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Abstract

Existing techniques for hand-written digit recognition (HDR) rely heavily on the hand-coded key points and requires prior
knowledge. Training an efficient HDR network with these preconditions is a complicated task. Recently, work on HDR is
mainly focused on deep learning (DL) approaches and has exhibited remarkable results. However, effective detection and
classification of numerals is still a challenging task due to people’s varying writing styles and the presence of blurring, distor-
tion, light and size variations in the input sample. To cope with these limitations, we present an effective and efficient HDR
system, introducing a customized faster regional convolutional neural network (Faster-RCNN). This approach comprises three
main steps. Initially, we develop annotations to obtain the region of interest. Then, an improved Faster-RCNN is employed
in which DenseNet-41 is introduced to compute the deep features. Finally, the regressor and classification layer is used to
localize and classify the digits into ten classes. The performance of the proposed method is analyzed on the standard MNIST
database, which is diverse in terms of changes in lighting conditions, chrominance, shape and size of digits, and the occur-
rence of blurring and noise effects, etc. Additionally, we have also evaluated our technique over a cross-dataset scenario to
prove its efficacy. Experimental evaluations demonstrate that the approach is more competent and able to accurately detect
and classify numerals than other recent methods.

Keywords DenseNet-41 - Deep learning - Faster-RCNN - Hand-written digits - MNIST

1 Introduction

Nowadays, recognizing hand-written data [1] play a vital
role in the field of information processing, due to the pres-
ence of a vast collection of information. Moreover, digital
data processing is more economical than handling traditional
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paper information. The goal of handwriting digit recognition
(HDR) methods is to translate hand-written characters into
machine-understandable formats. Recently, HDR has been
given extensive consideration among researchers due to its
various applications. These systems can understand what is
written in hand-written documents and enable researchers
to find meaningful data stored on historic pages and manu-
scripts, which seem unrecognizable through the naked eye
[2]. Apart from historical revelations, hand-written recog-
nition systems are significant for the digital transformation
of any organization. Automatic handwriting recognition
systems can have a range of uses: recognition of hand-writ-
ten medical transcripts to help patients, staff and chemists;
assisting psychologists who believe that the personality can
be judged through handwriting; hand-written recognition in
forensic analyses to interpret handwriting to trace a crimi-
nal and help to drastically reduce the crime rates in a city;
automatic recognition of vehicle number plates and postal
codes written on envelopes; or reading bank cheques [2], etc.

All these applications have huge databases and so require
recognition systems with high recognition power, minimum
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computational time and reliable accuracy. Recently, several
HDR methods [3, 4] have been introduced to memorize
writing patterns [5—7]. The task of the hand-written pattern
recognition system is to group digits that are involved in
writing a similar language; however, variations in writing
styles and patterns, languages, the resemblance between the
shapes of characters and overlapped digits have increased
the complexity of recognition systems. Moreover, writing
pattern recognition frameworks require high recognition
accuracy and consistency. To cope with these challenges
associated with automated hand-written digit recognition
systems, researchers have proposed various solutions using
systems based on hand-coded features [8], artificial neural
networks (ANN) [9-11] and deep learning (DL) methods
[12, 13], etc.

There exist several handcrafted key point-oriented HDR
systems [14—17]. Hand-coded feature extraction approaches
are easier to implement and do not require large training
datasets; however, these approaches are slow and require
the expertise of trained human experts. Moreover, for hand-
coded-based feature extraction techniques, there is always
a trade-off between efficacy and recognition accuracy as
the processing of large feature-sets increases computational
complexity, while employing small key points degrade the
performance of the recognition system. Therefore, these
approaches are not very effective for automated digit recog-
nition systems [18].

Recently, we observed the utility of DL-based methods
(Convolutional neural networks (CNN) [19], Recurrent
neural networks (RNNs) [20], deep belief networks [21]
and deep Boltzmann machines [22]) in various research
domains, including the HDR systems. DL-based meth-
ods like CNN are capable of automatically learning the
representative features of images without any human
interventions. CNN architectures are an extended form
of multi-layer perceptron (MLP) framework. The func-
tionality of the CNN framework mimics the processing of
the human brain. Humans detect and recognize objects by
their naked eyes through visualizing thousands of object
images. CNN follows the same patterns for perceiving and
recognizing objects. Some distinguished CNN instances
are GoogleNet [23], AlexNet [24], VGG [25] and ResNet
[26]. CNN networks combine the key point detection and
classification steps with small preprocessing and com-
putational effort. Additionally, CNN-based techniques
provide robust performance for object recognition, even
with a small amount of training data. The main benefit of
employing CNN architecture is that it exploits the topolog-
ical information from the input sample and is invariant to
post-processing transformations like scale changes, trans-
lation, etc., whereas their predecessors, like MLP models,
never considered detailed topology information of input
and were unable to perform well over higher resolution
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images because of fully interconnected nodes. Therefore,
CNN frameworks are more effective than MLP [27] for
various applications, including hand-written digit recogni-
tion systems.

