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Highlights

We review adversarial and anti-forensic attacks on deepfake detection systems.

We cover fusion-based and decoy-based strategies for defense against such attacks.
We analyze trust factors: fairness, transparency, privacy, and security in detection.

We identify key challenges in building robust audio-visual deepfake detectors.

We provide a roadmap to enhance trust in deepfake detection under adversarial threats.
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Abstract---As the technology behind deepfakes advances, detecting audio-visual deepfakes becomes more and more crucial, and
the rise of traditional and generative Al-based adversarial/anti-forensics attacks and generative Al-based anti-forensics attacks on
deepfake detection technologies is a growing concern. Securing applications against adversarial and generative Al-based attacks is
critical for accurate and robust deepfake detection tools. Therefore, this paper provides a comprehensive overview of various
adversarial and generative Al-based anti-forensic attacks, which represent one of the core elements of trustworthiness alongside
transparency, explainability, and fairness, as well as defensive countermeasures for audio-visual deepfake generation and detection.
It covers topics such as adversarial attacks on deepfake detection algorithms and defensive methods, including model fusion and
decoy-based approaches, to mitigate these threats. Although extensive research has been conducted in recent years on adversarial
attacks and defense on deepfake detection, there have been few attempts to compare existing work qualitatively and quantitatively.
This paper aims to help identify and address key issues that need to be considered to bring transferable adversarial attacks and their
countermeasures particularly through techniques such as generative defense, knowledge distillation, and beyond.

Keywords: Adversarial attack, Audio-visual Deepfakes, Deepfake detector, Deepfake Generator, Passive defense, Proactive
defense.

1 Introduction

Alarming advancements in generative adversarial networks (GANSs), autoencoders (AEs), and diffusion models pose
an existential threat to the authenticity and credibility of audio-visual content due to their ability to create remarkably
convincing deepfakes. These algorithms, trained on large, real multimedia corpora, can synthesize multimedia content
that is indistinguishable from authentic multimedia. The synthetic media generated through these methods has been
used for a variety of purposes. For instance, deepfakes have been employed to enhance educational content with
personalized, engaging, and accessible materials [1]. On the other hand, the technology has also been used for
impersonation and the creation of malicious content [2], and voice-based attacks on speakers and speech verification
systems [3]. The continuing advancement of deepfake generation technologies poses an existing and evolving threat
to existing countermeasures. A vicious cycle exists, where countermeasure creators develop new methods for detection
and malicious actors respond, using new generative algorithms or confusing the detectors by combining the power of
deepfake generation models and adversarial techniques simultaneously. This convergence of generation technologies
and adversarial attacks highlights the critical need for continuous innovation in detection and defensive strategies to
safeguard against these increasingly sophisticated threats [4].

Because deepfake generation has an associated risk of misuse, research must also focus on the development of
techniques for the detection of synthetic media [5, 6]. Therefore, researchers must continue to explore both the creation
and detection of deepfakes to better understand their capabilities and thwart malicious actors. Despite aiming for
robustness, deepfake detection methods remain vulnerable to adversarial attacks and anti-forensic attacks using
generative attacks. This results in inaccurate output from existing detectors. Even techniques that are not purely
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designed for malintent may be repurposed for adversarial attacks. In the near future, the power of multi-order deepfake
generation will pose new threats to detectors. For instance, swapping a face multiple times, a process that may be used
to enhance deepfakes for legitimate purposes [7], also generates imperceptible perturbations in audio and visual media,
resulting in deepfakes that are deceptive. Similarly, the combined effect of deepfakes and replay attacks can make the
job of an automated speaker verification system difficult [8]. Such methods have the potential to make malicious
deepfakes appear real and, therefore, able to evade detection. When used maliciously, they decrease the ability to trust
or rely on deepfake detection systems.

As attackers become more sophisticated in their attempts to evade detection, the number of potential attacks increases.
Exploiting the weaknesses of Al-based models, attackers can create new, undetectable threats. These attacks can take
many forms, for example, adversarial example generation and reconstruction-based methods [9], which can be
difficult to detect and mitigate. Even subtle changes can render existing deep learning-based detectors useless. GANs
are vulnerable to adversarial attacks on the discriminator network by changing the loss function, input dataset, or
architecture through watermarks and tags [10, 11] The attacks themselves may be imperceptible, but the resulting
model errors are catastrophic. They cause the algorithms to misclassify, rendering the solutions powerless against such
threats. Therefore, the creation of trustworthy detection methods demands a more integrated approach that considers
a variety of variables, such as fairness, privacy, security, explainability, and transparency [12-15].

Several strategies have been proposed in the research to protect deepfake (synthetic media) detectors against
adversarial attacks. Examples include training the model on adversarial instances, incorporating an adversarial loss
term into the training objective [16, 17], and employing defensive distillation [18]. However, adversarial attack
resistance for generators and detectors depends on several factors, e.g., the nature of the attack, the model's
architecture, and the implementation of safety measures against potential threats. In addition, a deep understanding of
the adversarial attack surface is a prerequisite for the development of robust synthetic media generation and detection
approaches.

Taking this into consideration, the primary aim of this survey paper is to provide a clear and organized classification
of adversarial attacks on synthetic media generation and detection approaches and summarize the defensive
mechanisms and evaluation criteria that are provided in the research. Going further, because an extensive classification
system related to this problem does not exist, we introduce a taxonomy for a better understanding of the field and to
help ongoing research to establish relationships between various overlapping components. The scope of this
systematic literature review is not confined to visual content; it also provides a detailed review of adversarial attacks
on synthetic audio generation and detection methods. This survey will serve as a valuable resource for researchers and
practitioners interested in the field of adversarial machine learning and security. The following are the key
contributions of this work:

i This survey paper facilitates researchers by creating a comprehensive taxonomy of the diverse forms of
adversarial attack and defensive techniques that can be employed on generators and detectors of audio-
visual deepfakes.

ii. This survey provides an overarching view of the latest improvements, trends, and challenges in the field
of adversarial attack and the defense of deepfake generators and detectors.

iii. This survey paper identifies promising directions for future research.

The rest of the paper is organized as follows: Section 2 describes the literature collection and selection criteria. Section
3 overviews the existing surveys and highlights how this study is important and timely. Section 4 presents adversarial
terminologies. Section 5 gives an overview of adversarial attacks. Sections 6 and 7 discuss adversarial attacks on
visual deepfake generators and detectors, respectively. Section 8 presents adversarial attacks on voice recognition
systems. In Section 9, countermeasures against adversarial attacks on visual deepfake generation and detection are
discussed. In Section 10, countermeasures against adversarial attacks on audio signals are discussed. Section 11
presents evaluation and perceptual similarity measures. In Section 12, we summarize the key findings and discuss
future directions for both attack and defense of deepfake technologies. To enhance clarity and guide the readers
through the structure of this survey, Fig. 1 presents a logical overview of the relationships among the main sections
of the paper.
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Section 6: Adversarial attacks on visual
deepfakes detectors

Adversarial/
Antiforensic Attacks
Adversarial Attacks and
Defense
Defensive
Countermeasures

Fig. 1. Attack-to-defense taxonomy of the survey, illustrating adversarial attacks on visual deepfake detection, visual
generation, and audio-based recognition systems, along with their associated countermeasures.

2  Literature collection and selection criteria

This survey provides a comprehensive review of the current research on adversarial attacks on deepfake generators
and detectors, specifically focusing on studies published from 2018 till January 2025. The publishing counts have
experienced substantial growth in recent years along with a rise in the popularity of the deepfake term in Google
searches (Fig. 2). Specifically, the graphic exhibits Google trends data indicating the increased frequency of internet
searches for “deepfake” and associated phrases over previous years. The reviewed papers focus on adversarial attacks
and approaches to counter adversarial attacks on visual and audio deepfake generation and detection methods. A
detailed description of the methodology and protocols used to conduct the survey is provided in Table 1.

3 Existing surveys

Here we collect and compile literature from various recent surveys in the field of deepfake technology. Some surveys
concentrate solely on deepfake generation, while others examine detection, and a few address both aspects [19].
However, a major issue remains, i.e., most existing surveys do not thoroughly examine the adversarial strategies used
in deepfake attacks or the corresponding countermeasures, leaving this critical dimension underexplored. For example,
Rana et al. [20] concentrated exclusively on deepfake detection, examining a limited range of literature from 2018 to
2020, encompassing 112 papers over 19 pages, and omitting the broader dimensions of generation and adversarial
dynamics. Pei et al. [21] and Croitoru et al. [22] addressed deepfake generation and detection, yet they neglected to
discuss adversarial attacks or defensive strategies. Li et al. [23] conducted a comprehensive review of 200 papers, yet
limited their analysis to deepfake detection, neglecting the aspects of generation and adversarial issues. Pham et al.
[24] examine defensive strategies akin to our survey; however, their focus is confined to deepfake speech detection.
Heidari et al. [25] and Gambin et al. [26], presented studies that concentrate specifically on detection and trends in
deepfake technology, respectively.

® deepfake Pakistan, 1/1/18 - 12/28/25

Note

/\_,\M/W—

Jan1,2018 Jun 1, 2020 Nov 1,2022 Apr 1,2025

Fig. 2. Google trends graph illustrates the projected search interest for the term "deepfake" on Google from 2018 to 2025 [27].
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Table 1. Detailed description of protocols representing data collection and analysis.
Preparation Protocol Description
o Offer a brief overview of the existing state-of-the-art adversarial attack generation methods and identify
potential gaps.
e Present a systematic review and structure to the adversarial attacks on the deepfakes detection and
generation methods.

Purpose o Analyse the defensive techniques to overcome adversarial attacks using deepfakes detection and
generation methods.
o Investigate the open challenges that exist in the domain of adversarial attacks, deepfake detection, and
generation.
Data source Google Scholar, Springer Link, ACM digital library, IEEE Explorer.

The following queries were used on the above-mentioned data sources for the collection of research papers:
Adversarial attacks/ Anti-forensics attacks/ Adversarial attacks and deepfakes/ Adversarial attacks and
deepfakes detection/ Adversarial attacks and audio spoofing detection/ Adversarial attacks and deepfakes
Query generation/ Adversarial attacks and GANs and deepfakes/ Anti-forensics attacks and deepfakes/ Anti-
forensics attacks and deepfakes detection/ Anti-forensics attacks and deepfakes generation/ Anti-forensics
attacks and GANSs and deepfakes/ Anti-spoofing techniques and adversarial attacks/ Black box attacks and
deepfakes/ White box attacks and deepfakes.
The categorization of the literature was as follows:
. Existing adversarial attack generation methods (including white box and black box attacks) and
their taxonomy.
e  Adversarial attacks on deepfake detectors and generation methods.
Method e  Adversarial attacks on audio detectors and systems.
. Countermeasures against adversarial attacks on visual and audio deepfakes detection and
generation methods.
. Discussion of the limitations, knowledge gap, and future directions in the domain of adversarial
attacks on audio and visual deepfakes detection and generation methods.
A total of 130 relevant papers were retrieved using the queries mentioned above. We further refined and

Size selected the literature relevant to the subject of our survey.
Study type/inclusion and The peer-reviewed journal papers, and articles of conference proceedings, were given more importance.
exclusion Additionally, a few articles from archive literature were also considered.

Our survey addresses this gap, specifically, the lack of comprehensive analysis of adversarial attack techniques and
their defensive strategies in both generation and detection, by examining the precise strategies for attack and defence
against these attacks and offering a thorough analysis of the adversarial dimensions in audio, image, and video
deepfake detectors and generators. By concentrating on this pivotal domain, our research provides a comprehensive
understanding of the challenges and solutions associated with combating deepfake technology, thereby constituting a
significant contribution to the field. Our research encompasses a significant timeframe from 2018 to 2025. This allows
us to track the evolution of deepfake technology and the corresponding advancements in detection and prevention
methods over the years. By analyzing trends and patterns over this period, we can offer valuable insights into the
future trajectory of deepfake technology and potential strategies for mitigating its negative consequences. A
comprehensive summary of previously reviewed surveys in deepfakes are presented in Table 2.

Table 2. A comprehensive summary of previously reviewed surveys in deepfakes. Here, “v” denotes that the topic was covered
in the survey, whereas “—” indicates that it was not addressed.

. Adversarial Adversarial Defensive
Deepfake A ersaral Attacks on Attacks on roactive Year Number Number
Title Year P ) Deepfake Atta_Lcks on Visual audio P . Venue of Papers
Generation N Visual and passive Convergence . of Pages
detection Deepfake deepfake Reviewed
Deepfake G t detect approaches
Detectors enerators etectors
our 2025 v v v v v v (El'rfﬁ:‘/)'er 2018-2025 130 49
L'[ggla' 2025 - v - - - - ACM 2023-2025 200 38
Liz-
Lopez 2024 v v - - - - Elsevier 2018-2023 66 37
[19]
Phamet | 504 - v - - - - arXiv 2015-2025 200 25
al. [24]
Croitoru .
etal. [22] 2024 v v R - - - Springer 2020-2021 100 32
Pei et .
al21] 2024 v v - - - - arXiv 2021-2023 50 28
Heidari et .
al. [25] 2023 - v - - - - Wieley 2020-2023 60 50
Gambin .
etal. [26] 2023 v . R - - - Springer 2020-2023 100 32




Journal Pre-proof

Rana et
al. [20] 2022 - v R - - - |IEEE 2018-2020 112 19

4  Deepfake Generation, Detection, and Adversarial Attacks

4.1  Deepfake Generation

Deepfake generation refers to the process of synthesizing realistic but manipulated data using deep generative models.
This data can include visual, auditory, textual, or multimodal content. Formally, let X,. denote the distribution of real
data samples. A generator Gy: Z — X, parameterized by 8, maps latent variables z ~ p,(z) from a prior distribution
to generated samples x,. The objective of the generator is to approximate the real data distribution such that:

Pg (%) = pr(x) €y

This goal is typically achieved through generative frameworks such as Generative Adversarial Networks (GANS),
Variational Autoencoders (VAES), or diffusion models. In practice, G4 learns to produce synthetic samples that are
perceptually indistinguishable from authentic data across one or more modalities. The fidelity and diversity of these
generated outputs are often evaluated using quantitative metrics (e.g., FID, precision-recall) or human perceptual
studies.

4.2  Deepfake Detection

Deepfake detection aims to identify or localize synthetic or manipulated data to distinguish it from authentic samples.
A detector Dy: X — {0,1}, parameterized by ¢, is trained to output 0 for genuine data and 1 for fake data. The detection
objective can be expressed as:

mq?X [Exr~pr(x) [log(l - qu (xr))] + I[':)cg~17g(9c) [log(Dq)(xg))] (2)

Detectors may utilize unimodal or multimodal cues (e.g., visual, auditory, textual, or behavioral signals) to identify
inconsistencies introduced during synthesis. These inconsistencies can manifest as spatial artifacts, temporal
discontinuities, semantic mismatches, or other modality-specific anomalies. Advanced detectors also incorporate
attention mechanisms or feature-level fusion to enhance cross-modal analysis.

