with a small number of layers performs bet-
ter. Aly et al. [77] presented a new deep learning framework 
for HDR, named the deep convolutional self-organizing 
maps (DCSOM) network. This framework [77] used mul-
tiple cascades of convolutional SOM layers to compute the 
hierarchical key points from training samples. The output 
layer of the DCSOM framework calculated the local histo-
grams of the computed features to show the classification 
results. This approach [77] is robust to numeral recognition 
in the presence of noise; however, the performance of this 
method degrades for rotational changes.
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Hafiz et al. [78] presented an efficient hybrid classifier 
through a combination of deep learning with Q-Learning- 
based Reinforcement Learning technique [79]. The approach 
in [78] is robust to numeral classification under rotational 
variations, but at the expense of higher computational cost. 
Kulkarni et al. [80] presented a three-layered spiking neural 
network (SNN) for recognizing hand-written digits. It was 
concluded in [80] that SNN-based deep learning frameworks 
exhibit better numeral recognition accuracy than simple 
ANN architectures with back-propagation techniques. How-
ever, for large benchmark classification problems, SNN may 
not perform well.

Qiao et al. [81] proposed an adaptive deep Q-learn-
ing technique that merged the key-point computation 
competence of DL and the decision-making power of 

reinforcement learning to build an adaptive Q-learning 
deep belief network (Q-ADBN). Initially, Q-ADBN cal-
culated the key points of the input sample by employing an 
adaptive deep auto-encoder (ADAE) approach. The com-
puted features were considered as the current states of the 
Q-learning algorithm. In the next step, Q-ADBN accepted 
the Q-function (reward signal) through recognition of the 
present states. Finally, HDR was implemented by exploit-
ing the Q-function though the Q-learning technique. This 
approach [81] exhibits better HDR performance in the 
presence of noise. However, for rotational variations in 
the written pattern, the recognition results of [81] are not 
reported.

An overview of existing methods used for hand-written 
digit classification is presented in Table 1.

Table 1   Overview of existing techniques for HDR

Method Technique Limitation

Boukharouba et al. [50] The transition information of image pixels along with 
the vertical and horizontal orientations by employing 
the Freeman chain code histogram approach with SVM 
classifier

Needs training on a large database

Pham et al. [60] DL-based framework RNN was employed for localizing 
and classification for HDR

Suffers from high computational cost

Shamim et al. [4] Several ML-based techniques namely MLP, SVM, Ran-
dom Forest, Naïve Bayes, J48, Bayes Net and Random 
Tree through WEKA were utilized to recognize and 
categorize the numerals

MLP exhibits better classification accuracy than other 
techniques; however, performance needs further 
improvements

Wang et al. [61] The quantum k-neighbor algorithm was applied for hand-
written numeral recognition

Classification accuracy needs to be improved

Arbain et al. [62] The multi-zoning method [63] together with SVM and 
MLP classifiers were used for hand-written digit recogni-
tion

Unable to perform well for numerals forming a triangle 
shape

Assegie et al. [64] Image pixels along with Decision Tree were utilized for 
numeral classification

Performance needs further enhancement

Shi et al. [74] A CRNN model was applied for numeral classification Computationally complex method
Hou et al. [75] Both hand-coded key points based on the Gabor feature 

extraction algorithm together with deep features were 
computed. The calculated key points were employed to 
train the CNN classifier

Needs huge training time which in turn increases the 
computational burden

Ali et al. [76] A Java-based DL4J framework was employed for feature 
calculation which was later used to train a CNN classifier 
for HDR

Not robust for the datasets of large size

Aly et al. [77] A hierarchical key point computation-based DL approach, 
namely DCSOM network, was applied for digit recogni-
tion and classification

The performance of the method degrades on rotational 
changes in the input samples

Hafiz et al. [78] A hybrid classifier by combining deep features with 
Q-Learning based Reinforcement Learning technique 
[79] was used for digit recognition

Suffers from high computational cost

Kulkarni et al. [80] A 3-layered spiking neural network (SNN) for classifying 
the numeral is presented

