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Highlights 

• We review adversarial and anti-forensic attacks on deepfake detection systems. 

• We cover fusion-based and decoy-based strategies for defense against such attacks. 

• We analyze trust factors: fairness, transparency, privacy, and security in detection. 

• We identify key challenges in building robust audio-visual deepfake detectors. 

• We provide a roadmap to enhance trust in deepfake detection under adversarial threats. 
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Abstract---As the technology behind deepfakes advances, detecting audio-visual deepfakes becomes more and more crucial, and 

the rise of traditional and generative AI-based adversarial/anti-forensics attacks and generative AI-based anti-forensics attacks on 

deepfake detection technologies is a growing concern. Securing applications against adversarial and generative AI-based attacks is 

critical for accurate and robust deepfake detection tools. Therefore, this paper provides a comprehensive overview of various 

adversarial and generative AI-based anti-forensic attacks, which represent one of the core elements of trustworthiness alongside 

transparency, explainability, and fairness, as well as defensive countermeasures for audio-visual deepfake generation and detection. 

It covers topics such as adversarial attacks on deepfake detection algorithms and defensive methods, including model fusion and 

decoy-based approaches, to mitigate these threats. Although extensive research has been conducted in recent years on adversarial 

attacks and defense on deepfake detection, there have been few attempts to compare existing work qualitatively and quantitatively. 

This paper aims to help identify and address key issues that need to be considered to bring transferable adversarial attacks and their 

countermeasures particularly through techniques such as generative defense, knowledge distillation, and beyond.  

 

Keywords: Adversarial attack, Audio-visual Deepfakes, Deepfake detector, Deepfake Generator, Passive defense, Proactive 

defense. 

1 Introduction 

Alarming advancements in generative adversarial networks (GANs), autoencoders (AEs), and diffusion models pose 

an existential threat to the authenticity and credibility of audio-visual content due to their ability to create remarkably 

convincing deepfakes. These algorithms, trained on large, real multimedia corpora, can synthesize multimedia content 

that is indistinguishable from authentic multimedia. The synthetic media generated through these methods has been 

used for a variety of purposes. For instance, deepfakes have been employed to enhance educational content with 

personalized, engaging, and accessible materials [1]. On the other hand, the technology has also been used for 

impersonation and the creation of malicious content [2], and voice-based attacks on speakers and speech verification 

systems [3]. The continuing advancement of deepfake generation technologies poses an existing and evolving threat 

to existing countermeasures. A vicious cycle exists, where countermeasure creators develop new methods for detection 

and malicious actors respond, using new generative algorithms or confusing the detectors by combining the power of 

deepfake generation models and adversarial techniques simultaneously. This convergence of generation technologies 

and adversarial attacks highlights the critical need for continuous innovation in detection and defensive strategies to 

safeguard against these increasingly sophisticated threats [4].  

Because deepfake generation has an associated risk of misuse, research must also focus on the development of 

techniques for the detection of synthetic media [5, 6]. Therefore, researchers must continue to explore both the creation 

and detection of deepfakes to better understand their capabilities and thwart malicious actors. Despite aiming for 

robustness, deepfake detection methods remain vulnerable to adversarial attacks and anti-forensic attacks using 

generative attacks. This results in inaccurate output from existing detectors. Even techniques that are not purely 

                  



designed for malintent may be repurposed for adversarial attacks. In the near future, the power of multi-order deepfake 

generation will pose new threats to detectors. For instance, swapping a face multiple times, a process that may be used 

to enhance deepfakes for legitimate purposes [7], also generates imperceptible perturbations in audio and visual media, 

resulting in deepfakes that are deceptive. Similarly, the combined effect of deepfakes and replay attacks can make the 

job of an automated speaker verification system difficult [8]. Such methods have the potential to make malicious 

deepfakes appear real and, therefore, able to evade detection. When used maliciously, they decrease the ability to trust 

or rely on deepfake detection systems. 

As attackers become more sophisticated in their attempts to evade detection, the number of potential attacks increases. 

Exploiting the weaknesses of AI-based models, attackers can create new, undetectable threats. These attacks can take 

many forms, for example, adversarial example generation and reconstruction-based methods [9], which can be 

difficult to detect and mitigate. Even subtle changes can render existing deep learning-based detectors useless. GANs 

are vulnerable to adversarial attacks on the discriminator network by changing the loss function, input dataset, or 

architecture through watermarks and tags [10, 11] The attacks themselves may be imperceptible, but the resulting 

model errors are catastrophic. They cause the algorithms to misclassify, rendering the solutions powerless against such 

threats. Therefore, the creation of trustworthy detection methods demands a more integrated approach that considers 

a variety of variables, such as fairness, privacy, security, explainability, and transparency [12-15].  

Several strategies have been proposed in the research to protect deepfake (synthetic media) detectors against 

adversarial attacks. Examples include training the model on adversarial instances, incorporating an adversarial loss 

term into the training objective [16, 17], and employing defensive distillation [18]. However, adversarial attack 

resistance for generators and detectors depends on several factors, e.g., the nature of the attack, the model's 

architecture, and the implementation of safety measures against potential threats. In addition, a deep understanding of 

the adversarial attack surface is a prerequisite for the development of robust synthetic media generation and detection 

approaches.  