4.3  Adversarial Relationship between Generators and Detectors
Deepfake generation and detection inherently exist in a mutually adversarial framework. Generators (Gg) evolve to
produce increasingly realistic synthetic data, while detectors (D) adapt to better recognize such manipulations. This

adversarial interplay forms a dynamic cycle of co-evolution, similar to a minimax game:
mein mf)lX [Ex-r~pr(x) [IOg(l - qu (xr))] + IE:z—~~pz(z) [lOg(D¢(G0 (Z)))] (3)

Progress in generative modelling directly challenges detection systems, while advances in detection motivate the
development of more sophisticated synthesis techniques. Understanding this evolving relationship is critical for
studying adversarial robustness, generalization, and counter-forensic strategies in deepfake research.

4.4 Adversarial and Anti forensic Attacks and Key Terminologies

In this paper, we review adversarial and anti-forensic attacks in detail, including traditional adversarial methods such
as FGSM [28] and PGD [29], as well as anti-forensic techniques based on GANSs [30] and diffusion models [31]. For
convenience, we use the terms “adversarial” and “anti-forensic” attacks interchangeably throughout the paper;
however, the term adversarial attack is more commonly used in existing literature. Adversarial attacks involve the
addition of perturbations to the input image that cause the models or classifiers to misclassify the input image. These
perturbations are imperceptible for the human eyes but can fail the model to provide accurate results. After the deep
learning models have been successfully employed in computer vision tasks, Szeged et al. [32] introduced the concept
of adversarial attacks in 2014. The authors demonstrated that deep neural networks misclassify the test input image
with high confidence if a little perturbation is added to it. A linear amount of undetectable noise was introduced to the
original image as a perturbation, which failed the model to identify the correct class for a perturbated input image.
The main terminologies that are widely used in the adversarial attacks research field are provided in Table 3, while
the timeline of adversarial attacks is given in Fig. 3. This timeline indicates the most frequently used adversarial
attacks in multidisciplinary fields.
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Timeline of Adversarial Attacks

{2014) 2016) £2017)
2013 4 2014 ) < 2016 ) <2017 ) )
1
L-BFGS [25] FGSM [26] JSMA [30] PGD [29] |
C&W [31] i
UAP [32] i
70O [34] i
1
(2021) @ o) i
’ { 2021 ) - 2019 { 2018 )
i Universal Water .
i mark Attack [36] One Pixel [35] BIM [28]
H MGAA [41] Functional Adv
H Attack[40]
i
1
1
\,

.,
J
8
t

(2023
“AdvDrop [42] StatAttck [37] Mole Attack [38) FDB Attack [40]

Fig. 3. Timeline of adversarial attacks between 2013 to 2025.

The categorization of adversarial attacks on visual and audio content can be based on many factors, including the
intention, knowledge, and authority of the adversary. Adversarial attacks can be divided into targeted and non-targeted
attacks depending on the adversary’s intention; however, poisoning and evasion categorization of attacks are based
on the adversary’s authority. Based on the adversary’s knowledge, adversarial attacks can be mainly classified as
white box and black box. These attacks are briefly described in Table 3, and the taxonomy of adversarial attacks is
presented in Fig. 4.

5 Adversarial attack techniques

In this section, we discussed adversarial attacks, focusing on commonly used white box and black box attack
techniques. By examining these attack techniques, we gain a comprehensive understanding of the potential
vulnerabilities they can exploit. The general framework of white box and black box attacks is given in Fig. 5 and Fig.
6. Whereas Table 4 and Table 5 present the categories of white and black box attack approaches.

L-BFGS [16]
Optimization Based .
C&W [22
2
UAP [24]

BIM [19]

PGD [20]

ISMA[21]

White-Box Attack

FGSM [17]

Adversarial Attacks
Gradie ZOO Attack [25]

One-Tixel Attack [26]

Universal Watermark
Atutack [27

One-Pixel Attack [26]
Universal Watermark
Attack [27

———  Black-Box Allack

Fig. 4. Detailed categorization of adversarial attacks on deepfake detection systems.
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Table 3. Comprehensive terminologies and detailed classification of adversarial attack types.

Perturbation

Terms | Description
Terminologies
Victim Model Model on which adversarial attack is performed.
Adversarial Example Perturbated image used to fail the victim model.
Adversary One who performs the adversarial attacks on victim models to fail them.
Adversarial Mechanism of modifying the original image to the perturbated image. It can be iterative or non-iterative.

Adversary Knowledge

Information known to the adversary about the victim model.

Transferability

Adversarial examples generated to fail one model can be utilized to invade another model. This characteristic of
adversarial examples is referred to as transferability.

Adversarial Attacks

Targeted Attacks

The adversary specifies a target label for the misclassified samples and tempts the model to assign the targeted label
to the adversarial examples.

Non-Targeted Attacks

Adversary induces the model to misclassify perturbated images without specifying a target label with the intention
to fail the victim model.

Poisoning Attacks

The adversary has the authority to inject fake/erroneous samples into the training dataset of the victim model, which
can cause the model to provide incorrect predictions.

Evasion Attacks

To fail the victim model, the adversarial example is used as input since the adversary has no access to the victim’s
model and its training data.

Black Box Attacks

Black box attacks are performed in the scenario where the adversary has zero knowledge about the victim’s model.
Black box attacks are based on the transferable nature of adversarial examples. In such attacks, adversarial examples
generated to fail the surrogate model are utilized for the victim model.

White Box Attacks

White box attacks are performed when the adversary has the perfect knowledge of the victim model, including the
model’s architecture, parameters, gradients, weights, training data, and model output. Keeping in view such
information, particularly gradient knowledge, the adversary generates an adversarial example to fail the model.

While performing gray box attacks, the adversary has limited knowledge (such as knowledge regarding training data,
which is known, but the model architecture is unknown). This attack also relies on the transferability of adversarial

Gray Box Alttacks examples. The adversary trains the surrogate model on the known training data to mimic the victim model. Using the
surrogate model information, an adversarial example is generated to fail the victim model.
51  White box attacks

511 L-BFGS

Szegedy et al. [32] was the first to attack the deep learning models using adversarial examples. This attack was named
as limited memory broyden fletcher gold farb shanno (L-BFGS) attack. The adversarial examples 1" were generated
via introducing a minimum perturbation p to the input image | such that a small difference exists between I and I'.
When classified using model M, the adversarial example was misclassified by assigning a target label L.

(4)

Here, I and I denote the original and adversarial image vectors, respectively, with pixel values normalized in the range
[0, 1]. To approximate the minimum perturbation, the L-BFGS algorithm was implemented with the following loss
function.

minl[I-1'|| st
M(I)=L' where 1'€[0,1]

min c||p|| + loss (I',L") wherel' € [0,1] (5)

In Eq. (5), ¢ > 0 is a constant that controls the trade-off between minimizing the perturbation magnitude and the
classification loss. The loss term loss(I’, L") is the cross-entropy loss between the model’s predicted probabilities for
the adversarial image I' and the one-hot encoded target label L.

Attack on Test Set Trained Classifier Predicted Label

Fake (Predicted)
Real (Original)

Perturbation

Real Input

Perturbed Input

* Attacker has knowledge about the dataset and the model.

Fig. 5. General framework of white box attack involves an attacker having full knowledge of the target system's architecture,
design, and implementation details.
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512 FGSM

In 2015, Goodfellow et al. [28] demonstrated that neural networks were vulnerable to adversarial attacks because of
their linear nature. They introduced the one-step fast gradient sign method (FGSM) to create an adversarial example
with the gradient computed using backpropagation. Perturbation p was generated via updating the gradient along the
perturbation direction, i.e., a sign of gradient, at each pixel of input image I. For instance, the value of the gradient
was increased if the gradient was positive, whereas, for a negative gradient, the value was decreased. In a non-targeted
FGSM attack, the value of classification loss of the model was maximized, while in the targeted FGMS attack, the
probability of target label L’ was maximized for the input image | via minimizing the loss between the predicted class
of I and L'. The targeted FGSM attack was introduced in [33] to avoid the label-leaking problem of a non-targeted
FGSM attack. The formulation to generate the non-targeted and targeted FGSM attacks is shown in Eq. 5 and Eq. 6,
respectively.

I'=1+ ¢ - sign (Vl loss( 1, L)) (6)
I'=1- ¢ - sign(Vloss(L, L") (7

where ¢ represents the amount of perturbation added and L indicates the actual label of image 1. Increasing the & will
increase the misclassification rate at the expense of the perturbated image being significantly different from the
original image and vice versa.

5.1.3  Basic iterative attack (BIM)

BIM [34] is the extended version of the FGSM attack, which iteratively introduced the perturbation and clipped the
pixel values of the intermediate perturbated image at each iteration. The number of iterations was equal to min (e+4,
1.25¢). BIM updates the image slightly at each iteration and thus prevents notable changes in pixel values.

L= clipl‘e{l,’l + o+ sign (Vlloss(l;l,L))} (8)

Here, o represents the change in the value of each pixel on each iteration (in a BIM attack « = 1, meaning the pixel
value is changed by 1 each iteration), the operator «.” denotes element-wise multiplication between the scalar step size
a and the sign of the gradient vector, indicating that each pixel's update is scaled by o times the sign of its gradient
component.

5.1.4  Projected gradient descent (PGD) attack
Madry et al. [29] introduced the variant of BIM named projected gradient descent that initialized the iteration through
random noise in the L. ball around the original image. Instead of clipping the pixels, PGD projected the perturbation
into e-l neighborhood of the input image. PGD attack generates adversarial examples with the largest local max-loss
value, which are most likely to fool the target model.

L., = projl‘e{l;l + . sign (Vlloss(lg , L))} 9)

5.1.5 Jacobian saliency map attack (JSMA)

In [35], a white box attack was introduced which constructed the saliency maps by computing the forward-feed
derivative of the DNN framework. The forward feed derivative computed the gradient and was defined as the Jacobian
matrix as given below:

aF () _ [8Fy, ()
D=——=|"7— 10
Jr =20 =0 (10)
Based on the gradient, the saliency maps output the set of important pixels to which the perturbation was introduced
to generate the adversarial examples that fulfill the adversary goal, i.e., misclassification. Through this attack, only
4% of the total pixels are perturbated, which might cause the perturbation to be visible to human eyes.

516 C&W attack

Carlini et al. [36] introduced a targeted attack following the optimization problem similar to LBFGS and put forward
a new formulation by replacing a loss function with the objective function. In [36], seven different objected functions
were presented to be used for scaling the minimization function. However, unlike LBFGS, it was an unconstrained
optimization problem, as the author introduced w which satisfied p = % (tanh(w) + 1) — I and controlled the

perturbation to the input image. The optimal formula for a C&W attack is shown in Eq. 10.
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Table 4. Detailed overview of white box adversarial attacks.

: - Target / s
White Box Attacks Attacks Distance Non-Target Advantages Limitations
L-BFGS | L, Target High stability and effectiveness. Computationally complex.
C&W Lo, Lo, Lo Target The attack is stronger than FGSM, | Computationally complex.
PGD, and BIM.
Optimization-Based Generate highly transferrable
Iterative Attacks adversarial examples.
UAP L, Non-Target High fooling rate at smaller norm. | ---
Generalize well across different
models.
BIM --- Target, The image is not distorted at a | Adversarial examples fall into
Non-Target high value of e. poor local maxima problems
Computationally efficient than L- | and overfit the model.
BFGS. Takes more time compared to
Gradient-based High success rate than FGSM. FGSM.
Iterative Attacks PGD --- Target, High success rate than FGSM. Takes more time compared to
Non-Target FGSM.
JSMA Lo Target High success rate and | Computationally complex.
transferability. Applicable only to feedforward
DNNSs.
. FGSM Lo, L Target, Computationally efficient. Lower success rate.
IGradl_ent-based non- Non-Target A distorted image is produced at
terative Attacks
a large value of e.
min [|p]| +c¢.f (") wherel’ € [0,1] (11)

where f (I') = 0 if and only if the classifier outputs the targeted label. The optimal value of ¢ is found via binary
search. Thus, the perturbated image that has a high score for target label L' can be found by minimizing the f.

5.1.7  Universal adversarial perturbation (UAP)

In [37], a strong universal attack was introduced that generalizes well across different models. A single universal
perturbation vector » was identified by UAP that can be added to any input sample to fool the classifier up to the
specified fooling rate y. To calculate o, the author utilized the DeepFool attack [38] such that v satisfies the following
constraints:

vl < e (12)

P(gd+v) =gD)=1—-y (13)

5.2  Black box attacks

5.2.1  Zeroth order optimization (ZOO) attack

Inspired by the white box C&W attack formulation, Chen et al. [39] presented a black box attack named the ZOO
attack for which no gradient information of the victim model was required. To attack the black box classifier, the ZOO
attack monitored the changes in prediction confidence and utilized the zeroth order oracle along with important
sampling hierarchical attack, and dimension reduction. Symmetric differential quotient and the Hessian estimate were
used to estimate the gradient as follows:

aF () _ F(l+hej)—F (I-he))
a1, 2h

) (14)
J
02F () _ F(l+hej)—2F(D+F (I-hej)
anz [

(15)

where e is a basic vector with i component as 1, and h is a small constant step size used for finite-difference gradient
estimation. By following [34], h is set to 0.0001.

5.2.2  One-pixel attack

In [40], a one-pixel attack was introduced that perturbed only one pixel in the image to fool the classifiers. A one-
pixel attack perturbed the pixel in the direction on the axis of one of the n-dimensions of an input image. A differential
evolution algorithm was used to solve the optimization problem and find a higher-quality solution compared to the
gradient-based solution. The formulation of pixel attack is as follows:
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Fig. 6. General framework of black box attack involves manipulating a model without knowledge of its internal
workings.

maximize f (I + P) subject to ||pll, <d (16)
where d represents the data point to be modified, and the value of d is set to 1 for the one-pixel attack.

5.2.3  Universal watermark perturbation

Wau et al. [41] introduced a universal watermark attack that combined the techniques of optimizing loss function and
watermarking to generate adversarial examples. This attack modified the pixel values within the watermark and
applied the watermark to any shape at any location of the image. The authors utilized SGD and ADAM optimization
algorithms to optimize the loss function. The formulation for universal watermark perturbation is shown in Eq. 17.

27 r(1)- 37 r(1;+w)

maximize
5

where W = W(R,G,B,S5,L) a7

Here, W(R, G, B, S, L) represents the watermark perturbation function parameterized by its color channels (R, G, B),
geometric shape (S), and spatial location (L) on the image. This function generates the universal watermark pattern
applied to input images to create adversarial examples.

5.2.4  Statistical consistency attack

Hou et al. [42] introduced a statistical consistency attack (StatAttack) that minimized the statistical difference between
real and deepfake images. More precisely, statistically sensitive natural degradations such as exposure (P,), blur(Py),
and noise (B,) were introduced to the fake images and then the distribution aware loss was utilized to optimize
different degradations. StatAttack generated adversarial examples in which feature distribution was closer to the real
images and thus evaded the spatial and frequency-based deepfakes detectors. The extended version, namely
MStatAttack, was also presented in [42], which involved sequential multi-layer degradations and tuned the
combination weights via utilizing loss. These attacks produce high visual quality adversarial images and show a higher
success rate than the existing PGD, FGSM, and MIFGSM attacks.