In the past, CNN frameworks have been widely explored
for HDR systems over the benchmark MNIST database
[28]. Some works have reported an accuracy of 98% to 99%
for hand-written digit recognition [29]. In [30], an ensem-
ble technique comprising of various CNN models was
proposed for hand-written digit recognition and reported
high accuracy of 99.73% on the MNIST dataset. In [9], the
CNN model was used in combination with a support vector
machine (SVM) classifier and achieved impressive recogni-
tion accuracy of 98.1% over the MNIST database. Similarly,
DL-based ensemble approaches were proposed in [31, 32]
to improve the classification performance, though at the
expense of increased computational cost. Although existing
works have achieved impressive recognition precision, there
is still room for improvement of handwriting digit recogni-
tion performance in terms of time and accuracy. Therefore,
there exists a need to thoroughly investigate existing con-
ventional ML- and DL-based approaches that are able to
effectively recognize hand-written digits with maximum
efficiency. The ability of machine learning algorithms to
solve complex real-world problems is amazingly superior
to human intelligence. The main challenges of HDR tech-
niques are their low efficiency and high computational time.
ML-based HDR solutions result in lengthy implementation
codes which increase the computational time. To overcome
the problem of lengthy codes, deep neural networks (NN)
have emerged as DL techniques have decreased the coding
length, but at the expense of increased code complexity.

Efficient and effective automated identification and clas-
sification of numerals is still a challenging task because of
varying writing styles and the presence of post-processing
operations like rotation and scaling, etc. In this paper, we
have tried to overcome these challenges by employing a
customized faster regional convolutional neural network
(Faster-RCNN) with DenseNet-41 at the feature extraction
level to compute the deep features of input images and to
localize and classify the hand-written digits. The proposed
method is robust to variations in scale, angles, chrominance,
intensity, contrast, illumination conditions, blurring and
high-density noisy images. The major contributions of the
proposed work are as follows:

1. Introduced an improved Faster-RCNN framework
with DenseNet-41 for computation of features, which
increased the performance in locating small objects
while decreasing both training and testing time and
complexity

2. Accurate localization of numerals due to the precise
region proposal network of Faster-RCNN.
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3. Effective classification of hand-written digits because
of the capability of the Faster-RCNN framework to deal
with over-fitted training data.

4. Rigorous experimentation has been performed against
several of the latest numeral recognition methods on a
standard MNIST database containing different distor-
tions, i.e., blurring, high-density noisy images, varia-
tions in chrominance, intensity, rotation and scale, etc.,
to show the efficacy of the introduced framework.

The rest of the manuscript has the following structure:
Sect. 2 presents related work, while the proposed framework
is discussed in detail in Sect. 3. A performance evaluation of
our framework is presented in Sect. 4, and finally, Section 5
concludes the proposed work.

2 Related Work

In the literature, a substantial amount of research has been
performed in the field of HDR systems [33—42]. In 1995,
SVM was employed for the first time for recognizing hand-
written characters [43]. Later, the SVM classifier became the
first choice for several classification problems, i.e., character
recognition [40-42], face recognition [44, 45] and object
detection [46-49], due to its ability to efficiently handle
the curse of dimensionality. Moreover, SVM decreases the
chances of empirical error, while maintaining the complex-
ity level of the mapping function which allows it to bet-
ter generalize its prediction behavior and perform well for
unknown data samples. Boukharouba et al. [50] proposed
an approach for automated HDR. Initially, features were
computed using the transition information of image pixels
in the vertical and horizontal directions, along with the Free-
man chain code histogram approach [51]. The computed key
points were then used to train the SVM classifier for HDR.
This approach [50] is robust to hand-written numeral recog-
nition, but it requires training on a large dataset.

HDR systems exhibit remarkable performance using
shallow frameworks [52-55]. Recently, DL-based meth-
ods have proved their robustness in many fields [56-58];
therefore, many researchers have used DL-based tech-
niques for numerals, characters and word classification.
Three-layered deep belief networks (DBN), together with
the ‘greedy’ algorithm, were analyzed for the MNIST
database and attained an accuracy of 98.75% [59]. Pham
et al. [60] employed a regularization technique of dropout
to increase the robustness of RNNs for HDR. This method
[60] improves accuracy of using RNN, with a substantial
decrease in the character and word error rate. Shamim
et al. [4] introduced a technique to facilitate off-line HDR
by employing various machine learning approaches, like
MLP, SVM, Random Forest, Naive Bayes, J48, Bayes Net

and Random Tree through WEKA. It was concluded in
[4] that MLP exhibits better recognition performance than
other classifiers.