May not perform well over large datasets

Qiao et al. [81] An adaptive deep Q-learning method for numeral classifi-
cation was presented. This method worked by combining 
the features computation of DL and the decision-making 
power of reinforcement learning to build an adaptive 
Q-learning deep belief network (Q-ADBN)

Not robust for samples with intense rotational variations
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The accuracy of CNNs is highly dependent on the selec-
tion of hyper-parameters [82], which are typically decided 
with a trial-and-error approach. Hyper-parameters consist 
of activation function, epoch size, learning rate, size of the 
kernel, hidden units and layers, etc. The choice of these 
parameters is significant, as it controls the algorithm’s func-
tionality [83]. Hyper-parameters differ from model elements 
and must be selected before starting the training process. 
Ahlawat et al. [27] presented a method to modify the pure 
CNN architecture to achieve comparable performance to 
ensemble techniques for hand-written digit recognition sys-
tems. In [27], the effect of changing the layers, stride, kernel 
size, receptive field, padding and dilution was investigated. 
Moreover, the impact of performing fine-tuning of hyper-
parameters was also discussed. Similarly, the impact of vary-
ing the architecture of the CNN framework was analyzed in 
[84]. The main motivation of this study [84] was to examine 
the changes of results when employing a different combina-
tion of hidden layers and epochs for CNN frameworks.

3 � Proposed Method

The proposed method comprises two main parts. The first is ‘data-
set preparation’ and the second is Custom ‘Faster-RCNN builder’ 
for classification. The first module develops annotations for digits 
to locate the exact region of interest. The second component of 
the introduced framework builds a new type of Faster-RCNN. 
Figure 1 shows the generic workflow of the proposed method.

The second module comprises two sub-modules, of which the 
first is a CNN framework named DenseNet-41 and the second 

is the training component, which performs training of Faster-
RCNN through employing the key points computed by the CNN 
model. Faster-RCNN accepts two types of input: the first is the 
image sample, while the second is the location of the digit in the 
input image. Figure 2 shows the functionality of the presented 
technique. First, an input sample is passed to the designated CNN 
framework, along with the annotation’s bounding box (bbox). 
The bbox recognizes the region of interest (ROI) in CNN key 
points. From the bboxes, reserved key points from training sam-
ples are nominated. Based on the computed features, Faster-
RCNN trains a classifier and generates a regressor estimator for 
the given areas. The Classifier module assigns a predicted class 
to the object and the regressor component learns to determine 
the coordinates of the potential bbox to pinpoint the location of 
the digit in each image.

3.1 � Data Preparation

The location of digits against each sample is necessary to detect 
the affected region for the training process. In this study, we 
used the LabelImg [40] tool to annotate the images and manu-
ally created a bbox for each sample. Figure 3 exhibits samples 
of the generated ground truths. The annotations are saved in 
XML files which contain the class name of each object and 
their bbox values, i.e., xmin, ymin, xmax, ymax, width and 
height. For each image, we maintain an XML file that is com-
piled to generate the CSV file. Finally, the training file is gen-
erated from the CSV file, to be later employed in the training 
process. In our study, we have ten classes that consist of integer 
values from 0 to 9.

Fig. 1   General workflow of the 
proposed method

Fig. 2   Structural design of customized Faster-RCNN
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3.2 � Faster‑RCNN

The Faster-RCNN [57] algorithm is an extended form of exist-
ing approaches, i.e., R-CNN [58] and Fast-RCNN [59], which 
employed the Edge Boxes [61] technique to produce region 
proposals for possible object areas. However, the functionality 
of Faster-RCNN is changed from [58, 59] as it utilizes a region 
proposal network (RPN) as an alternative to the Edge Boxes 
algorithm to create the region proposals directly as part of the 
framework. This makes the computational complexity of Faster-
RCNN for producing region proposals significantly less than in 
[61]. Put concisely, the selection of anchor boxes is finalized by 
RPN, which shows the most expected anchor boxes contain-
ing the regions of interest. So, in Faster-RCNN, region proposal 
generation is quick and better attuned to the input samples. Two 

types of outputs are generated by the Faster-RCNN: (1) clas-
sification that shows the class associated with each object, and 
(2) coordinates of the bounding box.