Po(X7ke) = P, (P, (P,(XT9%¢))) (18)

525 Facial Mole attack

Despite advancements in deepfake detection methods, recent studies have shown that these systems are still
susceptible to adversarial black-box attacks. For instance, a study demonstrated [43] a novel facial mole black-box
adversarial attack that successfully disrupted shared attention patterns in detection models. To add black moles to each
masked frame M fxy, the first step is to calculate the number of moles n that will be added. The parameter m; indicates
the height and width of the mole, which can be either 1-pixel or 2-pixels in size, represented as ml and m2,
respectively. This attack was able to significantly reduce detection accuracy and achieve a success rate on state-of-
the-art detectors.

5.2.6  Facial Distraction Black-Box Attack

Facial Distraction Black-Box Attack (FDB attack) [44] framework that is visually realistic, resilient, and demonstrates
formidable attacking capabilities. The proposed black-box attack is capable of successfully evading deepfake detectors
without the need for access to the target detector's parameters or architectural specifications. It exhibits high
transferability across a variety of deepfake detectors, including end-to-end deep learning, fused, and unified models.

5.2.7  Functional adversarial attack
To produce natural adversarial examples, Laidlaw et al. [45] presented a functional threat model that applied a single
perturbation to each input image pixel. For example, changing all the green color pixels to light green color. The
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functional threat model utilized various regularization functions such as difference (Fqir) and smooth (Fsmo) to make
the modifications imperceptible. The Fgit limits the amount of perturbation in the image, while the Fsmo perturbed
similar features in the same direction.

5.3 Other attacks

Inspired by meta-learning, a plug-and-play meta-gradient adversarial attack (MGAA) was introduced in [46] that can
be integrated with any other gradient-based attack. To generate adversarial examples, MGAA iteratively simulated
the white box and black box attacks from the model. This attack [46] improves the transferability of adversarial
examples by narrowing the gap of gradient directions between the white box and black box setting, thus enhancing
the success rate of both black box and white box attacks. Duan et al. [47] introduced an AdvDrop attack that dropped
the imperceptible features (i.e., subtle texture information) from the input image to generate an adversarial example.
AdvDrop attack first transformed the input image into a frequency domain, and then some frequency components
were reduced quantitatively. Cilloni et al. [48] introduced a gradient-based attack, namely a focused adversarial attack
that introduced the perturbation in the sensitive region of the image. For this, a focused threshold was used to identify
whether the output feature map should be considered or not for computing the perturbation. Intermediate layer attack
with attention guidance (IAA) was presented in [49], which enhances the black box attack transferability while
maintaining the performance of the attack in the white box setting. IAA introduced the perturbation to a specific
intermediate feature space via attention loss and stabilized the optimization direction through projection loss. I1AA
attack degrades key features of the input image that are not model-specific and thus makes the adversarial example
effective for different models.

Table 5. Detailed overview black box adversarial attacks.

Black Box Attacks Attacks Distance | Target/ Advantages Limitations
Non-Target
Gradient-based Z0OO0 Attack L, Target, Achieves comparable | Computationally complex for
iterative Non-target performance to the C&W | large models.
attack. Requires expensive computation
Avoid performance loss while | to query and estimate gradients.
transferability.
Optimization-based | One-Pixel Lo Target, Only the label information is | ----
iterative Attack Non-target needed to perform the attack.
It can affect multiple types of
frameworks.
Universal L, Non-target Powerful attack compared to | Perform well for the networks with
Watermark UAP and FGSM shallow layers.
Perturbation
- Functional Lo, Ly --- Perturbation is imperceptible. | Features cannot be perturbated
adversarial individually, making the attack
Attack more restrictive.

6  Adversarial attacks on visual deepfake detectors

This section provides an in-depth review of existing papers on evading image and video deepfake detectors using
diverse adversarial attacks. The overview of such existing papers is provided in Table 6 and the taxonomy of
adversarial attacks on visual deepfakes detectors is shown in Fig. 7.

Table 6. Comprehensive overview of existing literature on adversarial attacks on deepfakes detectors.

Results Perceptu
Yea . Before After Attack al Lo
r Attacks Datasets Victim Models Attacks Wit Box EIack Box Similarity Limitations
Attack Attack Measures
Adversarial Attacks on Image Deepfakes Detectors
GAN-based Adversarial Attacks
MSE, The
. PSNR transferability of
EfficientNet-b3 Acc =97 Acc=0 Acc=9 SSIM ! the  adversarial
! examples towards
202 | GAN-based StyleGAN learned the P other
1 attack [30] generated fake perceptual | forensics .
Images Image detectors is
XceptionNet Acc =93 Acc=0 Acc=5 patch limited.
similarity
(LPIPS)
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Fig. 7. Taxonomy of attacks on audio and visual deepfakes detectors.

6.1  Adversarial attacks on image deepfakes detectors

Adversarial attacks on image deepfake detectors involved attacks on images and video frames. These attacks are
categorized as GAN-based attacks, reconstruction attacks, and other attacks. The details and literature related to these
categories are coming in this section.

6.1.1  GAN-based adversarial attacks

GAN-based adversarial attacks mostly employ the GAN frameworks to generate adversarial examples to evade the
different deepfakes detectors that detect GAN-generated fake images. In [30], the author introduced a GAN-based
approach in which gradient descent was performed to the input latent vector and modified the manifolds of StyleGAN
to generate the adversarial examples. The attack was performed on two deepfakes detectors (XceptionNet and
EfficientNet-b3) in the black box and white box settings while reducing the detection accuracies to less than 1%. This
attack method [30, 50] generates high-quality adversarial examples compared to FGSM and PGD attacks. However,
the transferability of the adversarial examples to other forensics detectors is limited. Wang et al. [50] generated the
content preserving adversarial examples from the fake images using the two GAN-based frameworks for evading the
CNNDetector (ResNet50) under black box and white box scenarios. In the black box scenario, real data was provided
to the discriminator of the GAN model along with the introduction of a Real Extractor as an auxiliary network for
extracting real data features to increase the adversarial ability of the framework. For the white box scenario, the victim
classifier was included in the GAN architecture and generated images without sampling to fool the classifier. For the
seen data, a 63.2% and 32.55% drop in accuracy occurred; however, for unseen data, an accuracy drop of 61% and
58.55% were observed for white box and black box attacks, respectively. The method [50] also showed good
transferability when an attack was performed on four other classifiers, including ResNet18, XceptionNet, VGG16,
and VGG19. Liu et al. [53] introduced the trace removal attack based on an adversarial learning method encompassing
multiple discriminators and one generator. By thoroughly investigating the deepfakes creation pipeline, the trace
removal net empirically discovered and removed the deepfakes traces, such as spatial anomalies, spectral disparities,
and noise fingerprints from the fake images. This attack was performed on spatial-based, frequency-based, and
fingerprint-based deepfake detectors and significantly reduced the detection accuracies. Trace removal attacks are less
effective than PGD attacks when performed on spatial and frequency-based detectors; however, the attack is more
effective for fingerprint-based forensics detectors.

Uddin et al. [54] introduced transferable anti-forensic attacks on deepfake face forgery detectors targeting both real
and synthetic samples, and proposed a robust detection framework based on multi-model knowledge distillation. Zaho
et al. [51] introduced an adversarial attack that complicates GAN-generated image detection by forensic classifiers.
The attack, using an anti-forensic generator, introduces traces resembling actual images, deceiving detectors. The
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attack is transferable and highlights vulnerabilities in current synthetic image detection methods. Zhao et al. [52]
developed a method to deceive forensic CNNs by creating a generator that removes forensic traces from manipulated
images, making them appear unaltered. This attack is effective against multiple CNNSs, transferable, and maintains
high image quality by minimizing visual distortions. However, its effectiveness depends on its transferability and the
precise manipulation operations on the images. Ding et al. [75] developed a novel GAN model called ExS-GAN that
employs an extra supervision system to generate high-quality, manipulated images for anti-forensics applications.
While maintaining image quality, the model can launch attacks; however, its long-term efficacy may be restricted by
the potential for sophisticated forensic tools. Peng et al. [76] developed a novel approach that employs GAN to convert
computer-generated and genuine facial images, thereby improving anti-forensic applications. The model produces
convincing facial images from computer-generated (CG) inputs, which complicates the differentiation between CG
and natural faces. However, the study limits its dependence on the quality of training data.

Among the reviewed GAN-based attacks, [30] is more effective in fooling the spatial-based deepfakes detectors and
has greater transferability compared to the other two attacks [30, 53]. Furthermore, a comparison of the SSIM value
of the attacks indicates that the adversarial examples crafted via the GAN-based attack [30], which are better in quality
and look more similar to the original fake images compared to the trace removal attack [53]. So, it can be inferred that
GAN-based attacks generate high visual quality adversarial examples which performed quite well in white box
settings.

6.1.2  Reconstruction-based adversarial attacks

Reconstruction-based adversarial attacks involve the post-processing methods used to further enhance the visual
quality of the fake images to recreate the high visual quality forged images that are then used to fool the forensics
classifiers. FakePolisher introduced in [55], was a post-processing method that reduced the fake artifacts introduced
in the GAN-generated fake images. FakePolisher reconstructed fake images using dictionary learning methods such
as K-SVD and principal component analysis (PCA). It was used as a black box attack to evade deepfake detectors,
including DCTA, GAN Fingerprint, and CNNDetector, and significantly reduced the detection accuracy. K-SVD
reformed images are more like the actual fake images; however, PCA reconstruction is more effective than K-SVD
reconstruction while fooling the deepfakes detector. Similarly, in [9], a DeepNotch method was introduced that
performed notch filtering in the spatial domain by intelligently adding the noise using the semantic information of the
image. Later, image filtering was performed to reproduce noise-free fake images. The fake images were generated
using 16 Deepfakes methods, and the attack was performed using three existing detection methods: GAN Fingerprint,
CNNDetector, and DCTA. The detection accuracy of the victim models was improved when re-trained on the
reconstructed images, indicating that the attack was not too effective in evading the deepfakes classifier. In [55], the
PCA reconstruction attack appears to be more effective for all three victim models as compared to the K-SVD attack.
However, the DeepNotch attack [9] significantly reduced the detection accuracies of the classifiers when compared
with the PCA reconstruction attack. Ding et al. [56] proposed a GAN-based adversarial attack and introduced a novel
loss function to make the GANSs an adversarial tool. Instead of adding perturbation or visual distortion, this method
generated more natural and realistic deepfakes, which could easily cause the detector to fail. This attack degrades the
accuracy of models up to 4.30% from 97.24%. This work can be extended to add perturbation to real images or add
visual artifacts on deepfake videos to bypass the deepfake detector.

6.1.3  Other adversarial attacks

To fail the forensic classifiers that detect the GAN-generated fake faces, Zhang et al. [65] presented a double-masked
guided attack that introduced the perturbation to the important face regions on which most deepfakes detectors
concentrated when detecting fake images. The attack was performed on nine forensics classifiers in a white box and
black box setting and achieved a good success rate. However, the transferability and robustness of the adversarial
examples need to be improved. Similarly, Carlini et al. [57] introduced the perturbation to the GAN-generated images
(StyleGAN, ProGAN) by flipping the lowermost bit of pixels to fail the existing deepfake detection methods [55, 77].
The rate of misclassification increases as the number of perturbated pixels increases. For method [55], the
misclassification rate was 89.7% by perturbing 4% of the pixels, while for method [77], the addition of perturbation
to 50% of the pixels caused 100% misclassification. Being a restrictive attack, it is difficult to execute such an attack
in the real world. In [66], semantic perturbations were added that alter the target semantic attributes (pose, expression,
age) while retaining the original identity to fail the forensics system (based on ResNet50). For the white box attack, a
two-phase attack and the semantic aligned gradient descent (SA-GD) approach were introduced, while for a black box
attack, a semantic aligned evolutionary algorithm (SA-EA) was utilized to generate adversarial examples. The two-
phase attack achieved the highest success rate, reaching 90%, whereas the SA-EA attack attained the lowest success
rate (below 20%). However, increasing perturbation affects the visual quality; for example, a two-phase attack
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introduces noise in the image while the SA-GD and SA-EA attacks alter the non-targeted attributes. To fail several
face detectors and facial landmark extractors, Li et al. [59] introduced imperceptible adversarial perturbation for facial
images. In the white box attack scenario, training instances were disrupted. However, zero-mean Gaussian noise was
introduced for the gray box and black box. On the landmark extractor and face detector, the highest SSIM was achieved
at 90% and 98%. This technique [59] is more time-consuming for a large number of images. Fan et al. [60] introduced
a Poison Noise DeepFool (PNDF) adversarial attack to degrade the performance of deepfake detectors, including
ResNet50 and two other customized classifiers. Images from ten different deepfake generators were collected to be
perturbed iteratively in the white box manner. The AUC and accuracy of detectors reduce to 0.3331 and 0.071 with
the PNDF attack on ProGAN-generated images. PNDF attack is quite effective in degrading the performance but is
computationally complex. Liu et al. [69] developed AdvShadow, a transferable adversarial attack designed to exploit
natural shadows in real-world scenarios to target Deepfake detectors. AdvShadow uses a randomized shadow
generator, shadow overlay network, and adversarial shadow-generating method to minimize differences in brightness
between actual and generated images. However, its evaluation focuses on DeepFake detectors, and its application to
other detection architectures has not been explored.

In [58], DNN-based forensics classifiers were evaluated against adversarial attacks and demonstrated that individual
and universal adversarial perturbations could cause the deepfakes classifiers to misclassify the input image. To craft
the individual adversarial attack (IAA), a gradient-based iterative method was used, which considered the length of
the gradient along with its direction to add perturbation to the image. However, for universal adversarial attack (UAA),
a new objective function was introduced that utilized the resource-conserving over-firing approach to craft the
universal perturbation in a data-free manner. Both attacks (IAA, UAA) drastically reduced the classification accuracy
of the Y-shaped network [78]. The transferability of UAA was also demonstrated on MesoNet [79] and Forensic
Transfer [80]. The UAAs are more imperceptible than 1AAs because condensed local distortion causes serious
perceptual loss in case of individual adversarial perturbations. In [67], frequency adversarial attack (FAA) was
proposed to evade both spatial-based and frequency-based deepfakes detectors. The average success rate of the attack
for spatial models using the FaceForensic++ (FF++) dataset was 73%, whereas for frequency-based models, it was
90.9%. Similarly, for spatial and frequency-based models, the average success rates of 87.5% and 99.3% were
achieved, respectively, using the DFDC dataset. Although perturbation is imperceptible to humans, FAA is less
effective for spatial-based models compared to frequency-based victim models. Moreover, the transferability of the
attack is not good enough, as the success rate lies between 1.5% and 49% in black-box settings. However, FAA attacks
outperform the PGD and FGSM attacks. Hou et al. [42] introduced a statistical consistency attack (StatAttack) that
minimized the statistical difference between real and deepfake images. More precisely, statistically sensitive natural
degradations such as exposure, blur, and noise were introduced to the fake images and then the distribution aware loss
was utilized to optimize different degradations. StatAttack generated adversarial examples in which feature
distribution was closer to the real images and thus evaded the spatial and frequency-based deepfakes detectors. The
extended version, namely MStatAttack, was also presented in [42], which involved sequential multi-layer degradations
and tuned the combination weights via utilizing loss. These attacks produce high visual quality adversarial images and
show a higher success rate than the existing PGD, FGSM, and MIFGSM attacks. Lim et al. [68] introduced a black
box attack in which makeup artifacts (eyeliner, blush, lipstick) were applied to the regions identified through facial
landmarks to produce the perturbated images. The accuracies of the victim models (Mesolnception-4 and
TwoStreamNet) decreased to 50% on the perturbated images, which indicates that the attack is not effective compared
to other attacks (i.e., PGD, FGSM, and C&W). However, the result indicates that such subtle changes in the input
image can easily fool the deepfakes classifier.