Wang et al. [61] presented the quantum k-neighbor algo-
rithm for hand-written digit recognition. This approach
[61] reduced the computational complexity compared to
the simple k-nearest neighbor technique, but still needs to
improve recognition accuracy. Arbain et al. [62] employed
the multi-zoning method [63] for feature computation and
used these features to train the SVM and MLP classifiers for
numeral recognition. The approach in [62] performs well
for digit recognition; however, it is unable to perform well
when numerals form a triangle shape. Assegie et al. [64]
presented a pixel-based dense approach with Decision Trees
for numeral classification. This method [64] is simpler to
implement, but at the expense of increased computational
cost and comparatively lower recognition performance than
other approaches.

Recently, CNN has achieved significant performance
improvement in off-line hand-written character recognition
of Tamil [65], Arabic [66], Telugu [67], Urdu [68] and Chi-
nese [69] languages. Because of these promising results,
CNNs have also been tested heavily for numeral recogni-
tion [70-72]. Initially, in 2003, Simard et al. [73] proposed
a generic CNN framework for document examination and
refined the complicated approaches of NN training [73]. Shi
et al. [74] merged the benefits of both the deep CNN and
RNN, and named the result a ‘convolutional recurrent neural
network’ (CRNN). This approach [74] was also employed
for scene text recognition and exhibited better performance
over traditional approaches of numeral recognition. A hybrid
model comprised of a BP neural network (NN) model and
CNN was proposed in [75]. For the BP NN model, the Gabor
feature extraction technique was employed to compute the
numeral features. Then both Gabor and deep features were
combined to train the CNN for HDR. This technique [75]
improved numeral recognition accuracy; however, it is com-
putationally complex.

Ali et al. [76] introduced a technique for HDR, where the
Java-based DLA4J framework was used for feature extraction.
Later, the computed key points were used to train CNN for
HDR classification. It was concluded in [76] that, for small
datasets, CNN with a small number of layers performs bet-
ter. Aly et al. [77] presented a new deep learning framework
for HDR, named the deep convolutional self-organizing
maps (DCSOM) network. This framework [77] used mul-
tiple cascades of convolutional SOM layers to compute the
hierarchical key points from training samples. The output
layer of the DCSOM framework calculated the local histo-
grams of the computed features to show the classification
results. This approach [77] is robust to numeral recognition
in the presence of noise; however, the performance of this
method degrades for rotational changes.
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Hafiz et al. [78] presented an efficient hybrid classifier
through a combination of deep learning with Q-Learning-
based Reinforcement Learning technique [79]. The approach
in [78] is robust to numeral classification under rotational
variations, but at the expense of higher computational cost.
Kulkarni et al. [80] presented a three-layered spiking neural
network (SNN) for recognizing hand-written digits. It was
concluded in [80] that SNN-based deep learning frameworks
exhibit better numeral recognition accuracy than simple
ANN architectures with back-propagation techniques. How-
ever, for large benchmark classification problems, SNN may
not perform well.

Qiao et al. [81] proposed an adaptive deep Q-learn-
ing technique that merged the key-point computation
competence of DL and the decision-making power of

Table 1 Overview of existing techniques for HDR

reinforcement learning to build an adaptive Q-learning
deep belief network (Q-ADBN). Initially, Q-ADBN cal-
culated the key points of the input sample by employing an
adaptive deep auto-encoder (ADAE) approach. The com-
puted features were considered as the current states of the
Q-learning algorithm. In the next step, Q-ADBN accepted
the Q-function (reward signal) through recognition of the
present states. Finally, HDR was implemented by exploit-
ing the Q-function though the Q-learning technique. This
approach [81] exhibits better HDR performance in the
presence of noise. However, for rotational variations in
the written pattern, the recognition results of [81] are not
reported.

An overview of existing methods used for hand-written
digit classification is presented in Table 1.