3.3 � Custom Feature Faster‑RCNN Builder

A CNN is a special type of NN that is essentially developed to 
perceive, recognize and detect visual attributes from 1D, 2D 
or ND matrices. In our study, image pixels are passed as input 
to the CNN framework. We employ DenseNet-41 [85] as a 
feature extractor in the Faster-RCNN approach. DenseNet [9] 
is the latest model of CNN, in which the current layer receives 
the inputs from all the preceding layers. DenseNet comprises a 
set of dense blocks that are sequentially interlinked with each 
other, with extra convolutional and pooling layers among suc-
cessive dense blocks. DenseNet can represent complex trans-
formations, which results in some degree of improvement in 
the issue of the absence of position information for the top-
level key points of the target. DenseNet minimizes the number 
of parameters, which makes them cost-efficient. Moreover, 
DenseNet assists process of propagation of the key points and 
encourages their reuse, which makes them more suitable for 
digit classification. Thus, in the proposed work, we employ 
DenseNet-41 as a feature extractor for Faster-RCNN. The 
training parameters for customized Faster-RCNN are shown 
in Table 2.

Fig. 3   Sample images with annotations

Faster
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The main process of digit classification through Faster-
RCNN can be divided into four steps. First, the input sample, 
along with the annotation, is fed to DenseNet-41 to compute 
the feature map. Second, the computed key points are used 
as input to the RPN component to obtain the feature informa-
tion of the region proposals. In the third step, the ROI pool-
ing layer produces the proposed feature maps by using the 
calculated feature map and proposals from the convolutional 
layers and RPN unit, respectively. In the last step, the clas-
sifier unit shows the class associated with each digit, while 
the bbox generated by the bounding box regression is used 
to show the final location of the identified digit. The detailed 
process of this component is presented in Algorithm 1.

3.4 � DenseNet‑41 Architecture

DenseNet-41 has two potential differences from the tra-
ditional DenseNet: (1) Densenet-41 has fewer parameters 
than the base DenseNet model; i.e., DenseNet-41 contains 
24 channels on the first convolution layer, instead of 64, and 
the size of the kernel is 3 × 3 instead of 7 × 7; and (2) the 
number of layers within each dense block is attuned to deal 
with the computational complexity required. Table 3 shows 
the architecture of the presented DenseNet-41 model and 
names the layers through which the key points are taken for 
advance processing by Faster-RCNN.

The dense block is the fundamental part of DenseNet-41 
as shown in Fig. 4, in which n × n × m0 shows the feature 
maps (FPs) of the K-1 layer. The size of the FPs is n and the 
number of channels is denoted by m0. A nonlinear transfor-
mation function H(.) containing different operations (i.e., 
batch normalization layer (BN), rectified linear unit (Relu) 
activation function, a 1 × 1 convolution layer (ConvL)) is 
used to reduce the number of channels and 3 × 3 ConvL is 
employed for feature restructuring. The dense connection is 
represented by the long-dashed arrow which joins the K-1 
layer to the K layer and creates concatenation with the results 

Table 2   Training parameters of 
the presented methodology

Network parameters Value

Epochs 30
Learning rate 0.001
IOU threshold 0.90
Matched threshold 0.5
Unmatched threshold 0.5

Table 3   Architecture of DenseNet-41

Layer Densenet-41

Size Stride

Convolutional_layer_1 7 × 7 conv 2
Pooling_layer_1 3 × 3

Max_pooling
2

Dense_block_1
[

1 × 1conv

3 × 3conv

]

× 3
1

Transition_layer
 Convolutional_layer_2 1 × 1 conv
 Pooling_layer_2 2 × 2

Avg_pooling
Dense_block_2

[

1 × 1conv

3 × 3conv

]

× 6
1

Transition_layer
 Convolutional_layer_3 1 × 1 conv
 Pooling_layer_3 2 × 2

Avg_pooling
Dense_block_3

[

1 × 1conv

3 × 3conv

]

× 6
1

Transition_layer
 Convolutional_layer_4 1 × 1 conv
 Pooling_layer_4 2 × 2

Avg_pooling
Dense_block_4

[

1 × 1conv

3 × 3conv

]

× 3
1

Classification_layer 7 × 7
Avg_pooling
Fully connected layer
SoftMax

Fig. 4   Structure of dense block with two dense connections
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of H(.). Finally, n × n × (m0 + 2 m) is the output of the K + 1 
layer.