Neekhara et al. [61] introduced an imperceptible universal adversarial attack, which was performed on EfficientNet
(EN) B7, B3, and XceptionNet (XN) victim models. A perturbation was introduced to each frame of 100 videos
collected from the DFDC dataset. An attack was performed on the models in white and black box settings using
gradient-based saliency maps. In comparison with the white box and transfer attacks, universal attacks in the black
box setting attained the highest attack success rate on all victim models. The attack success rate of the universal attack
was 100.0% on EN-B7 Selim, 77.5% on XN, and 66.5% on EN-B3, with an Loo threshold. This attack perturbed video
frames imperceptibly; however, perturbation is visible at a higher magnitude. Liao et al. [62] introduced a Key Region
Attack (KRA) that added imperceptible perturbation in key regions of the image to disrupt deepfakes detectors. A
KRA attack was also performed with a PGD attack, and the highest ASR achieved 0.99 with a KAR-PGD attack on
ResNet-50 and Xception in the white box setting. This technique performed well as a combined attack, so it should
be improved to perform well individually. Peng et al. [63] designed a two-party game between deepfake generators
and detectors. Three different creation tracks were introduced based on face shifters and faceswap generators. In the
first track, the FGSM attack was used to add adversarial noise to fake images generated through the face shifter
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method. In the second track, “teacher and student”, face shifter models were used and Lz loss was introduced in the
student model to resemble the outcomes with its teacher model. In the third track, more realistic face-swapped images
were created to fail deepfake detectors. However, these techniques were employed only on generated images, not on
real ones. Ivanovska et al. [31] proposed Denoising Diffusion Models (DDMs) to generate realistic images for black-
box attacks on deepfake detection systems being explored. A guided conditional DDM is used to reconstruct FF++
deepfakes with a predetermined number of diffusion steps. However, this approach lacks generalizability to attacks
produced with different denoising steps. Cao et al. [64] highlighted the vulnerability of deepfake detectors in backdoor
adversarial attack settings. In the label flipping attack, the training data was poisoned by flipping the labels of some
training data from real to fake, while in the backdoor attack, the small triggers were embedded into images to perturb
it. On label flipping, the accuracy of the classifier only dropped to 0.07, whereas triggers were added to 5% of training
data that failed testing in the deepfake detector.

6.2  Adversarial attacks on video deepfakes detectors

Adversarial attacks against the video deepfake detectors entail the creation of an adversarial video that is used to fool
the video deepfake classifiers. For this purpose, perturbation is introduced to the frames of the fake videos to generate
an adversarial video. In [70], adversarial videos generated via adding the perturbation to the frames of the video (FF++
dataset) were used to fail two CNN models including MesoNet and XceptionNet, and one sequence-based model
named 3D EfficientNet. The authors conducted robust white box and black box attacks on the models and reported
success rates on compressed and uncompressed videos. The success rate of these attacks was good on uncompressed
videos, while performance degrades on compressed videos. Likewise, Shahriyar et al. [71] showed the effectiveness
of FGSM and C&W attacks on the sequenced-based deepfakes detector in a white box and black box setting. For this
purpose, the victim models were Conv-LSTM [81] and FacenetLSTM [82] which attained an accuracy of 81.3% and
84.5% on unperturbed images from the FF++ dataset. Similar to [70], the white box attacks crafted for one model
were used as black box attacks for the other model and vice versa. Adversarial attacks reduced the accuracy of models
to 8%-20.9% in the white box setting, while in the scenario of a black box attack, accuracy decreased to 28.7%-53%.

Moreover, C&W attacks outperform the FGSM attack while evading sequence-based forensic classifiers. Gowrisankar
et al.[74] reveals that traditional explainable Artificial Intelligence (XAI) evaluation methods are insufficient for
deepfake detection models due to their unique functionality. The evaluation focuses on deepfake detection models
without considering their application to other classifiers. The proposed XAl approach lacks consideration for
computational efficiency and resource requirements. In [73], a novel framework was introduced that generated
coherent adversarial videos to evade the video deepfake detectors including ResNet, XceptionNet, and MesoNet. To
maintain consistency among adjacent frames, this framework [73] utilized optical flow to restrict perturbation
generation and then introduced adaptive distortion cost for visual quality improvement and imperceptibility via
constraining total perturbations. The attack was performed in the white box and black box scenarios utilizing F++ and
CelebDF datasets. For the white box setting, the success rate achieved ranged from 97.5% to 99.4%, whereas for the
black box setting, the success rate was in the range of 52.7% to 71.6%. Hussain et al. [72] employed different white
box and black box attacks on deepfake videos to bypass deepfake detectors. Simple white box, robust and transferable,
query-based black box; and query-based robust black box attacks were performed based on existing attacks like
universal and transformation-based attacks. From all attacks, robust and transferable attacks attained a higher
misclassification rate of up to 99.9%, with the lowest classification accuracy of 0.02 on the neural texture subset of
the FF++ dataset. In [43] facial mole-based black-box attack was proposed that reduces detector accuracy by up to
40.3%. The findings underscore the need for more robust, attack-resistant deepfake detectors.

6.3  Analysis and discussion

In this analysis, the potential strengths and limitations of adversarial attacks performed on visual deepfakes detectors,
are discussed. For the GAN-based adversarial attacks, it is observed that these attacks are evaluated on GAN-generated
facial images. Attacks [30, 50] are evaluated on the perturbated images generated using the StyleGAN-generated
synthetic fake images. While the trace removal attack [53] is evaluated on the adversarial examples generated from a
private dataset consisting of different deepfakes types including synthetic faces, attribute manipulation, and face
replacement. However, GAN-based adversarial attacks are not evaluated for the perturbated images generated utilizing
the challenging and standard datasets (i.e., FF++, DFDC, CelebDF) in the domain of deepfakes detection. In terms of
victim models, these attacks are evaluated only for spatial-based deepfakes detectors except for trace removal attacks.
The effectiveness of trace removal attack [53] is evaluated for spatial-based, frequency-based, and fingerprint-based
deepfakes detectors; however, it only significantly affects the misclassification rate of fingerprint-based detectors. For
reconstruction-based attacks, it is inferred that these attacks are not assessed specifically for fake facial images;
however, they are evaluated for different fake images generated via 16 GAN-based methods. So, a need exists to
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access reconstruction-based attacks specifically for the deepfakes facial images covering the diverse types of
deepfakes. Moreover, such attacks cannot be considered too powerful compared to state-of-the-art adversarial attacks
(i.e., C&W, FSGM, PGD), as the adversarial training on reconstructed images can significantly improve the detection
results. In the reviewed papers, different attacks are performed on different models using adversarial examples that
are crafted using either GAN-generated images or other deepfakes dataset images such as FF++ and DFDC. Most of
the evaluated victim models are spatial-based classifiers. Only the frequency adversarial attack and StatAttack are
evaluated on frequency-based models. Furthermore, none of the reviewed papers have utilized the GANFingerprint-
based classifiers as a victim model. From the reviewed papers, it can also be concluded that, for the GAN-generated
images, the success rate of the attacks is quite good in both white box and black box settings, compared to the other
deepfakes dataset images. However, the SA-EA black box attack was not effective as it achieved a success rate below
20%. Additionally, the UAP attack is quite effective in both white box and black box scenarios and shows notable
transferability. Overall, the adversarial attacks performed very well in the white box setting but in the case of black
box setting, the misclassification rate decreases which indicates the limited transferability aptitude. However, pure
black box adversarial attacks that are assessed on deepfakes detectors, are limited in numbers. Also, the success rate
of the black box attacks is comparatively lower compared to the white box adversarial attacks, while fooling the
deepfakes detection methods.

7  Adversarial attack on visual deepfakes generators

This section provides a detailed review of existing works on disrupting deepfakes creation through adversarial attacks.
Adversarial attacks on deepfakes generations can be classified as watermark-based, and other adversarial attacks on
real images. An overview of such existing literature is provided in Table 7 and the taxonomy of adversarial attacks on
visual deepfake generators is given in Fig. 8.

7.1  Watermark-based adversarial attacks

Researchers have also introduced image tags and watermark-based approaches to stop the disinformation spreading
on social media and the creation of fake personas. For instance, Wang et al. [10] introduced an image tagging approach
based on an encoder, GAN simulator, and decoder to defend against deepfakes generation proactively. The DeepTag
approach embedded a tag on the image using the encoder and then effectively recovered the hidden message through
the decoder after the GAN-based manipulation was applied using the GAN simulator. The GAN simulator employed
the existing frameworks, i.e., STGAN, StarGAN, and StyleGAN, to generate the manipulated facial images. This
approach produces high-quality visuals but is computationally complex and resource intensive. Moreover, if the image
is highly compressed, the embedded message might be lost. Likewise, Wang et al. [11] introduced a fake tagger, an
imperceptible tag with images to bypass the deepfake generators to generate a falsified image. For implementation,
U-Net was used as an image encoder to embed an imperceptible message into the image, and the decoder decodes the
message from the tagged image. The CelebA-HQ dataset was used with several GAN-based architectures. The
experiment was performed in a white and black box set. The quality of the encoded image was measured using PSNR
and SSIM; the highest measure was achieved on entire synthesis deepfakes. This technique performed well in
comparison with other watermark-based techniques. Zhao et al. [83] proposed a proactive detector utilizing an
encoder-decoder architecture to encode facial identity features with watermarks that serve as anti-deep fake labels.

DeepTag [10], Fake Tagger [11], Smart
Watermark [80], CMUA [81], Semi-Fragile
Watermark [82]

PGD-ODI [84], FGSM [27], PGD [30], PGD
Based Attack [85], Distorting Attack [86],
OCGAN [88], LAE Attack [89], LUP [90],

-_ Deepfake Disrupter [91], Perceptual Aware

Attack [92], Transfer Siamese Attack [93],

CDMAA [94], Nullifying Attack [95],

Restricted Black-Box Attack [96], Saliency
Aware Attack [97]

Attacks on Deepfakes
Generators

Fig. 8. Comprehensive taxonomy of adversarial attacks targeting deepfake generators.
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The injected label exhibits sensitivity to translations involving face swaps. Experimental results demonstrate an
average detection accuracy of over 80%. This approach offers users a dependable method to authenticate the
legitimacy of their images, thereby mitigating the adverse consequences associated with deepfakes. In [84], the smart
watermark framework was proposed, which consists of a watermark and attention module to generate unperceptive
water-marked images. Such adversary images caused the deepfake generation models to produce the blur deepfake
images. The watermark module extracted semantic information to create a personalized watermark while the attention
module enabled the model to add the perturbation to the facial area utilizing the attention mask. Likewise, [85]
introduced a cross-model universal adversarial (CMUA) watermark that can be applied to multiple facial images to
generate adversarial examples to combat the various deepfakes generation models. Neekhara et al. [86] introduced a
watermark-based technique named FaceSigns that is robust for image transformations (such as compression and
filters) and fragile to GAN-based manipulation. FaceSigns framework embedded an imperceptible message in the
images and was designed to detect the image as fake if the secret message’s recovery rate is lower.

7.2 Other adversarial attacks

To protect the real images from being converted into deepfakes, many researchers have introduced the approach of
performing adversarial attacks on the real images and thus hinder the creation of deepfakes. The major objective of
such frameworks is to prevent the deepfakes GAN-based generators from manipulating the individuals’ images that
can be easily accessible from social media. To attack the style transfer model named CycleGAN, Liu et al. [87]
introduced the PGD-based attack in which the starting point of the iteration was found using the output diversification
initialization (ODI) method. ODI utilized the output space distance to locate the initial point for the iteration, and the
adversarial image was generated using the iterative PGD attack, which was distinct from the input image. Ruiz et al.
[88] applied existing adversarial attacks such as FGSM, I-FGSM, and PGD on the input real images to prevent fake
images generated using the conditional image translation models, including GANimation, StarGAN, CycleGAN, and
pix2pixHD. The authors also presented the spread-spectrum attack to evade the blur defense while generating deepfake
images. In [89], a multi-objective algorithm based on a PGD attack was introduced for generating adversarial examples
that caused the multiple image translation models to generate deteriorated fake images. When this non-transferable
attack was performed on models (StarGAN-v2, STGAN) separately, the achieved success rate was 94.8% and 89.9%.
However, the success rate reduced to 73.3% and 66.6%, respectively, when the models were simultaneously attacked.
Yeh et al. [90] disrupted the image-to-image translation frameworks at inference time by utilizing the GAN
discriminator as an adversarial loss function, where the utilized attacking technique was PGD. More specifically, two
adversarial attacks, named nullifying attack and distortion attack, were performed on CycleGAN, pix2pix, and
pix2pixHD frameworks. The nullifying attack enabled the model to output the image identical to the input image,
while the distortion attack caused the model to generate distorted images that were clearly recognized as fake.

To improve the distortion attack [90], a training-resistant oscillating GAN (OCGAN) attack was introduced in [91]
and failed the face-swapping frameworks by introducing imperceptible perturbation to the video frames. In the
OCGAN framework, the adversarial generator and faceswap autoencoder were trained against one another such that
the input image, along with the targeted distortion was given to the generator to produce an adversarial image. When
the faceswap model was applied, it resulted in a distorted fake image. OCGAN attack introduced spatiotemporal
perturbation and improved the transferability of different face-swapping models compared to the distortion attack. In
[92], the latent-adversarial exploration (LAE) method was introduced that searched the latent representations of the
image to embed the perturbation, which resulted in high-quality perturbated real images that can defeat the different
types of deepfakes generation. There is a lesser chance of the reconstructed image being identified as anomalous;
however, the appearance of the image is sometimes slightly different from the original image. This demonstrates that
the LAE method is not able to produce a perturbated image like the original one. Ruiz et al. [93] introduced an effective
and simple black box attack named leaking universal perturbation (LUP) for disrupting the fake image generation
through StarGAN and GANimation models. LUP attack achieved a success rate of 98% and 100% for GANimation
and StarGAN frameworks, respectively, and significantly reduced the number of queries to perform the attack. Wang
et al.[94] argued that making the fake image visually perceptible from the human viewpoint is insufficient as
sometimes such images can fool the deepfake detectors. The deepfake disrupter, a perturbation generator was
presented that added imperceptible perturbation to the real image and protected it to be manipulated by the deepfakes
generation models such as StarGAN and GANimation. The deepfake images generated through perturbated real
images can be identified as fake by both human and deepfake detection models.