Method Technique

Limitation

Boukharouba et al. [50]

The transition information of image pixels along with

Needs training on a large database

the vertical and horizontal orientations by employing

Pham et al. [60]

Shamim et al. [4]

Wang et al. [61]

Arbain et al. [62]

Assegie et al. [64]

Shi et al. [74]
Hou et al. [75]

Ali et al. [76]

Aly et al. [77]

Hafiz et al. [78]

Kulkarni et al. [80]

Qiao et al. [81]

the Freeman chain code histogram approach with SVM
classifier

DL-based framework RNN was employed for localizing
and classification for HDR

Several ML-based techniques namely MLP, SVM, Ran-
dom Forest, Naive Bayes, J48, Bayes Net and Random
Tree through WEKA were utilized to recognize and
categorize the numerals

The quantum k-neighbor algorithm was applied for hand-
written numeral recognition

The multi-zoning method [63] together with SVM and

MLP classifiers were used for hand-written digit recogni-

tion

Image pixels along with Decision Tree were utilized for
numeral classification

A CRNN model was applied for numeral classification

Both hand-coded key points based on the Gabor feature
extraction algorithm together with deep features were
computed. The calculated key points were employed to
train the CNN classifier

A Java-based DL4J framework was employed for feature

calculation which was later used to train a CNN classifier

for HDR

A hierarchical key point computation-based DL approach,
namely DCSOM network, was applied for digit recogni-
tion and classification

A hybrid classifier by combining deep features with
Q-Learning based Reinforcement Learning technique
[79] was used for digit recognition

A 3-layered spiking neural network (SNN) for classifying
the numeral is presented

An adaptive deep Q-learning method for numeral classifi-

cation was presented. This method worked by combining
the features computation of DL and the decision-making

power of reinforcement learning to build an adaptive
Q-learning deep belief network (Q-ADBN)

Suffers from high computational cost

MLP exhibits better classification accuracy than other
techniques; however, performance needs further
improvements

Classification accuracy needs to be improved

Unable to perform well for numerals forming a triangle
shape

Performance needs further enhancement
Computationally complex method

Needs huge training time which in turn increases the
computational burden

Not robust for the datasets of large size

The performance of the method degrades on rotational

changes in the input samples

Suffers from high computational cost

May not perform well over large datasets

Not robust for samples with intense rotational variations
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The accuracy of CNNs is highly dependent on the selec-
tion of hyper-parameters [82], which are typically decided
with a trial-and-error approach. Hyper-parameters consist
of activation function, epoch size, learning rate, size of the
kernel, hidden units and layers, etc. The choice of these
parameters is significant, as it controls the algorithm’s func-
tionality [83]. Hyper-parameters differ from model elements
and must be selected before starting the training process.
Ahlawat et al. [27] presented a method to modify the pure
CNN architecture to achieve comparable performance to
ensemble techniques for hand-written digit recognition sys-
tems. In [27], the effect of changing the layers, stride, kernel
size, receptive field, padding and dilution was investigated.
Moreover, the impact of performing fine-tuning of hyper-
parameters was also discussed. Similarly, the impact of vary-
ing the architecture of the CNN framework was analyzed in
[84]. The main motivation of this study [84] was to examine
the changes of results when employing a different combina-
tion of hidden layers and epochs for CNN frameworks.

3 Proposed Method

The proposed method comprises two main parts. The first is ‘data-
set preparation’ and the second is Custom ‘Faster-RCNN builder’
for classification. The first module develops annotations for digits
to locate the exact region of interest. The second component of
the introduced framework builds a new type of Faster-RCNN.
Figure 1 shows the generic workflow of the proposed method.
The second module comprises two sub-modules, of which the
first is a CNN framework named DenseNet-41 and the second

Fig. 1 General workflow of the

proposed method Handwritten

digit images

Input

is the training component, which performs training of Faster-
RCNN through employing the key points computed by the CNN
model. Faster-RCNN accepts two types of input: the first is the
image sample, while the second is the location of the digit in the
input image. Figure 2 shows the functionality of the presented
technique. First, an input sample is passed to the designated CNN
framework, along with the annotation’s bounding box (bbox).
The bbox recognizes the region of interest (ROI) in CNN key
points. From the bboxes, reserved key points from training sam-
ples are nominated. Based on the computed features, Faster-
RCNN trains a classifier and generates a regressor estimator for
the given areas. The Classifier module assigns a predicted class
to the object and the regressor component learns to determine
the coordinates of the potential bbox to pinpoint the location of
the digit in each image.

3.1 Data Preparation

The location of digits against each sample is necessary to detect
the affected region for the training process. In this study, we
used the Labellmg [40] tool to annotate the images and manu-
ally created a bbox for each sample. Figure 3 exhibits samples
of the generated ground truths. The annotations are saved in
XML files which contain the class name of each object and
their bbox values, i.e., xmin, ymin, xmax, ymax, width and
height. For each image, we maintain an XML file that is com-
piled to generate the CSV file. Finally, the training file is gen-
erated from the CSV file, to be later employed in the training
process. In our study, we have ten classes that consist of integer
values from O to 9.