After multiple dense connections, the number of FPs will 
rise significantly, so the transition layer (TL) is added to 
minimize the feature dimension from the preceding dense 
block. The structure of TL is shown in Fig. 5: it comprises 
BN and a 1 × 1 ConvL to decrease the number of channels to 
half, followed by a 2 × 2 average pooling layer that decreases 
the size of FPs, where t and pool represent the number of 
channels and average pooling, respectively.

3.5 � Detection Process

Faster-RCNN is a deep learning-based technique that is not 
dependent on methods like selective search for its proposal 
generation. Therefore, the input sample with annotation 
is given as input to the network, on which Faster-RCNN 
directly computes the bbox to show the digit’s location and 
associated class.

4 � Experiment and Results

This section provides a detailed analysis of the results 
obtained after conducting different experiments to assess 
the performance of the proposed technique. Details of the 
dataset are also given in this section.

4.1 � Dataset

The evaluation of the presented technique is performed on the 
standard Modified National Institute of Standards and Tech-
nology (MNIST) database [28]. MNIST is a large-scale stand-
ard dataset of hand-written numerals that has been employed 
in training several image processing systems. The MNIST 
database comprises a total of 60,000 training and 10,000 test-
ing images. The images in the MNIST dataset are diverse in 
terms of variations in rotation, scale and illumination, blurring 
and distortions, etc., which makes it a challenging dataset for 
digit classification. Figure 6 shows some sample images from 
the MNIST database.

Fig. 5   Structure of transition 
layer

Fig. 6   Sample Images from MNIST dataset; a Zero, b One, c Two, d Three, e Four, f Five, g Six, h Seven, i Eight, j Nine
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4.2 � Evaluation metrics

We employed the Precision (P), Recall (R), accuracy ( acc ), 
mean average precision (mAP) and intersection over union 
(IOU) metrics to analyze the results of the presented approach. 
We computed the precision, recall, F1-score, accuracy, mAP 
and IOU metrics as follows:

 where tp , tn , fp and fn represent the true positive, true nega-
tive, false positive, and false negative, respectively.

4.3 � Evaluation of DenseNet‑41 Model

We designed an experiment to investigate the effectiveness 
of the DenseNet-41 model for HDR in comparison with 
existing deep learning models. For this purpose, the detec-
tion power of the presented Faster-RCNN with DenseNet-41 
is compared with other base models like GoogleNet, 
Alexnet, ResNet and DenseNet-121. All models are imple-
mented using Python with TensorFlow and run on Nvidia 
GTX1070 GPU based system. Moreover, classifiers are 
trained using various base networks and applied to locate 
digits from the MNIST dataset with 30 epochs and 0.001 
learning rate.

(1)P =
tp

tp + fp

(2)R =
tp

tp + fn

(3)F1-score =
2 × P × R

P + R

(4)acc =
tp + tn

tp + fp + tn + fn

(5)mAP = mean
tp

tp + fp

(6)IOU =
tp

tp + fn + fp
× 2,

The comparison of our technique with base models, 
both in terms of evaluation parameters and performance 
results, is reported in Table 4. From the reported results, 
it can be observed that the custom Faster-RCNN with 
DenseNet-41 outperforms GoogleNet, Alexnet, ResNet and 
DenseNet-121. From Table 4, we can observe that AlexNet 
is computationally most expensive and took 2235 s for exe-
cution, whereas our custom DenseNet-41 model is compu-
tationally most efficient and took 1002 s for processing. The 
base approaches suffer from high computational cost and 
may not exhibit better detection accuracy in the presence 
of noise, blurring, rotational and scale variations. Thus, our 
work addresses the limitations of existing works by present-
ing an effective framework for key-point computation and 
presents complex transformations accurately, leading to 
improved performance in post-processing operations. From 
this experiment, we can conclude that our custom DenseNet-
41-based Faster-RCNN framework outperforms the base 
models evaluated in terms of both accuracy and efficiency.