Without degrading the visual quality, a perceptual aware perturbation was introduced in [95], which generated the
adversarial examples natural to human eyes via introducing the noise on the color space in an incessant manner. The
perturbation was added to the whole image and disrupted the generation of different deepfakes types (i.e., attribute
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manipulation, face swap, facial reenactment). The adversary can crop the background to evade the perturbation if it is
not in the facial region. Dong et al. [96] performed adversarial attacks against faceswap autoencoders to disrupt the
fake images generated through GANs. Three different attacks were performed simultaneously on the Face-Scrub
dataset. The first attack performed on images was a transfer adversarial attack, which was image agnostic. Later,
Siamese attacks and Latent Siamese attacks were performed specifically to source images. All three experiments were
performed on both reference and non-reference images of the dataset. The best SSIM and FSIM achieved on reference
images were 0.49 and 0.79 respectively, based on the Siamese attack, while on a non-reference image, the quality
latent Siamese adversarial attack achieved the best BRISQUE of 46.19.

Qiu et al. [97] proposed a gradient-based Cross-domain and model adversarial attack (CDMAA) to disrupt the
generation samples of GANs. CDMAA attack was based on an I-FGSM attack, and generalization multi-gradient
descent (MGDA) was used to provide generalization. The perturbation was added to the original images of the CelebA
dataset, which fails GAN-based algorithms by generating unrealistic and distorted images. On StarGAN and U-GAT-
IT, the highest achieved attack rate was 100%, whereas on AttaGAN and STGAN, the attack rate was 62.9 and 69.6,
which is comparatively less. This attack was limited to images generated through GANSs; it will be extended to audio
and video as well. Yeh et al. [98] introduced a novel Nullifying adversarial attack for GANs to defend against a
generation of malicious content. This attack was designed in a black box setting corresponding to the Limit-Aware
Self-Guiding Gradient sliding attack (LaS-GSA) and nullified the effect of translation in GAN-generated images. The
attack was performed on Black2Blond, None2Glasses, and Blue2Red GAN architectures and achieved the highest
success rate of 95% on None2Glasses GAN, indicating the venerability of GANs towards adversarial attacks. In future
work, the vulnerability of GANs against adversarial attacks will be reduced. Dong et al. [99] introduced a restricted
black box attack that utilized a transferable cycle adversary generative adversarial network (TCA-GAN) to disrupt the
face-swapped image generation. This technique protects deepfake generation based on translation methods. In
comparison with existing attacks like FGSM, PGD, etc., this attack achieved the highest FISM and SSIM of 0.73 and
0.87. This technique was limited to the disruption of faceswap deepfake generation, and it will be extended to the
generation of other deepfake types as well. Li et al. [100] proposed a saliency-aware attack framework to defend a
well-trained deepfake generation model by manipulating the raw image with unperceived perturbation. It is achieved
by selectively perturbing only the foreground person region and maintaining the irrelevant background to fool the
model while minimizing alterations to the original image. This method [100] is limited to reliance on a pre-trained
saliency detection model, which may not accurately detect the foreground region and reduce the effectiveness of the
perturbation.

Table 7. Comprehensive overview of existing literature on adversarial attacks on deepfakes generations.
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*(Acc=Accuracy, ASR=Attack Success Rate, PSNR = Peak Signal-to-Noise Ratio, SSIM = Structural Similarity Index)

7.3 Analysis and discussion

This section includes an analytical discussion of adversarial attacks on visual deepfake generation methods.
Adversarial attacks on deepfakes generators mainly involve two types of attacks, one that causes the deepfakes
generation model to output the disrupted images. The other causes the generation model to be non-functional and
output an image like the input image. LAE attack [92] disables the deepfakes generation by not putting the desired
manipulation in the input adversarial example (LAE-generated image). When the LAE-generated image is passed to
the manipulation algorithm, it outputs an image like the target image but still a deepfake image that is not visibly
disrupted. So, this attack [92] cannot be considered too effective in preventing the deepfakes generation. Mostly,
existing works introduce attacks that lead image translation models (such as StarGAN, Pix2Pix, CycleGAN, etc.) to
deliver distorted images. For instance, the paper [90] performed both types of attacks but evaluated only for
CycleGAN, Pix2Pix, and Pix2PixHD models (which generate attribute-manipulated deepfakes). The methods [84]
and [85] utilized the watermark techniques, which caused the deepfakes generation models to output the blur or
disrupted fake images. The smart watermark framework [84] only defends against the StarGAN manipulation
algorithm, while the CUMA watermark [85] fails the StarGAN, AttGAN, HiSD, and AGGAN manipulation
techniques. Most of the attacks are performed using GAN-based methods that generate either attribute-manipulated
images or entire synthetic faces. Thus, the effectiveness of such attacks for other types of deepfakes generated through
different deepfakes generation maodels is unknown. Most of the adversarial attacks generate adversarial examples
against specific deepfake generation models, indicating the limited transferability aptitude of such attacks. However,
the OCGAN attack [91] showed good transferability but only for the two different face swap generation models.
Moreover, in existing works, significantly less attention is given to the black box attacks for disrupting the deepfakes.
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Fig. 9. General framework of attacks on speaker verification system.
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Additionally, the existing works cause the generation models to generate disrupted fake images, which can be easily
identified as fake by humans, but the performance of deepfake detection methods on such images is not demonstrated.
Only in [94] it shown that the disrupted images generated through their method were also correctly identified as fake
ones by deepfakes detectors.

Overall, the limitation exists in the transferability of adversarial examples among different deepfakes generation
methods. So, it is required to show the effectiveness of adversarial attacks for unknown deepfake generation methods,
because, in a real-world scenario, it is unknown which deepfakes generation method is going to be used. Additionally,
adversarial attacks on deepfakes generation models can be ineffective in the case when adversarial noise detectors are
utilized to identify the anomalies before the deepfakes generation. Also, the blurring and compression techniques, if
applied to the adversarial examples generated, can minimize their effectiveness while disrupting the deepfakes
generation.

8 Adversarial attacks on audio/voice recognition models and system

Adversarial attacks on the audio/voice domain include the addition of perturbations to the audio signal to trick deep
learning models or voice detectors. Existing surveys [3, 23, 101, 102] include multiple attacks with categorization in
this domain; however, we reviewed selective literature of recent years, including targeted or non-targeted attacks. In
addition, depending on the knowledge of attacks, white box and black box attacks are also reviewed. We categorize
these attacks into gradient sign methods and optimization attacks. The general framework of attacks on audio detection
and speaker verification systems shown in Fig. 9 and Table 8 presents the overview of audio-based attacks.

8.1  Gradient sign-based adversarial attacks

In this categorization, gradient-based methods were used to generate adversarial examples. Liu et al. [103] proposed
targeted gradient sign-based FGSM and PGD attacks. These attacks were performed on mel spectrograms of the
ASVSpoof 2019 dataset in a white and black box setting. Several victim models were used, including LCNN-Big,
LCNN-Small, and SeNet. The best EER achieved on the LCNN model is 93.11% by PGD attack. Li et al. [104]
proposed room impulse response (RIR) modeling to investigate the realism and practicability of adversarial training
with a real-time, over-the-air attack. A practical and systematic white box adversarial attack named X-vector was
conducted to challenge the state-of-the-art deep neural network (DNN) based speaker recognition system. It caused
the speaker recognition system to make inaccurate predictions or even force the audio to be recognized as any
adversary-desired speaker by adding a carefully constructed, unobtrusive noise to the original audio. It is possible that
incorporating an assault on the estimated room impulse response (RIR) into the adversarial example training process
will result in useful, over-the-air audio adversarial examples. This attack [104] gives a 98% success rate in digital
attacks and a 50% success rate with ASR 50 on over-the-air attacks to the x-vector using the VCTK dataset. Zhang et
al. [105] proposed an ensemble method based on the MI-FGSM adversarial attack in a white box setting. In addition,
adversarial examples created through this technique failed ResNet 34 with an ASR of 100%. The black box attacks
vary significantly in ASR across models, from 24% to 84%, and this method causes perceptible perturbation Wang et
al. [106] proposed an imperceptible, inaudible white box adversarial attack. This method [106] achieved an ASR of
98.5% by limiting the perturbation to the actual audio’s mask threshold and producing targeted, inaudible perturbed
samples of the original sound waveform. They also applied their method to other waveforms, such as music.

8.2  Optimization based attacks

Nakamura et al. [107] proposed a white box verification-to-synthesis attack on the voice conversion (VC) system.
With the possibility of the trained network distorting the input voice's phonetic features, an automatic speech
recognition model is incorporated into the optimization process to control the amount of phonemic information that is
lost. The resulting output voice is not only convincing to the ASV system but also retains its perceived quality. The
experiments were performed on a d-vector using a Japanese dataset. Xie et al. [108] proposed an attack, which adds
distortions in the sound due to the physical over-the-air propagation of the room, utilizes that information to estimate
the impulse response of the room (RIR), and achieves an attack success rate of over 90% and an ASR of 90.19 on the
x-vector using the VCTK dataset. Li et al. [109] examined the susceptibility of Gaussian Mixture Model (GMM) i-
vector-based speaker verification systems to adversarial attacks. Adversarial samples created for GMM i-vector-based
systems may be used successfully in x-vector-based systems, and FGSM enhances testing phrases for producing
adversarial samples in a white box setting. Both the i-vector and x-vector versions of the GMM are vulnerable to
attacks as the accuracy of the system falls from 87.50% to 25.75% on the VoxCelebl dataset. Chen et al. [110]
introduced optimization-based FGSM for adversarial training, where white box and black box attacks were performed
against the same ASV in a cross-corpus and cross-feature scenario. This method [110] employed an optimization-
based approach to estimate the score threshold and perform targeted attacks against the i-vector and GMM-UBM



Journal Pre-proof

using the LibriSpeech and VVoxCeleb1 datasets. For speech emotion recognition (SER), a generator-based STAA-Net
attack was proposed [111] that efficiently generates transferable and sparse adversarial perturbations in an end-to-end
manner. The generator was trained using Emo18 and WavLM as threat models and produced adversarial examples in
a single forward pass. The generated adversarial examples were used to attack the Zhao19 and wav2vec 2.0 models
and show good transferability.

8.3 Other attacks

These attacks are comprised of techniques that are either an ensemble or a combination of multiple methods, not
included in the categories. In [112], dictionary attacks on ASV were proposed, in which attackers can target a large
speaker population with this method, even if they don't have detailed information about any particular speakers or
models. It also suggested an adversarial optimization method for artificially creating master voices. Dictionary attacks
are a realistic security concern for mission-critical applications of speaker verification. The attack was performed in a
white box setting on the VGGVox model using the VoxCeleb2 dataset. Tian et al. [113] investigated black box attacks
on ASV using a feedback-controlled VC architecture. The feedback ASV score is used together with the objective
function to maximize the training of the feedback-controlled VC. The findings suggested that ASV functionality can
be harmed by black box attacks. The adversarial examples generated without ASV input are indistinguishable, and
experiments were performed on an i-vector using the ASV spoof 2019 dataset with a 30.73% EER rate. Chen et al.
[114] proposed multiple targeted and non-targeted attacks in white and black box settings against the speaker
recognition system that are combinations of gradient sign, evolutionary, and optimization-based methods. These
perturbations based on PGD, FGSM, FAKEBOB, and C&W attacks, etc., were injected into Mel-spectrograms of
voice signals to fool the system. Experiments were performed on the LibriSpeech dataset in different experimentation
settings, but overall, the C&W attack with the L2 white box attack attained the highest attack success rate of 97.1%.

Abdullah et al. [115] proposed a discrete Fourier transform (DFT) and singular spectrum analysis (SSA)-based
targeted black box attack that introduces perturbations to every single phoneme after a few words. This feature-based
method targets the MFCC of the TIMIT and word audio datasets. Chen et al. [116] proposed an arbitrary source-to-
target attack by adding perturbation to waveform signals of voice on 14 different speaker verification systems; these
attacks include multiple gradient signs and optimization methods. This attack included target and non-targeted
scenarios in white and black box settings on the LibriSpeech dataset. This attack achieved the best ASR rate of 100%
on the ECAPA model, but it is limited to the source-to-target attack only. Rabhi et al. [117] show audio deepfake
classifiers are vulnerable to adversarial assaults. Two new methods target the Deep4SNet classification algorithm,
which first detects counterfeit audio samples with 98.5% accuracy. Generative adversarial network (GAN) assaults
reduce detector accuracy to almost 0%. The detector's accuracy reduces to 0.08%, even with gray box attacks. The
paper emphasizes the need to research the reliability of alternative audio-deep fake detection structures. He et al. [118]
explored the unique characteristics of adversarial audio, focusing on phonetics. Researchers analyzed 2,400 audio
samples, revealing 612,000 acoustic-statistical features, including energy gaps, speech-like morphology, disordered
signals, and anomalous linguistic patterns. They developed a naturalness score and proposed an adversarial example
detector with an average precision of 91.1%. Experimental investigations showed that adversarial examples
significantly affect model accuracy, increasing false positives and false negatives and decreasing overall accuracy.
Further research is needed to refine detection techniques, explore innovative defense strategies, and understand
adversarial attacks. Umar et al. [119] introduced an ensemble of surrogate model-based losses combined with a
transcription loss to enhance the transferability of GAN-based anti-forensic attacks across white-box, gray-box, and
black-box audio deepfake detectors.

8.4  Analysis and discussion

The susceptibility of audio-based systems to adversarial attacks and their potential vulnerabilities are discussed in this
section. A gradient-based adversarial attack [103-106] includes modifying the loss function's gradient concerning the
input instances and then introducing a small, carefully prepared perturbation in the direction that maximizes the loss.
This technique is quick and capable of producing adversarial samples quickly, but these attacks may degrade the
performance during transferability from the white to black box setting [103]. Gradient-based adversarial attacks may
be less effective than optimization-based attacks, as they may not identify the optimal perturbation that maximizes the
loss.

An optimization-based adversarial method [107-110] involves the resolution of an optimization process to determine
the ideal perturbation that maximizes the loss. This method is computationally costly, but it can produce more effective
adversarial examples since it determines the ideal modification that maximizes the loss. Optimization-based
adversarial attacks may employ gradient descent, optimization, genetic algorithms, or other optimization approaches.
However, optimization-based adversarial attacks may be more complex to implement and demand additional computer
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resources than gradient-based attacks. There are several techniques that are either combinations of other methods or
attacks [112-116]. In general, the decision between several categories of adversarial attacks is determined by the
requirements and resources of the system. Gradient-based adversarial attacks are quicker and less complicated, but
they may not be as effective as optimization-based attacks. Optimization-based adversarial attacks are more

successful, but they demand additional computer resources and may be more challenging to implement.

Table 8. An overview of adversarial attacks on audio.
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White and Kaldi DNN-HMM
2024 black box m%‘ﬁ'ef eepSpeech VCTK corpus Acc=91.1 - - -
attack [118] model
RawNet2 -
' Less effective and
GAN-based Al-generated TSSDNet, Acc=93.0, After_Acc =
2024 attack [119] audio ResNet, PSNR, SSIM 61.4 less pg:;orsmance
MS-ResNet2 Ps.