Confidence

. Faster RCNN score and
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Fig.2 Structural design of customized Faster-RCNN
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Fig.3 Sample images with annotations

3.2 Faster-RCNN

The Faster-RCNN [57] algorithm is an extended form of exist-
ing approaches, i.e., R-CNN [58] and Fast-RCNN [59], which
employed the Edge Boxes [61] technique to produce region
proposals for possible object areas. However, the functionality
of Faster-RCNN is changed from [58, 59] as it utilizes a region
proposal network (RPN) as an alternative to the Edge Boxes
algorithm to create the region proposals directly as part of the
framework. This makes the computational complexity of Faster-
RCNN for producing region proposals significantly less than in
[61]. Put concisely, the selection of anchor boxes is finalized by
RPN, which shows the most expected anchor boxes contain-
ing the regions of interest. So, in Faster-RCNN, region proposal
generation is quick and better attuned to the input samples. Two

types of outputs are generated by the Faster-RCNN: (1) clas-
sification that shows the class associated with each object, and
(2) coordinates of the bounding box.

3.3 Custom Feature Faster-RCNN Builder

A CNN is a special type of NN that is essentially developed to
perceive, recognize and detect visual attributes from 1D, 2D
or ND matrices. In our study, image pixels are passed as input
to the CNN framework. We employ DenseNet-41 [85] as a
feature extractor in the Faster-RCNN approach. DenseNet [9]
is the latest model of CNN, in which the current layer receives
the inputs from all the preceding layers. DenseNet comprises a
set of dense blocks that are sequentially interlinked with each
other, with extra convolutional and pooling layers among suc-
cessive dense blocks. DenseNet can represent complex trans-
formations, which results in some degree of improvement in
the issue of the absence of position information for the top-
level key points of the target. DenseNet minimizes the number
of parameters, which makes them cost-efficient. Moreover,
DenseNet assists process of propagation of the key points and
encourages their reuse, which makes them more suitable for
digit classification. Thus, in the proposed work, we employ
DenseNet-41 as a feature extractor for Faster-RCNN. The
training parameters for customized Faster-RCNN are shown
in Table 2.

Algorithm 1: Steps for numeral recognition by custom Faster-RCNN

START

INPUT: NI, annotation (position)

OUTPUT: Localized ROI, CFstDenseNet-41
NI: Total samples with digits.

annotation (position): bounding box coordinates of digit in sample

Localized ROI: digit position

CFstDenseNet-41-: Custom Faster-RCNN model based on DenseNe-41 key-points

imageSize « [28 28]

// Bounding box approximation

a«<— AnchorsEstimation (NI, annotation)
// Customized FasterRCNN framework

CFstDenseNet-41«— ConstructCustomDenseNet-4 1 FasterRCNN (imageSize, o)
[ Tr, Ts] « partitioning of database into ¢rain and fest set

// digit Identification Training Unit
For each sample i in —»7Tr

Compute DenseNet-41 key-points —ni

End For

Training CFstDenseNet-41 over ni, and measure training time ¢_dense

n_dense < PredigitLoc(ni)

Ap_dense < Evaluate_AP( DenseNet-41, n_dense)

For each sample I in — Ts

a) compute key-points through trained model €—pI
b) [bounding box, objectness_ score, class| «<Predict (BI)
c¢) show sample along with bounding_box, class

d) 5 [y bounding box]
End For
Ap_€— Evaluate model € using »
FINISH.
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Table 2 Training parameters of

Network parameters Value
the presented methodology
Epochs 30
Learning rate 0.001
10U threshold 0.90
Matched threshold 0.5
Unmatched threshold 0.5
Table 3 Architecture of DenseNet-41
Layer Densenet-41
Size Stride
Convolutional_layer_1 TX7 conv 2
Pooling_layer_1 3%x3 2
Max_pooling
Dense_block_1 1 X lconv 1
3 X 3conv
Transition_layer
Convolutional_layer_2 1x1 conv
Pooling_layer_2 2%x2
Avg_pooling
Dense_block_2 1 X Iconv 1
3 X 3conv
Transition_layer
Convolutional_layer_3 1x1 conv
Pooling_layer_3 2%x2
Avg_pooling
Dense_block_3 1 X lconv 1
X 6
3 X 3conv
Transition_layer
Convolutional_layer_4 1x1 conv
Pooling_layer_4 2x2
Avg_pooling
Dense_block_4 1 X lcony 1
X3
3 X 3conv
Classification_layer Tx7
Avg_pooling