4.4 � Hand‑written Digits Localization Results

The accurate localization of digits is crucial to develop effec-
tive HDR methods. Thus, we performed an experiment to 
investigate the accuracy of our digit localization approach. 
For this experiment, we used all samples from the MNIST 
testing dataset and reported the qualitative results of 100 
images, as shown in Fig. 7. We can see from the resultant 
images that the presented framework can precisely local-
ize the numerals even with the occurrence of blurring, 
distortion, and variations in illumination. Moreover, our 
approach can accurately diagnose digits of varying sizes 
and orientations.

The localization power of the Faster-RCNN method ena-
bles it to accurately detect and differentiate hand-written dig-
its. The regression layer of Faster-RCNN localizes numerals 
with improved mAP and IOU. The mAP and IoU metrics 
are employed to determine how well each class of digit is 
recognized and localized by our framework. More specifi-
cally, we achieved the mAP and mean IOU of 0.993 and 
0.991, respectively. From these qualitative and quantitative 
evaluations, we can conclude that the proposed method can 
reliably be used to localize numerals.

Table 4   Comparison of the 
presented technique with base 
models

Parameters ResNet AlexNet GoogleNet DenseNet-121 DenseNet-41

Total Parameters 23,595,908 62,378,344 7,844,327 7,037,508 6,031,422
Trainable parameters 23,542,788 58,178,211 6,432,287 6,955,908 5,921,356
Accuracy 0.940 0.777 0.888 0.963 0.997
Precision 0.920 0.861 0.880 0.940 0.983
Recall 0.892 0.790 0.782 0.910 0.971
Execution time (sec) 1338 2235 1320 1217 1002
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4.5 � Class‑wise Performance

The correct recognition and classification of various 
numerals are essential to measure the robustness of a 
model. Therefore, the competence of the introduced 
approach in identifying the class of digits was also ana-
lyzed through performing an experiment. For this purpose, 
we employed the trained Faster-RCNN classifier over all 
the samples from the MNIST dataset. The class-wise 
hand-written digit detection performance of the presented 

approach in terms of precision, recall and F1-score are 
shown in Table 5. It can be clearly visualized that the 
introduced method has obtained remarkable precision, 
recall and F1-score values. The main reason for the better 
numeral recognition accuracy is the robustness of the intro-
duced feature computation technique, which represents 
each class in a better manner. Although a little associa-
tion is found between class-one and class-seven, both are 
recognizable. Therefore, because of the accurate key-point 
computation, our approach provides accurate class-wise 

Fig. 7   Test results of custom Faster-RCNN for numeral localization
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numeral recognition performance that shows the efficacy 
of the introduced method.

To further evaluate the class-wise performance of the pro-
posed method, we have plotted the accuracies of ten classes 
in a boxplot, as this shows the summaries of results more 
clearly by showing the maximum, minimum and median of 
the accuracies obtained for all the classes (Fig. 8). Our tech-
nique has attained average accuracy values of 0.997, 0.996, 
0.995, 0.998, 0.998, 0.997, 0.996, 0.995, 0.999 and 0.998 for 
classes from zero to nine, respectively. The proposed method 
achieved an average accuracy of 0.997, which signifies the 
effectiveness of the presented framework.

We also designed a confusion matrix analysis to clearly 
summarize the classification performance of the proposed 
method in terms of actual and predicted class. Figure 9 pre-
sents the confusion matrix of the proposed system. From this 
confusion matrix, we can observe that our system achieves 
the best results for classes zero and two with a true-posi-
tive rate (TPR) of 99%. However, the presented framework 
achieves the lowest results on class one with a TPR of 90% 
due to its visual similarity with other classes (i.e., four, 
seven, nine). Our method also achieves better classification 
performance for the remaining classes.