*(Acc=Accuracy, ASR=Attack Success Rate, PESQ = Perceptual Evaluation of Speech Quality, EER= Equal Error Rate, FRR = False Rejection
Rate, FAR = False Acceptance Rate)

9 Countermeasures against adversarial attacks on visual deepfakes detection and generation
Adversarial defense techniques are designed to prevent malicious attacks from deceiving the models. The objective
could be accomplished by either strengthening the model's robustness or eliminating the attacker process. The former
can be further subdivided into proactive and passive defense algorithms. The distinction between these two categories
is that proactive defense intends to enhance the performance of the model, whereas passive defense seeks to reduce or
completely remove adversarial perturbations. The following sections provide the existing literature for these
methodologies. The taxonomy of defensive techniques against visual adversarial attacks is shown in Fig. 10.

9.1  Proactive defensive techniques against visual adversarial attacks

Proactive defense strategies aim to improve the model's robustness and enable it to perform accurate predictions for
adversarial samples. Proactive defense typically requires further training of the model or additional optimization of
model parameters and structure to make it different from the original model. We focus on representative proactive
defenses in this section, primarily adversarial training, optimal neural netwaorks, and ensemble learning. The general
framework of proactive defense is given in Fig. 11.

9.1.1  Adversarial training-based defense

Adversarial training is the process of injecting adversarial samples into the model's training data to make it adversarial
robust. The adversarial training framework is widely considered one of the most effective principled defenses against
adversarial attacks as it exposes the model to adversarial samples in training to gain some level of immunity. In [16],
an adversarial training-based min-max game was introduced as a proactive measure to an adversarial attack. Training
samples of the FF++ dataset were blurred with pixel-wise Gaussian blurring during the generation process. This
technique helped the model to detect deepfakes in a generalizable and robust manner. The efficient and combined
model achieved the best results, which was 98%. In [66], Naive Max-pooling and Feature Max-pooling defense
methods are used against various attacks in both black and white box testing. To improve the robustness of the
defensive method, the detector is retrained with the adversarial samples obtained after the attacks. The detector is
based on ResNet-50 and trained on CelebA-HQ, with four provided attribute vectors: age, smile, pose, and gender.
Without any attacks, the original detector has classified 1000 inputs with 99.6% accuracy and with an average
prediction rate of 98.7%. The defense detector retrained with StyleGAN has correctly classified all 1000 inputs with
an average confidence prediction rate of 99.5%. In [120] GAN-based network features a dual channel that consists of
multiple modules to provide supplementary knowledge from latent space. It is proposed as a countermeasure against
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Fig. 10. Comprehensive Taxonomy of Defensive Techniques Against Visual Deepfake.
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Fig. 11. Detailed schematic of the proactive defense technique in deepfake detection.

adversarial attacks on deepfakes. The model is beneficial for training forensic detectors with strong robustness against
adversarial attacks. It is neutralized by adversarial perturbations by injecting new noises. The results show that the
defensive method has shown good precision on DenseNet, ResNet, XceptionNet, and DefakeHop when tested against
the other methods. Uddin et al. [121] introduce a novel method for identifying anti-forensic attacks on High-Efficiency
Video Coding (HEVC) compressed videos, with a particular emphasis on those produced by GANs. The study
enhances the efficacy of forensic tools in identifying tampered videos by employing deep learning to analyze coding
patterns and detect GAN-based manipulations. However, it may not cover all attack scenarios and is dependent upon
the use of extensive datasets. Furthermore, the efficacy of the method may fluctuate depending on the type of video
content and the compression level. Chen et al. [17] proposed a deceptive mechanism based on statistical hypothesis
testing to detect deepfake manipulation and adversarial attacks. A deceptive model with two isolated sub-networks is
designed to generate random variables for deepfake detection, and a maximum likelihood loss is used to train the
model. The experiments show the effectiveness of the decoy mechanism in detecting both Deepfake and adversarial
attacks across different methods. A limitation of the proposed method [17] is that it assumes the attacker is unaware
of the decoy mechanism and the training process. If the attacker gains knowledge of these aspects, they can develop
targeted attacks that may bypass the detection system.

9.1.2 Ensemble and fusion-based defense

Ensemble learning for adversarial defense can be summed up as training an ensemble of models to achieve the same
class label, but every model should be different as much as possible for improved generalization performance. In
[122], a robust deepfake detection architecture was proposed called EnsembleDet. This ensemble model can detect
deepfakes against the fast gradient sign-method and basic iterative method. For the experiment, the FF++ dataset was
used to train the classifiers. Different classifiers, including MesoNet, XceptionNet, simple ensemble, and GASEN-
based ensemble, were used. The simple ensemble model achieved higher accuracy against both FGSM and BIM
attacks on all subsets of FF++ datasets, whereas the DF subset of the FF++ GASEN-based ensemble achieved the
highest accuracy against FGSM attacks. Although the simple ensemble model showed good accuracy, its precision
rate is lower than that XceptionNet. The increasing number of parameters during the ensemble-based model training
causes high computational costs. An ensemble method [123] tackles the adversarial attacks like L, and L infinity
perturbation norms performed on multiple shallow architectures of Flickr faces HQ dataset under both black and white
box testing. In this paper, Disjoint Deepfake Detection (D3) is proposed as a defensive method against adversarial
attacks. D3 utilizes disjoint partitions of the input characteristics to construct a solid ensemble of models. By analyzing
the results with state-of-the-art defense methods, it can be noticed that D3 maintains 100% adversarial accuracy against
AutoAttack, whereas the other methods drop below 20%. Kumar et al. [124] studied modern methods for identifying
generative artificial intelligence-generated multimedia content. They classified single-modal and multi-modal
detection strategies as conventional or advanced techniques, using machine learning for handcrafted features and deep
learning and hybrids for improved detection. Amerini et al. [125] developed an ensemble approach called D-Fence to
detect deepfakes. The system classifies altered facial and vocal features and Video-Audio and Audio-Text interactions.
The D-Fence layer was tested against two novel adversarial attacks: Bogus-in-the-middle and down sampling. D-
Fence achieved 92% detection accuracy despite obstacles. In sophisticated multi-modal deepfake detection, D-Fence
outperforms the classifiers.

9.1.3  Autoencoder-based defense

Autoencoder-based defensive techniques provide reconstruction phenomena against adversarial modified samples to
remove perturbation. In [126], a residual fingerprint-based defense is introduced against BIM, FGSM, PGD, Inversion,
and additive noise attacks. The reconstruction method poses strategies to degrade adversarial efficacy and extract
discriminative residual fingerprints. It also reconstructs adversarial samples by removing the original deepfakes from
the corresponding adversarial ones. To maximize the difference between real and fake images, another strategy of



Journal Pre-proof

transforming the residual fingerprints with a Discrete Cosine Transform component is used, which produces
discriminative traces for further deepfake detection. The defense model shows significantly improved accuracy from
50.88% to 84.05% in classifying the FGSM-based adversarial images. In [127] MagDR, a Mask-Guided Detection
and Reconstruction pipeline, is used to defend deepfakes from adversarial attacks by C&W and PGD. MagDR starts
with a detection method that establishes a few criteria for assessing the abnormality of deepfake output and uses those
criteria to direct a learnable reconstruction process. To record the change in specific facial regions, adaptive masks
are extracted. From the experiments, it can be analyzed that MagDR defends three main types of deepfakes under both
black and white box attacks. Extensive experiments are performed to demonstrate the effectiveness of the model on
defense-aware and defense-unaware attacks, and it can be analyzed that the MagDR has shown the highest detection
as compared to the state-of-the-art models. Ding et al. [120] proposed a method to improve the security of facial
bioinformation by identifying and eliminating adversarial perturbations. This includes the preprocessing of facial
images to prevent potential perturbations, thereby guaranteeing accuracy and reliability. The effectiveness of the
experiment is in protecting bioinformation from attacks. However, the method's potential performance degradation
and the difficulty of employing it in sophisticated techniques are among its limitations.

9.14  Regularization as optimized defense

According to researchers, deep neural networks are vulnerable because of their weak structure and parameters, making
them susceptible to adversarial perturbations at the image level. The methods based on neural network optimization
aim to increase the robustness of the model by enhancing its parameters, such as regularization, or modifying its
structure. In [128], adversarial attacks FGSM and C&W L are performed on ResNet and VGG in black as well as in
white box settings on the fake images created through Few Shots face Translation GAN [129]. Lipschitz
Regularization and Deep Image Prior (DIP) defensive techniques were used in [128] to make the model resistant to
adversarial perturbation. On average, Lipschitz regularization improved the detection of adversarial perturbed
deepfakes by ResNet models in the white box CW- L setting, where even the regularized model correctly classified
only 2.2% of the perturbed fake images. However, the DIP defense illustrates more encouraging findings. With a
classification threshold of 0.25, it achieved a recall of 97.8% for both perturbed and unperturbed fake images. It can
be noticed that DIP defense outperformed regularization for deepfake detection, as it improved robustness to
adversarial perturbations slightly, but the performance remains impractical for real-world scenarios. In [130] a
regularization based video deepfakes detector is proposed. Regularization strengthens the model’s generalizability,
making it robust against diverse manipulations and postprocessing attacks.

9.15  Other techniques

Many other proactive defense techniques are introduced with the aim of protecting the content from malicious attacks.
Deb et al. [131] introduced a unified attack detection system (UniFAD) that can learn 25 coherent attack types from
the three categories of adversarial, digital manipulation, or physical spoofs. Mostly, defensive techniques achieve
perfect accuracy when tested against one of three types of attacks; however, when tested against all three types of
attacks, their accuracy is downgraded. UniFAD learns joint representations for coherent attacks using a multi-task
learning framework and K-means clustering, while uncorrelated attack types are learned separately. On the FakeFace
dataset, having 25 different attack types of all three categories, the proposed UniFAD outperforms existing defense
methods with an overall TDR of 94.73% and 0.2% FDR. Even UniFad can recognize the attack categories with
97.73%. Without affecting the significant artifact features, the DF-UDetector introduced in [132] detected the
degraded deepfake images by converting the degraded feature maps into high-quality ones. The deepfake images are
degraded with different strength levels of noise, blur, and compression. The attained accuracy of the model on different
datasets was less than 90% for the degraded images but better than existing models. This method is robust against
degradation attacks but is still vulnerable to adversarial attacks such as PGD, FGSM, etc. Uddin et al. [133] introduced
a novel method to improve the resilience of digital face image classifiers against adversarial attacks. The technique
enhances its capacity to manage adversarial inputs by employing open-set multi-instance learning to differentiate
between known and unknown instances in an image. It evaluates the consistency of predictions across multiple
instances to identify anomalies. However, it has limitations such as computational complexity and potential varying
effectiveness based on attack nature.

Asha et al. [134] introduced an optical flow-based CNN with self-attention architecture that was robust against
adversarial attacks while detecting deepfakes. Self-attenuated VGG16 extracted the informative facial features from
which optical flow vectors were computed and then passed to the sequential CNN. This model attained a classification
accuracy of 74% in the presence of adversarial attacks, which is reasonably good. Pinhasov et al. [135] introduced a
defensive mechanism for the security of deepfake detectors by employing XAl to improve the identification of
malicious adversarial attacks. However, the assessment depends on the FF++ dataset, and the computational expense
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Fig. 12. Comprehensive diagram illustrating the general framework of passive defense techniques.

continues to be a hurdle for real-time implementation. Wang et al. [136] proposed a platform named DEEPFAKER,
which is designed to evaluate the efficiency of deepfake creation and detection models. The platform's modular design
enables effortless incorporation of new approaches, enabling researchers to include innovative detection techniques
as the field progresses. However, it recognizes constraints such as the adequacy of the dataset and biases in the model.
Park et al. [137] explore the simultaneous presence of deepfake disruption and detection in conventional security
concerns. DDPM denoising training framework is employed to diminish defense time and minimize image distortion.
The method produces deepfake images that closely resemble authentic ones, reduces defense time by 7.75%, and
exhibits superior detection accuracy in disruption attacks compared to StarGAN and DiffPure.

9.2  Passive defensive techniques against visual adversarial attacks

Passive defense is intended to mitigate the damage induced by adversarial perturbation rather than to strengthen the
model itself. The main advantage of this method is its ability to decouple model training and adversarial defense
without modifying the already trained model, which allows defense methods to be implemented. The following section
discusses passive defensive methods for protecting against adversarial attacks on visual deepfakes. The general
framework of passive defense is given in Fig. 12.

9.21  Image transformation

Deep neural networks have been found to be generally robust when random image transformations are applied.
However, perturbations are fragile under this method for adversarial samples, particularly those generated by the
gradient. Based on this observation, researchers devised several defensive methods based on random image
transformation techniques to counter adversarial attacks. In [63], in the first detection track, EfficientNet-B3 was used
for deepfake detection of the Celeb-DF dataset. The fake image in the dataset was perturbed by PGD and MI-FGSM
attacks. For better defense, the cross-entropy loss was employed with smoothing and up-sampling to prevent the model
from misclassifying. In the second detection track, data augmentation, like a Gaussian blur, affine transformation, etc.,
was used to increase the dataset and trained with Efficientnet-b0 to improve the classification of a model against any
adversarial attack. In the third detection track, FGSM was introduced in training samples to make the deepfake detector
robust against adversarial attacks. EfficientNetV2 was used to train Celeb-DF original, augmented, and perturb
images. Luo et al. [138] proposed bilateral filtering against three typical adversarial attacks: BIM, PGD, and FGSM
on Xception and Mesolnception in both black and white box settings on the subsets of the FaceForensics++ dataset.
In this work, bilateral filtering is used in the passive defensive strategy, and joint adversarial training is used in the
proactive defensive strategy. Leporoni et al. [139] proposed the Masked Depthfake Network (MDN), a technique that
incorporates depth data into an RGB detector. For detection, the method extracts depth maps from RGB images and
combines RGB features with depth information. MDN outperforms the average RGB detector, as evidenced by its
91.26% accuracy on Deepfakes and 96.86% accuracy on the FF++ dataset. In addition, this method outperforms black
box attacks and exhibits an accuracy of 95.69%. All these techniques help to prevent deepfake detectors from
misclassifying against adversarial attacks.

9.3 Analysis and discussion

Adversarial-based defense methods aim to make a model more robust to adversarial examples by either modifying the
model's architecture or training it on adversarial examples. These defensive methods are more robust against white
box attacks; however, they still fail in the presence of strong attacks. Ensemble-based defense methods involve
combining multiple models to make a more robust system. Ensemble defensive methods perform very well on black
box attacks but are very computationally complex. Autoencoder-based defense methods reconstruct the input data to
detect and remove adversarial examples. These methods reconstruct the input and compare it to the original samples,
and if the reconstruction is significantly different from the original input, it is an adversarial example. The
autoencoder-based defensive methods have not shown remarkable results against adversarial attacks as compared to
other defense methods. It can be seen from literature that some methods, which do not fall under a specific category,
have shown remarkable results against the attacks and their subtypes. All these methodologies have their own pros
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and cons; it depends on the nature of the problem, and the researcher decides which one is the best fit for their use
case.
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Fig. 13. Comprehensive diagram of audio defensive techniques in deepfake detection.