Fully connected layer
SoftMax

K-1 layer
nxnxm,

Fig.4 Structure of dense block with two dense connections

K layer
n x n x (mMg+m)

The main process of digit classification through Faster-
RCNN can be divided into four steps. First, the input sample,
along with the annotation, is fed to DenseNet-41 to compute
the feature map. Second, the computed key points are used
as input to the RPN component to obtain the feature informa-
tion of the region proposals. In the third step, the ROI pool-
ing layer produces the proposed feature maps by using the
calculated feature map and proposals from the convolutional
layers and RPN unit, respectively. In the last step, the clas-
sifier unit shows the class associated with each digit, while
the bbox generated by the bounding box regression is used
to show the final location of the identified digit. The detailed
process of this component is presented in Algorithm 1.

3.4 DenseNet-41 Architecture

DenseNet-41 has two potential differences from the tra-
ditional DenseNet: (1) Densenet-41 has fewer parameters
than the base DenseNet model; i.e., DenseNet-41 contains
24 channels on the first convolution layer, instead of 64, and
the size of the kernel is 3 X 3 instead of 7 X 7; and (2) the
number of layers within each dense block is attuned to deal
with the computational complexity required. Table 3 shows
the architecture of the presented DenseNet-41 model and
names the layers through which the key points are taken for
advance processing by Faster-RCNN.

The dense block is the fundamental part of DenseNet-41
as shown in Fig. 4, in which n X n X m, shows the feature
maps (FPs) of the K-1 layer. The size of the FPs is n and the
number of channels is denoted by m,,. A nonlinear transfor-
mation function H(.) containing different operations (i.e.,
batch normalization layer (BN), rectified linear unit (Relu)
activation function, a 1 X 1 convolution layer (ConvL)) is
used to reduce the number of channels and 3 X3 ConvL is
employed for feature restructuring. The dense connection is
represented by the long-dashed arrow which joins the K-1
layer to the K layer and creates concatenation with the results

K+1 layer

nxnxm
n x n X(mMy+2m)

Feature
Concatenation

__ Dense )
Connection

n x n x (mg+m)
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Fig.5 Structure of transition

nxnxt
layer

of H(.). Finally, n X n X (my+2 m) is the output of the K+ 1
layer.

After multiple dense connections, the number of FPs will
rise significantly, so the transition layer (TL) is added to
minimize the feature dimension from the preceding dense
block. The structure of TL is shown in Fig. 5: it comprises
BN and a 1 X1 ConvL to decrease the number of channels to
half, followed by a 2 X 2 average pooling layer that decreases
the size of FPs, where ¢ and pool represent the number of
channels and average pooling, respectively.

3.5 Detection Process

Faster-RCNN is a deep learning-based technique that is not
dependent on methods like selective search for its proposal
generation. Therefore, the input sample with annotation
is given as input to the network, on which Faster-RCNN
directly computes the bbox to show the digit’s location and
associated class.

(a) (b) (c)

Transition Layer

PP ) S P S " p—

2xn/2xt/2 [
n/2xnj2xY | | BN+Relu

4 Experiment and Results

This section provides a detailed analysis of the results
obtained after conducting different experiments to assess
the performance of the proposed technique. Details of the
dataset are also given in this section.

4.1 Dataset

The evaluation of the presented technique is performed on the
standard Modified National Institute of Standards and Tech-
nology (MNIST) database [28]. MNIST is a large-scale stand-
ard dataset of hand-written numerals that has been employed
in training several image processing systems. The MNIST
database comprises a total of 60,000 training and 10,000 test-
ing images. The images in the MNIST dataset are diverse in
terms of variations in rotation, scale and illumination, blurring
and distortions, etc., which makes it a challenging dataset for
digit classification. Figure 6 shows some sample images from
the MNIST database.

O ([A[3[V]|8|¢]|T7]#19
g /12|2¢|516]) (8|
O /|74 2§D

) (9) (h) (M) 1)

Fig.6 Sample Images from MNIST dataset; a Zero, b One, ¢ Two, d Three, e Four, f Five, g Six, h Seven, i Eight, j Nine

s ? @ Springer
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4.2 Evaluation metrics

We employed the Precision (P), Recall (R), accuracy (acc),
mean average precision (mAP) and intersection over union
(IOU) metrics to analyze the results of the presented approach.
We computed the precision, recall, F1-score, accuracy, mAP
and IOU metrics as follows:

1p

P= 1
p+Jp W
Ip
R =
tp+fn @
2XPXR
F1- =
score P+ R 3)
Ip+in
acc = ————
p+fp+tm+fn “)
mAP = mean P 5
tp +fp ©)
Ip
U= ——— X2,
p+fn+fp ©

where tp, tn, fp and fn represent the true positive, true nega-
tive, false positive, and false negative, respectively.