4.6 � Comparative Analysis

To evaluate the significance of our method’s superiority over 
existing approaches, we designed an experiment to provide 
a comparative analysis of the proposed and existing state-
of-the-art HDR methods. For this purpose, we compared 
our approach with the latest HDR methods [29, 30, 59, 62, 
86–90] and reported the results in Table 6. The proposed 
framework performed best and achieved an accuracy of 
98.6%. Ciresan et al. [30] achieved the second-best results 
with the accuracy of 99.65%, whereas, Ge et al. [90] per-
formed the worst with an accuracy of 95.7%. The results of 
this experiment clearly show that our method provides supe-
rior detection performance over the techniques compared. 
It is important to mention that the techniques compared 

Table 5   Class-wise performance of the presented approach

Classes Precision Recall F1-Score

Zero 1 0.96 0.979
One 0.992 0.94 0.965
Two 0.997 1 0.979
Three 0.97 0.99 0.979
Four 0.974 0.983 0.978
Five 0.99 0.997 0.993
Six 1 0.992 0.995
Seven 0.99 0.99 0.99
Eight 0.98 1 0.989
Nine 1 0.98 0.989

Fig. 8   Class-wise accuracies of 
the proposed methodology
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employed very deep networks that can easily result in over-
fitting. As the model used in our method has fewer layers, 
we can conclude that our approach is more efficient for clas-
sification of hand-written digits.

4.7 � Cross‑Dataset Validation

We designed an experiment to analyze the detection 
accuracy of our presented approach over a cross-dataset 
scenario. The main objective of performing cross-dataset 
validation is to evaluate the generalization power of our 
technique. For this purpose, we trained our method on 
the MNIST dataset and tested it over the USPS [91] data-
base. USPS comprises a total of 7291 training and 2007 
test images with 10 classes from 0 to 9. We used a box 
plot to show the evaluation results of our technique for 
cross-dataset evaluation in Fig. 10, where the accuracy 
of the training and test sets is distributed over the number 
line into quartiles, median and outliers. According to the 
reported results in Fig. 10, we obtained an average accu-
racy of 0.99 for training and 0.985 for testing, which dem-
onstrates that our proposed framework is also capable of 
better recognizing digits from unseen samples. Therefore, 
it can be concluded that the proposed method is robust to 
numeral recognition and classification.

Fig. 9   Confusion matrix of the 
proposed framework

Table 6   Comparison with state-of-the-art approaches

Methods Accuracy (%)

Zhao et al. [86] 97.5
Zhao  et al. [87] 98.1
Enriquez et al. [88] 98
Maghari et al. [89] 98.08
Ge et al. [90] 95.7
Arbain1 et al. [62] 96.51
Jarrett et al. [29] 99.47
Ciresan et al. [30] 99.65
Hinton et al. [59] 98.75
Proposed 99.78
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5 � Conclusion

This work introduces a novel method for the automated rec-
ognition and classification of hand-written digits by employ-
ing the Faster-RCNN deep learning technique along with 
the DenseNet-41 framework at the feature extraction level. 
In the presented technique, we also introduced the appli-
cation of Faster-RCNN for numeral classification. More 
specifically, we employed the DenseNet-41 for deep feature 
computation and digit detection. Finally, we used the deep 
features to train Faster-RCNN’s classifier for hand-written 
digit classification. The proposed method effectively local-
izes the digits from the input image and classifies them into 
10 classes, representing integer values from 0 to 9. Our 
approach is robust to various artifacts, i.e., noise, blurring, 
chrominance changes, variations in light, digit size, rota-
tional and scale variations and the presence of distortions. 
Experimental results on single- and cross-dataset scenarios 
confirmed that the presented framework outperforms the 
existing state-of-the-art techniques. In the future, we plan 
to test the presented framework over real-world scenarios 
and extend it to classification of other languages. Moreover, 
we will test our technique over more challenging datasets 
and will also consider other latest DL models.
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