There is limited literature available on passive techniques against adversarial attacks. Researchers are mostly focusing
on proactive defensive techniques for several reasons, such as aiming to prevent an attack from happening in the first
place and being more cost-effective. As proactive defense methods have shown to be more effective in preventing
attacks, there is still room for improvement in passive defense techniques. The research community can work towards
making passive defense methods more efficient and effective by improving the ability of passive defense methods to
detect and respond to attacks in a timely manner. Therefore, the research community has an opportunity to bridge the
gap between proactive and passive defense methods by enhancing their performance of passive defense methods.

In this section, we comprehensively reviewed defensive methods against adversarial attacks and compared them in
Table 9. Work reviewed under adversarial training and optimization-based methods has shown remarkable results
against adversarial attacks. It is robust to adversarial attacks as it trains the model on small perturbations in the input
by adding adversarial examples to the training data. This helps the model to learn to recognize and classify even
adversarial examples that it has not seen before during training. This can make the model more robust to a wide range
of attacks. Optimization-based methods aim to find the closest possible inputs to the adversarial example while still
maintaining the desired output from the model. By finding the closest input, the optimization method can effectively
reduce the impact of the adversarial perturbations and increase the model's robustness to attacks.

10 Countermeasures against audio-based adversarial attacks

In this section, defensive countermeasures against adversarial attacks on audio verification systems are presented.
These systems are vulnerable to even small adversarial attacks, such as impulses and Gaussian noise, which can
compromise their accuracy and reliability. To counteract these attacks, we reviewed several defensive techniques
against well-known voice spoofing and adversarial attacks. We categorize these countermeasures into two groups:
proactive and passive defense. The general framework of the audio defensive method is given in Fig. 13, and the
literature is compared in Tabie 10.

Table 9. An overview of Visual Defense Techniques.
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10.1 Proactive defense techniques against audio adversarial attacks

10.1.1 Adversarial training-based defense

In the adversarial training defensive technique, gradient-based perturbed voice samples were added during model
training. Wang et al. [140] introduced regularization-based adversarial training and produced adversarial examples
through FGSM and local distributional smoothing methods. The experimentation was performed on the TIMIT dataset
on the GE2E-ASV system. This technique slightly reduces the ERR rate of adversarial attacks, but the overall results
are not satisfactory. Wu et al. [141] introduced a defense against PGD and FGSM attacks to greatly boost the
performance of VGG and SENet on the ASVspoof 2019 datasets. To quantify and analyze the efficacy of deep models
against adversarial noise, they generate high-level representations of voice samples retrieved by the self-supervised
model and a layer-wise noise-to-signal ratio (LNSR), which provides up to 90% defense against white and black box
attacks as well. Pal et al. [142] proposed hybrid adversarial training based on cross-entropy and marginal loss to
withstand black-box attacks and have greater adversarial robustness. The experiments were performed on 1D-CNN
on several white and black box scenarios and attained good defense, but the defense is limited to one tested model.
According to [143], adversarial attacks on ASV systems can reduce their accuracy, and various attacks like Gaussian
noise make the detection task more sophisticated and challenging. To lessen the impact of an adversarial attack, [143]
used adversarial training (adversarial samples are incorporated into the training dataset) and adversarial Lipschitz
regularization (ALR). ALR relies on a function that is designed to overlook incremental changes to the input. But this
defense technique [143] is only limited to PGD, FGSM, and C&W attacks with 73% accuracy on the LibriSpeech
dataset. Isik et al. [144] proposed neuromorphic audio processing, which examines security vulnerabilities in
neuromorphic audio, specifically addressing adversarial techniques such as FGSM and PGD. A system with an FPGA
has a 94% detection rate, excellent spike encoding, and a balanced signal-to-noise ratio. Technology outperforms
current methods with a 5.39 dB signal-to-noise ratio.

10.1.2 Refactoring-based defense

For data purification against adversarial attacks, a pre-processing module can be used to denoise or rearrange the data
for cleansing. This will help to achieve the purpose of defense and minimize the likelihood of an attack happening.
Denoising and noise addition are two components of the larger process known as input refactoring, which refers to
the collection of algorithms that preprocess the input data on the input layer. Wu et al. [145] proposed spatial
smoothing and adversarial training based on the Mockingjay technique [146] on LCNN and SENet detectors. Since
different attacks leave distinctive patterns on the sample, this approach [145] has only been tested on PGD attacks, it
may have a limited defensive capacity due to the fact that adversarial training is less effective against novel attacks.
The Transformer encoder representations from the alteration (TERA) model were proposed in [147] that employed
self-supervised learning techniques to predict sequences of future frames based on the input. This research was heavily
influenced by the Mockingjay defense that used self-supervised learning by processing audio samples with Gaussian,
mean, and median filters. This technique is useful since it cleans up the samples without requiring any prior knowledge
of the adversarial sample generation process and achieves an EER rate of 22.49%.

10.2 Passive defense techniques against audio adversarial attacks

The following section discusses passive defensive methods against adversarial attacks on audio deepfakes. Wu et al.
[141] proposed a passive defense known as spatial smoothing through the use of median or mean filters. This method
does not modify the attack model, but it enables it to detect adversarial examples without the need for additional
training. Assuming that the adversary is unaware of the implementation of spatial smoothing on the input data before
it is fed into the model, however, this intentionally created perturbation will be neutralized by the spatial smoothing,
rendering the adversarial attack ineffective. Li et al. [148] constructed a defensive network, a VGG-like binary
classification detector that discriminates between adversarial samples and authentic ones in the convolutional layer
and pools the speech sequences for decision-making in the pooling layer. The binary classification detector exhibited
good adversarial robustness on cross-model SRSs but decreased recognition accuracy in the face of various attacks
(the model trained on adversarial examples generated by the BIM algorithm could detect 99.83% of BIM attacks but
only 48.61% of JSMA attacks). Wu et al. [149] introduced self-supervised learning models (SSLMs) to filter out noise
at the surface level in the inputs and reconstruct clean samples from interrupted ones. SSLM consists of two modules:
one removes inconsistencies from audio, and the other compares the unaltered sample to the one that has been cleaned
up to identify potentially harmful recordings. This method achieved an R-Vector of 14.59% GenEER and an X-Vector
of 11.29% GenEER against JSMA, FGSM, and BIM attacks.

Wou et al. [150] proposed neural coders to re-synthesize audio and discover discrepancies between the original sample
and the re-synthesized audio samples against a BIM (PGD type) adversarial attack. Using this technique [150],
adversarial noise was removed, and the authentic waveform was regenerated with less distortion. It is helpful because
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it does not require knowledge of the attack algorithm. To add insult to injury, only a single neural vocoder
implementation was employed. This method achieved the highest AUC of 99.94% against a BIM attack. Yoon et
al.[151] introduced a new deepfake detection method, TMI-Former, which integrates features across visual, auditory,
and linguistic modalities. This approach addresses challenges in sparse data environments and aims to overcome the
limitations of traditional Al-based methods. TMI-Former is structured into four stages: vision feature extraction,
representation, residual connections, and late-level fusion. It performs effectively in scenarios with limited identity
data and single-instance deepfake examples. The model achieves accuracy rates of 18.75% to 19.5% and F1-scores
from 0.2238 to 0.3561, surpassing previous multi-modal Al systems. This performance demonstrates the potential of
complex, cross-modal interactions in enhancing deepfake detection systems, especially in restricted data
environments. Villalba et al. [152] used representational learning to classify adversarial attacks and identify distinct
attacks. Probabilistic linear discriminant analysis (PLDA) was implemented for the x-vector system and achieved a
recognition accuracy of 71.8% for the classification of attacks within the training set and an error rate of 19.6% for
identifying unknown attacks. Joshi et al. [153] trained the representation learning network with adversarial
perturbations rather than adversarial training and used the time-domain denoiser to estimate the adversarial
perturbations. This allowed us to train the network without the need for adversarial examples. In contrast to other
methods, this method [153] can identify previously unknown attacks, although its detection accuracy is still poor.
Uddin et al. [154] introduced a novel collaborative learning framework that is designed to identify anti-forensic
manipulation generated by GANS. The authors proposed a system that employs multiple detectors to identify complex
GAN-based forgeries, thereby improving the accuracy and robustness of anti-forensic detection. However, the method
is limited to a substantial amount of training data, potential scalability concerns, and the expectation that all detectors
are equally effective and reliable. Uddin et al. [155] proposed a robust defense framework against GAN-based anti-
forensic attacks on audio deepfake detectors. Their work also presented a comprehensive empirical analysis [156] of
twelve state-of-the-art audio deepfake detection methods, evaluated across five benchmark datasets under four
statistical and four optimization-based anti-forensic attack scenarios.

Table 10. An overview of audio defense techniques.

Defensive . Results Lo
Ref. Methods Model Dataset Baseline measure Attack I Defense Limitations
Proactive Defense
Adversarial Training-Based Defense
L Slightly
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*(Acc=Accuracy, ASR=Attack Success Rate, EER= Equal Error Rate)

10.3  Analysis and discussion

This section presents the analysis and discussion of defensive approaches to audio deepfake methods, which cover
both proactive and passive defense in audio. Proactive defense entails taking measures to prevent adversarial attacks
from ever occurring. This involves adversarial training [140-143], in which the model is trained on adversarial
examples to improve its robustness. These techniques include known adversarial examples during adversarial training
[141] or hybrid adversarial instances [141]. In addition, the use of a regularization [140, 143] also provides detection
models to better protect them from adversarial attacks. Other proactive defense strategies include refactoring and data
preprocessing to eliminate hostile perturbations. It includes a feature-based pre-processing [145-147], but in
comparison, adversarial training provides better defense than refactoring-based techniques. In contrast, passive
defense entails detecting and mitigating adversarial attacks after they have been launched. This may involve
employing anomaly detection or post-processing techniques to determine and eliminate adversarial perturbations from
the inputs [141, 148-150, 152, 153]. Both proactive and passive defenses have benefits and drawbacks. Proactive
defense has the benefit of being able to prevent adversarial attacks, but its implementation may be time- and resource-
intensive. Passive defense, on the other hand, can be more effective and less resource-intensive, but it does not prevent
adversarial attacks and may only mitigate their effects. In general, the choice between proactive and passive defense
is determined by the needs and resources of the system. Passive defense may be more suitable for systems with limited
resources and low overhead, whereas proactive defense may be more suitable for systems requiring high security and
robustness.

11 Evaluation and perceptual similarity measures

This section describes the perceptual similarity measures used in the reviewed papers to quantify the similarity
between perturbed and original images. Most of the reviewed papers utilized the L-Norm (Lo, L2, L) distance metrics
to measure the extent to which the adversarial example is different from the original image. However, a few papers
also used other metrics, including distortion score, perceptual image patch similarity (LPIPS), Fréchet Inception
Distance (FID), etc.

11.1  Attack success rate (ASR)

The attack success rate [157] is a metric used to assess an adversarial attack's effectiveness as the percentage of times
the attack successfully changes the model's prediction. This metric is a useful tool for providing insight into the
performance of adversarial attacks, as well as potential measures that can be taken to mitigate the threat of such an
attack. ASR can be computed as:

(Number of Adversarial Examples Correctly Classified)
ASR = (19)

(Total Number of Adversarial Examples)

11.2 Equal error rate (EER)
The EER [158] is the intersection of the false acceptance rate (FAR) and the false rejection rate (FRR) on the ROC
curve. The EER quantifies the compromise between the FAR and FRR. The greater the performance of the biometric
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system, the lower the EER. The EER can be calculated as the value at which the FAR and FRR are equal or by
interpolating between the two closest points on the ROC curve.

EER = (FAR-;—FRR) (20)

11.3 L-Norm

L-norm is used in adversarial learning to measure the dissimilarity between the original and adversarial samples as
well as to evaluate the robustness of a model [159]. Choosing an appropriate L-norm can effectively minimize the
perturbation while still producing an incorrect prediction. The L-norm is easy to optimize and can be used to limit the
size of adversarial perturbations to make them more realistic and less likely to be found. The formula for the L-norm
in adversarial learning is:

minimize ||x" — x||p,s.t.f(x)! =y (21)

Where x is the original input, x" is the adversarial input, f(x) is the model's prediction for input x, y is the target label
for the adversarial example, and p is the order of the L-norm. This formula is the mathematical expression of the trade-
off between model accuracy and the degree to which an adversarial example can be generated from a given input. This
equation tries to find the smallest change (as measured by the L-norm) that can be made to the original input x to make
an adversarial input x'that is different from the target label y.

11.4 Similarity score

The similarity score is determined by calculating the difference between the original and adversarial inputs. In other
words, a higher similarity score implies that the adversarial attack has been successful in fooling the model, and a
lower score indicates that the model has been robust against the attack [160]. The equation for the similarity score can
take many forms, such as L-norm distance, cosine similarity, etc., depending on the specific task and the type of input.
Consequently, choosing the appropriate similarity score for each task and input type is important. The L-norm distance
between the original input and the adversarial input is often used as a basis for the similarity score equation and can
be computed as:

1 — [l = x|

Similarity Score = T

(22)
where x is the true input, x' is the adversarial input, and L. (x) is the norm of x. Another example is the cosine
similarity, which is calculated as:

L. . (xr *x)
= ——— 2
Similarity Score TETETE) (23)
where x and x' are inputs and L2 norms of the original and adversarial inputs, respectively; * is the dot product; and
[|x|| and ||x'|| are the L2norms of x and x'.

11.5 Distortion score

The distortion score in adversarial machine learning is a measure of how much the original input has been changed to
create the adversarial input [161]. It is used to evaluate the success of an adversarial attack and to measure the
robustness of a model against adversarial examples. Typically, the distortion score is calculated as a scalar value, with
higher values indicating more distortion and lower values indicating less. One common equation for the distortion
score is based on the L.-norm distortion score, which is calculated as:

IIxr = x|1
I12¢112

Distortion Score = (24)
where X is the original input, x' is the adversarial input, and ||x||? is the L.-norm of the original input. Another example
is the Li-norm distortion score, which is calculated as:

Distortion Score = % (25)
where x is the original input, x' is the adversarial input, and ||x||* is the Li-norm of the original input.
11.6 Fréchet inception distance (FID)
Fréchet Inception Distance (FID) is a metric used to measure the similarity between two sets of images in adversarial

machine learning [162]. It is based on the idea that a pre-trained network can be used to compare the feature
representations of the images in the two sets. The Fréchet distance is a measure of the similarity between two
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multivariate Gaussian distributions. FID only compares the feature representations of the images and does not account
for the content or semantic information of the images.

2 1
FID = ||x1 - x2||2 + Tr((C,C3) — 2(C,1C3)2) (26)

11.7 Mean squared error
Mean Squared Error (MSE) is a metric used to measure the difference between original images and adversarial images
[163]. This loss function is frequently employed in regression analyses. The MSE can be calculated as:

(MSE) = = ¥, (' — x)? (27)

The square of the difference between the original and adversarial data is denoted by (x' — x)?2, where N is the total
number of data points and x and x' are the original and adversarial data, respectively.

11.8 Peak signal-to-noise ratio

In adversarial machine learning, the peak signal-to-noise ratio (PSNR) is a method to compare the quality of a
reconstructed image to the quality of the original image [164]. The PSNR is determined by dividing the maximum
possible signal power by the maximum possible noise power. PSNR can be computed as:

Average PSNR = 20 * logl0(MAX) — 10 * log10 (MSE) (28)

Where MAX is the pixel's maximum value, MSE is the mean squared error between the original and adversarial image,
and log10 is the base 10 logarithm.