4.3 Evaluation of DenseNet-41 Model

We designed an experiment to investigate the effectiveness
of the DenseNet-41 model for HDR in comparison with
existing deep learning models. For this purpose, the detec-
tion power of the presented Faster-RCNN with DenseNet-41
is compared with other base models like GoogleNet,
Alexnet, ResNet and DenseNet-121. All models are imple-
mented using Python with TensorFlow and run on Nvidia
GTX1070 GPU based system. Moreover, classifiers are
trained using various base networks and applied to locate
digits from the MNIST dataset with 30 epochs and 0.001
learning rate.

The comparison of our technique with base models,
both in terms of evaluation parameters and performance
results, is reported in Table 4. From the reported results,
it can be observed that the custom Faster-RCNN with
DenseNet-41 outperforms GoogleNet, Alexnet, ResNet and
DenseNet-121. From Table 4, we can observe that AlexNet
is computationally most expensive and took 2235 s for exe-
cution, whereas our custom DenseNet-41 model is compu-
tationally most efficient and took 1002 s for processing. The
base approaches suffer from high computational cost and
may not exhibit better detection accuracy in the presence
of noise, blurring, rotational and scale variations. Thus, our
work addresses the limitations of existing works by present-
ing an effective framework for key-point computation and
presents complex transformations accurately, leading to
improved performance in post-processing operations. From
this experiment, we can conclude that our custom DenseNet-
41-based Faster-RCNN framework outperforms the base
models evaluated in terms of both accuracy and efficiency.

4.4 Hand-written Digits Localization Results

The accurate localization of digits is crucial to develop effec-
tive HDR methods. Thus, we performed an experiment to
investigate the accuracy of our digit localization approach.
For this experiment, we used all samples from the MNIST
testing dataset and reported the qualitative results of 100
images, as shown in Fig. 7. We can see from the resultant
images that the presented framework can precisely local-
ize the numerals even with the occurrence of blurring,
distortion, and variations in illumination. Moreover, our
approach can accurately diagnose digits of varying sizes
and orientations.

The localization power of the Faster-RCNN method ena-
bles it to accurately detect and differentiate hand-written dig-
its. The regression layer of Faster-RCNN localizes numerals
with improved mAP and IOU. The mAP and IoU metrics
are employed to determine how well each class of digit is
recognized and localized by our framework. More specifi-
cally, we achieved the mAP and mean IOU of 0.993 and
0.991, respectively. From these qualitative and quantitative
evaluations, we can conclude that the proposed method can
reliably be used to localize numerals.

Table 4 Comparison of the

X 8 Parameters ResNet AlexNet GoogleNet DenseNet-121 DenseNet-41

presented technique with base

models Total Parameters 23,595,908 62,378,344 7,844,327 7,037,508 6,031,422
Trainable parameters 23,542,788 58,178,211 6,432,287 6,955,908 5,921,356
Accuracy 0.940 0.777 0.888 0.963 0.997
Precision 0.920 0.861 0.880 0.940 0.983
Recall 0.892 0.790 0.782 0.910 0.971
Execution time (sec) 1338 2235 1320 1217 1002

Springer
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Fig. 7 Test results of custom Faster-RCNN for numeral localization

4.5 Class-wise Performance

The correct recognition and classification of various
numerals are essential to measure the robustness of a
model. Therefore, the competence of the introduced
approach in identifying the class of digits was also ana-
lyzed through performing an experiment. For this purpose,
we employed the trained Faster-RCNN classifier over all
the samples from the MNIST dataset. The class-wise
hand-written digit detection performance of the presented

@ Springer

approach in terms of precision, recall and F1-score are
shown in Table 5. It can be clearly visualized that the
introduced method has obtained remarkable precision,
recall and F1-score values. The main reason for the better
numeral recognition accuracy is the robustness of the intro-
duced feature computation technique, which represents
each class in a better manner. Although a little associa-
tion is found between class-one and class-seven, both are
recognizable. Therefore, because of the accurate key-point
computation, our approach provides accurate class-wise
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Table 5 Class-wise performance of the presented approach

Classes Precision Recall F1-Score
Zero 1 0.96 0.979
One 0.992 0.94 0.965
Two 0.997 1 0.979
Three 0.97 0.99 0.979
Four 0.974 0.983 0.978
Five 0.99 0.997 0.993
Six 1 0.992 0.995
Seven 0.99 0.99 0.99
Eight 0.98 1 0.989
Nine 1 0.98 0.989

numeral recognition performance that shows the efficacy
of the introduced method.