11.9 Structural similarity index measures

In adversarial machine learning, the Structural Similarity Index measures (SSIM) is the similarity between two images
in terms of structural information and luminance, contrast, and structure [165]. It is a perception-based method that
considers image degradation as a perceived change in structural information, as opposed to pixel value changes. SSIM
can be computed as follows.

SSIM = (Zﬂxﬂy+cl)(20'xy+(:2) (29)

(2u3+ u3 +c1)(20%+ 03 +C3)

SSIM formula computes brightness, contrast, and structural similarities by using the means (u), standard deviations
(0), and covariance (oy,) of two images x and y. To avoid division by zero, constants (C) values are also added.

11.10 Normalized mean error
Normalized Mean Error (NME) is a metric used to measure the dissimilarity between two images, it compares the
normalized pixel values of the two images and calculates the mean error between them [166]. The NME is calculated
as the average of the absolute differences between the pixel values of the two images divided by the maximum value
of the pixel as shown in Eq. (26).

(mp) = &y, oA (30)

NME compares the pixel values of two images by determining the sum of absolute differences divided by the highest
pixel value (d). NME values range from 0 to 1, with O representing perfect similarity and 1 representing total
dissimilarity.

12 Open issues, future direction, and recommendations

Adversarial attacks, anti-forensics using GAN based approaches and defenses play a crucial role in the endless war
between deepfake generation and detection. While considerable progress has been made in both the generation and
detection of deepfakes, there are still limitations and challenges that must be overcome. Deepfakes, for instance, may
be generated with high precision, especially given access to a massive amount of diverse training data, but even a
small watermark may disrupt the generative process. Additionally, deepfake detection methods can be deceived by
small perturbations or changes in parameters. The employment of adversarial attacks can easily fool deepfakes
generators and detectors. In this section, we discuss the limitations of existing research and recommendations for
continued efforts.

12.1 Robustness of detectors against combined adversarial and anti-forensics attacks
As technology advances, adversarial attacks pose a significant threat to the security and integrity of deepfake
generators and detectors. To mitigate this threat, researchers introduce anti-forensics and adversarial attacks to their
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systems as penetration testing to enhance the generalizability of these systems. However, existing adversarial attacks
have various limitations, i.e., transferability, high dependency on model knowledge, limited multi-modal capability,
high computational cost, limited realism and interceptability, domain dependency, lack of defense awareness,
temporal inconsistency in video, vulnerability to detection, lack of adaptability to GAN-based generation, etc. Some
of the limitations [67] and potential future directions of adversarial attacks on deepfake detectors and generators
include adversarial training, GANSs, and transfer learning. The detectors need to be robust against the combined effect
of anti-forensics and adversarial attacks, and multi-order anti-forensics attacks.

12.1.1 Evade generalization of GANs

GANs and VAEs are powerful tools to generate deepfakes, however, adversarial attacks can be launched to undermine
their generalizability by changing the parameters of the generator or discriminator module, especially in white-box
scenarios. White box attacks can alter the generalizability of these models and lead to a generation of disrupted
deepfakes. Additionally, adversarial attacks on GANSs [83] are susceptible to adaptability and transferability problems.
Attacks designed for one specific GAN architecture often fail when applied to a different type of GAN, limiting their
broader applicability. This architectural dependency reduces the real-world effectiveness of such attacks, especially
in diverse environments where multiple generative models may be deployed. Therefore, a key future direction in
adversarial research is the development of transferable attack strategies that can degrade the performance of a wide
range of GANs regardless of their specific design. Such advancements could be instrumental in building more resilient
detection systems, as understanding how different models fail under pressure is critical to anticipating and mitigating
their weaknesses. Ultimately, improving the adaptability and reach of adversarial techniques not only tests the
robustness of current generative models but also guides the creation of more secure and trustworthy deepfake
generation and detection frameworks.

12.1.2 Watermarks and tags

Watermarks and tags [10, 11, 167] on input samples can also cause the deepfake generators to create undesirable
output. One possible direction can be the use of imperceptible watermarks, nearly invisible markers that are embedded
in visual or audio data in a way that is undetectable to human perception but can disrupt deepfake generation models.
These watermarks are particularly valuable because they are difficult for the generator to detect and remove, making
it significantly harder for the model to produce convincing forgeries. It would be more difficult for the deepfake
generator to avoid the watermark and produce realistic outcomes. As a result, imperceptible watermarks provide a
powerful instrument in the continuing battle against deepfake technology. Unlike traditional watermarks,
imperceptible versions are designed to blend seamlessly with the input data while still affecting the internal workings
of generative models. Their subtle interference can degrade the quality of synthesized content, making it easier to flag
manipulated media. This approach not only hinders the generator’s ability to create realistic outputs but also offers a
more robust layer of defense in the arms race between deepfake generation and detection. Furthermore, the integration
of imperceptible watermarks could enhance existing detection mechanisms by acting as passive markers for
identifying synthetic media. Their presence can support forensic analysis and contribute to the development of more
trustworthy media authentication systems. Overall, imperceptible watermarks represent a strategic, low-cost, and
scalable method for disrupting deepfake generation while reinforcing the integrity of digital content. They hold great
potential as a defensive tool in both research and real-world applications aimed at combating synthetic media threats.

12.1.3 Adversarial training as an attack

Adversarial training as an attack has shown promising results, but it has some limitations, such as the possibility of
overfitting, in which the model becomes extremely specific to the training data and cannot generalize effectively to
new data. This inability to transfer adversarial examples generated during training [141] to attack other models reduces
its impact. The adversarial examples generated through training often lack transferability, they may succeed against
the model they were trained on but fail to deceive other architectures, reducing their practical effectiveness in black-
box or real-world settings [35]. Additionally, adversarial training is computationally expensive. It requires iterative
optimization processes like Projected Gradient Descent (PGD), significantly increasing training time and resource
demands [168] . Despite these challenges, adversarial training remains a viable direction for creating more potent
attack strategies. Future research could focus on developing unsupervised adversarial training methods that do not
rely on labeled data, potentially expanding the attack surface and applicability across domains [169].

Furthermore, hybrid techniques that combine adversarial training with generative models such as GANSs or diffusion
models may offer new pathways for crafting robust and highly transferable attacks [170].This underscores the
importance of continued exploration into adversarial training as both a threat vector and a benchmarking tool for
robustness.
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12.1.4 Model-specific attacks

Model-based attacks can be created to exploit weaknesses in the architecture and settings of the deepfake detection
model. These attacks can evade the model's security and cause it to inaccurately classify input samples. In a model-
based attack, the attacker constructs a surrogate model [171] using the target system and then produces input data
intended to reclassify or attack the target system; however, these models are not transferable. The development of
transferable surrogate models is a potential future direction in adversarial attacks. In addition to model transfer, key
areas of emphasis include addressing domain adaptation challenges and improving attack optimization efficiency.

12.1.5 Black box attack

Black box attacks [99] test a model's robustness against adversarial cases or generate novel attacks for real-world
scenarios. In these attacks, the attacker typically has no information about the target model other than its output in a
query-based setup. Several current techniques calculate attack transfer rates on pre-trained models to generate
perturbations in those models. This suggests that they possess full awareness of the target model's training data and
thus violates the definition of a black box setup, which requires that the target model be trained on unobserved data
and have an unknown number of output labels. True black box testing remains an unexplored area.

12.1.6 Multi-modal attack

Adversarial attacks on multimodal systems, process and integrate information from more than one modality, pose
unique challenges and risks amplifies [172]. Although they provide enhanced performance by leveraging
complementary signals, their multimodal nature inherits vulnerabilities of all the modalities, and ultimately, the
adversarial threat.

Future multi-modal adversarial attacks [173] against multi-model systems will become increasingly frequent and
complex, and attackers will be capable of exploiting flaws in existing models to deceive those systems. For multi-
model (audio-visual) detectors, perturbation can be added to either audio or video to fail the detection capability. As
a result, the multi-model system will become less dependable and trustworthy, and organizations will need to be more
cautious to ensure their systems are adequately protected against adversarial threats.

12.2 Defense

A feasible way to protect deepfake generators and detectors from adversarial attacks is to develop more generalizable
and resilient defensive methods. The future of defense against adversarial attacks on deepfake generators and detectors
is likely to involve a combination of multiple approaches. Some potential strategies include adversarial training,
ensemble methods, which are discussed. in this section.

12.2.1 Adversarial training as defense

Adversarial training has emerged as a defense mechanism against adversarial attacks. In this method, the model is
trained on both clean and adversarial instances to increase its resistance to future attacks. The following are potential
future approaches for adversarial training [140-143] as a defense, as the field continues to progress. As adversarial
attacks become increasingly complex, the efficacy of present adversarial training approaches will decline.
Additionally, Bai et al. [174] highlighted the issue of generalization in adversarial trained systems on both unperturbed
and perturbed test data scenarios, and on unseen attacks as well. Thus, future research can focus on developing more
sophisticated adversarial training systems that can protect against a broader range of attacks with improved
generalizability. Adversarial training has shown potential, but its efficacy in real-world conditions remains
undetermined. Future studies should evaluate the efficacy of adversarial training in practical applications.

12.2.2 Deep reinforcement learning and game-theoretic approaches

Deep reinforcement learning can be used to defend against adversarial threats by developing a model that can
withstand such malicious inputs. In [175], an adversarial attacks resistant reinforcement learning framework, coupled
with Xception and Inception-ResNetv2, was proposed to counter deepfakes. In addition, game theory [16] can be used
as a strategy that utilizes rewards or penalties as feedback signals to learn the optimal response to adversarial attacks.
This strategy can be used to effectively recognize disrupted inputs and defend the system from harm or disruption
caused by attackers. Another direction is the creation of more interpretable and explicable deep RL and adversarial
ML models, which is another key direction. Interpretable models can provide insights into how they make decisions
and enhance trustworthiness and credibility. Additionally, explainable models can aid in identifying and mitigating
potential weaknesses in adversarial attacks.

12.2.3 Proactive defense

A proactive defense technique [135] can also be introduced before training models to detect adversarial examples,
preventing the production of perturbed instances. Existing works have employed proactive defense methods using
identity watermarks [83, 176, 177]. One potential future direction of proactive defense can be the use of explainable
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Al to address this issue by revealing how models make decisions and highlighting flaws that attackers can exploit.
This can be useful to protect the system from any attack. Another future direction can be the use of hybrid strategies,
which include the implementation of various defense mechanisms, including feature fusion, decision fusion, and
adversarial training, to protect against adversarial attacks better than using individual defensive mechanisms. More
advanced strategies for integrating and optimizing these mechanisms may be developed in the future.

12.2.4 Decoy mechanism as defense

Deepfake detector attack resilience can be increased through the use of decoy techniques [17]. Adversarial training,
defensive distillation [18], gradient masking, input transformation, ensemble approaches, and feature squeezing can
all be used as decoy mechanisms. Using multiple deepfake detectors in parallel and combining their outputs as an
ensemble method [105] can be used to enhance the system's accuracy and robustness. Another direction can be an
exploration of feature fusion and decision fusion, as these methods can be explored as an effective approach to
defending against adversarial attacks, as they mix several models with diverse architectures and parameters. This
builds more robust protection than any single model can achieve by making it difficult for adversaries to identify the
same flaws in all of them.

12,25 Attack-resistant automatic speaker verification and face recognition systems

Several end-to-end and unified countermeasures have been developed against audio [141] and visual deepfakes [127],
to protect automatic speaker verification and face recognition systems. However, these countermeasures protect
against specific types of attacks and are susceptible to other adversarial attacks [166-168]. There is a need to develop
a unified attack-resistant system that not only protects against audio-visual deepfakes but is also resistant to adversarial
attacks. Future research should focus on the development of more effective countermeasures to enhance the robustness
of anti-spoofing systems, face recognition systems, and deepfake detectors against adversarial attacks.

12.2.6 Fusion-Based Defensive Techniques

Fusion-Based defensive approaches are emerging as a promising strategy for improving the robustness and
generalizability of deepfake detectors. Instead of relying on a single model or modality, these frameworks defend
against adversarial attacks by combining complementary spatial, temporal, and frequency cues or fusing output from
several networks. Recent studies [54, 155] show that generative models as defense, and multi-model fusion and
knowledge distillation can improve resilience to unseen manipulations. Future research should look into hybrid fusion
of visual, aural, and semantic modalities to develop adaptive and trustworthy deepfake defense systems.

12.2.7 Spatiotemporal Defense Technigques

Spatiotemporal and holistic deepfake defense methods [178] have emerged as highly effective strategies for detecting
both traditional 2D GAN-generated forgeries and advanced 3D neural-rendered deepfakes. Unlike spatial-only
detectors that analyze individual frames, these approaches integrate complementary spatial, temporal, and joint
spatiotemporal features to capture subtle inconsistencies in motion, dynamics, and facial geometry that generative
models struggle to reproduce consistently. Recent works [178-181] demonstrate that combining embeddings from
multiple representation. dimensions significantly improves robustness, generalization, and resistance to unseen
manipulations. Transformer-based fusion architectures further enhance detection accuracy while remaining
lightweight and computationally efficient. Future research should explore holistic multi-modal fusion including visual,
motion, audio, and semaritic signals to build adaptive, scalable, and resilient deepfake defense frameworks capable of
countering rapidly evolving generative models.

12.2.8 Testbed against adversarial attack

It is necessary to develop a testbed for gauging the robustness of deepfake models against adversarial attacks. This
can be a powerful resource for analyzing the integrity of detectors against adversarial attacks, but so far there is no
testbed or penetration testing tool available to even individuals, let alone multiple types of adversarial attacks. By
replicating actual attack scenarios, penetration tests can reveal system vulnerabilities that can be exploited by
malicious actors. This knowledge can then be utilized to strengthen existing defenses or develop new ones to protect
against these threats more effectively. Additionally, penetration testing helps developers become more aware of the
possible threats posed by attackers and allows them to rehearse response processes before actual crises.

13 Conclusion

This paper has presented a detailed review of existing adversarial attacks and defenses on audio-visual deepfake
generation and detection approaches, analyzing their strengths and shortcomings. The field of deepfake creation and
detection is in a continuous process of evolution, with new methodologies and strategies being created to address the
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most recent deepfake-related challenges, but adversarial attacks on these methods hinders the trustworthiness of these
methods. In addition, the development of effective and robust deepfake detection methods will continue to be a crucial
area of research. Lastly, a comprehensive study on the limitations and potential for future research in this field is also
presented. Addressing these challenges can only increase the efficacy of deepfake generative and detection models.

This thorough research has highlighted the rapid advancement and complex issues of adversarial attacks and defences
in deepfake technology. The domain continues in its expansion, driven by the uncompromising momentum of
innovation and the essential need for reliable detection techniques. We anticipate that the insights and criticisms
included in this study will enhance existing research and stimulate the interest of emerging researchers in this
intriguing field. We aspire that the diverse array of options presented will stimulate an additional influx of research
that expands the limits of deepfake generation and detection, enhancing the robustness and dependability of future
systems.
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