To further evaluate the class-wise performance of the pro-
posed method, we have plotted the accuracies of ten classes
in a boxplot, as this shows the summaries of results more
clearly by showing the maximum, minimum and median of
the accuracies obtained for all the classes (Fig. 8). Our tech-
nique has attained average accuracy values of 0.997, 0.996,
0.995, 0.998, 0.998, 0.997, 0.996, 0.995, 0.999 and 0.998 for
classes from zero to nine, respectively. The proposed method
achieved an average accuracy of 0.997, which signifies the
effectiveness of the presented framework.

Fig. 8 Class-wise accuracies of

We also designed a confusion matrix analysis to clearly
summarize the classification performance of the proposed
method in terms of actual and predicted class. Figure 9 pre-
sents the confusion matrix of the proposed system. From this
confusion matrix, we can observe that our system achieves
the best results for classes zero and two with a true-posi-
tive rate (TPR) of 99%. However, the presented framework
achieves the lowest results on class one with a TPR of 90%
due to its visual similarity with other classes (i.e., four,
seven, nine). Our method also achieves better classification
performance for the remaining classes.

4.6 Comparative Analysis

To evaluate the significance of our method’s superiority over
existing approaches, we designed an experiment to provide
a comparative analysis of the proposed and existing state-
of-the-art HDR methods. For this purpose, we compared
our approach with the latest HDR methods [29, 30, 59, 62,
86-90] and reported the results in Table 6. The proposed
framework performed best and achieved an accuracy of
98.6%. Ciresan et al. [30] achieved the second-best results
with the accuracy of 99.65%, whereas, Ge et al. [90] per-
formed the worst with an accuracy of 95.7%. The results of
this experiment clearly show that our method provides supe-
rior detection performance over the techniques compared.
It is important to mention that the techniques compared

Class-wise Results
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Fig. 9 Confusion matrix of the
proposed framework
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Table 6 Comparison with state-of-the-art approaches

Methods Accuracy (%)
Zhao et al. [86] 97.5
Zhao et al. [87] 98.1

Enriquez et al. [88] 98

Maghari et al. [89] 98.08
Ge et al. [90] 95.7

Arbainl et al. [62] 96.51
Jarrett et al. [29] 99.47
Ciresan et al. [30] 99.65
Hinton et al. [59] 98.75
Proposed 99.78

employed very deep networks that can easily result in over-
fitting. As the model used in our method has fewer layers,
we can conclude that our approach is more efficient for clas-
sification of hand-written digits.

@ Springer

Predicted Class

4.7 Cross-Dataset Validation

We designed an experiment to analyze the detection
accuracy of our presented approach over a cross-dataset
scenario. The main objective of performing cross-dataset
validation is to evaluate the generalization power of our
technique. For this purpose, we trained our method on
the MNIST dataset and tested it over the USPS [91] data-
base. USPS comprises a total of 7291 training and 2007
test images with 10 classes from 0 to 9. We used a box
plot to show the evaluation results of our technique for
cross-dataset evaluation in Fig. 10, where the accuracy
of the training and test sets is distributed over the number
line into quartiles, median and outliers. According to the
reported results in Fig. 10, we obtained an average accu-
racy of 0.99 for training and 0.985 for testing, which dem-
onstrates that our proposed framework is also capable of
better recognizing digits from unseen samples. Therefore,
it can be concluded that the proposed method is robust to
numeral recognition and classification.
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Fig. 10 Cross-dataset validation
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5 Conclusion

This work introduces a novel method for the automated rec-
ognition and classification of hand-written digits by employ-
ing the Faster-RCNN deep learning technique along with
the DenseNet-41 framework at the feature extraction level.
In the presented technique, we also introduced the appli-
cation of Faster-RCNN for numeral classification. More
specifically, we employed the DenseNet-41 for deep feature
computation and digit detection. Finally, we used the deep
features to train Faster-RCNN’s classifier for hand-written
digit classification. The proposed method effectively local-
izes the digits from the input image and classifies them into
10 classes, representing integer values from 0 to 9. Our
approach is robust to various artifacts, i.e., noise, blurring,
chrominance changes, variations in light, digit size, rota-
tional and scale variations and the presence of distortions.
Experimental results on single- and cross-dataset scenarios
confirmed that the presented framework outperforms the
existing state-of-the-art techniques. In the future, we plan
to test the presented framework over real-world scenarios
and extend it to classification of other languages. Moreover,
we will test our technique over more challenging datasets
and will also consider other latest DL. models.
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