Taking this into consideration, the primary aim of this survey paper is to provide a clear and organized classification 

of adversarial attacks on synthetic media generation and detection approaches and summarize the defensive 

mechanisms and evaluation criteria that are provided in the research. Going further, because an extensive classification 

system related to this problem does not exist, we introduce a taxonomy for a better understanding of the field and to 

help ongoing research to establish relationships between various overlapping components. The scope of this 

systematic literature review is not confined to visual content; it also provides a detailed review of adversarial attacks 

on synthetic audio generation and detection methods. This survey will serve as a valuable resource for researchers and 

practitioners interested in the field of adversarial machine learning and security. The following are the key 

contributions of this work:  

i. This survey paper facilitates researchers by creating a comprehensive taxonomy of the diverse forms of 

adversarial attack and defensive techniques that can be employed on generators and detectors of audio-

visual deepfakes. 

ii. This survey provides an overarching view of the latest improvements, trends, and challenges in the field 

of adversarial attack and the defense of deepfake generators and detectors. 

iii. This survey paper identifies promising directions for future research.  

The rest of the paper is organized as follows: Section 2 describes the literature collection and selection criteria. Section 

3 overviews the existing surveys and highlights how this study is important and timely. Section 4 presents adversarial 

terminologies. Section 5 gives an overview of adversarial attacks. Sections 6 and 7 discuss adversarial attacks on 

visual deepfake generators and detectors, respectively. Section 8 presents adversarial attacks on voice recognition 

systems. In Section 9, countermeasures against adversarial attacks on visual deepfake generation and detection are 

discussed. In Section 10, countermeasures against adversarial attacks on audio signals are discussed. Section 11 

presents evaluation and perceptual similarity measures. In Section 12, we summarize the key findings and discuss 

future directions for both attack and defense of deepfake technologies. To enhance clarity and guide the readers 

through the structure of this survey, Fig. 1 presents a logical overview of the relationships among the main sections 

of the paper.  

                  



 

2  Literature collection and selection criteria 
This survey provides a comprehensive review of the current research on adversarial attacks on deepfake generators 

and detectors, specifically focusing on studies published from 2018 till January 2025. The publishing counts have 

experienced substantial growth in recent years along with a rise in the popularity of the deepfake term in Google 

searches (Fig. 2). Specifically, the graphic exhibits Google trends data indicating the increased frequency of internet 

searches for “deepfake” and associated phrases over previous years. The reviewed papers focus on adversarial attacks 

and approaches to counter adversarial attacks on visual and audio deepfake generation and detection methods. A 

detailed description of the methodology and protocols used to conduct the survey is provided in Table 1. 

3 Existing surveys  
Here we collect and compile literature from various recent surveys in the field of deepfake technology. Some surveys 

concentrate solely on deepfake generation, while others examine detection, and a few address both aspects [19]. 

However, a major issue remains, i.e., most existing surveys do not thoroughly examine the adversarial strategies used 

in deepfake attacks or the corresponding countermeasures, leaving this critical dimension underexplored. For example, 

Rana et al. [20] concentrated exclusively on deepfake detection, examining a limited range of literature from 2018 to 

2020, encompassing 112 papers over 19 pages, and omitting the broader dimensions of generation and adversarial 

dynamics. Pei et al. [21] and Croitoru et al. [22] addressed deepfake generation and detection, yet they neglected to 

discuss adversarial attacks or defensive strategies. Li et al. [23] conducted a comprehensive review of 200 papers, yet 

limited their analysis to deepfake detection, neglecting the aspects of generation and adversarial issues. Pham et al. 

[24] examine defensive strategies akin to our survey; however, their focus is confined to deepfake speech detection. 

Heidari et al. [25] and Gambin et al. [26], presented studies that concentrate specifically on detection and trends in 

deepfake technology, respectively. 

Fig. 2. Google trends graph illustrates the projected search interest for the term "deepfake" on Google from 2018 to 2025 [27].  

 

Fig. 1. Attack-to-defense taxonomy of the survey, illustrating adversarial attacks on visual deepfake detection, visual 

generation, and audio-based recognition systems, along with their associated countermeasures. 

                  



Table 1. Detailed description of protocols representing data collection and analysis.  
Preparation Protocol  Description 

Purpose 

• Offer a brief overview of the existing state-of-the-art adversarial attack generation methods and identify 

potential gaps. 

• Present a systematic review and structure to the adversarial attacks on the deepfakes detection and 

generation methods. 

• Analyse the defensive techniques to overcome adversarial attacks using deepfakes detection and 

generation methods. 

• Investigate the open challenges that exist in the domain of adversarial attacks, deepfake detection, and 

generation.  

Data source  Google Scholar, Springer Link, ACM digital library, IEEE Explorer. 

Query 

The following queries were used on the above-mentioned data sources for the collection of research papers: 

Adversarial attacks/ Anti-forensics attacks/ Adversarial attacks and deepfakes/ Adversarial attacks and 

deepfakes detection/ Adversarial attacks and audio spoofing detection/ Adversarial attacks and deepfakes 
generation/ Adversarial attacks and GANs and deepfakes/ Anti-forensics attacks and deepfakes/ Anti-

forensics attacks and deepfakes detection/ Anti-forensics attacks and deepfakes generation/ Anti-forensics 

attacks and GANs and deepfakes/ Anti-spoofing techniques and adversarial attacks/ Black box attacks and 
deepfakes/ White box attacks and deepfakes. 

Method 

The categorization of the literature was as follows:  

• Existing adversarial attack generation methods (including white box and black box attacks) and 

their taxonomy. 

• Adversarial attacks on deepfake detectors and generation methods. 

• Adversarial attacks on audio detectors and systems. 

• Countermeasures against adversarial attacks on visual and audio deepfakes detection and 

generation methods. 

• Discussion of the limitations, knowledge gap, and future directions in the domain of adversarial 

attacks on audio and visual deepfakes detection and generation methods. 

Size  
A total of 130 relevant papers were retrieved using the queries mentioned above. We further refined and 

selected the literature relevant to the subject of our survey.  

Study type/inclusion and 
exclusion 

The peer-reviewed journal papers, and articles of conference proceedings, were given more importance. 
Additionally, a few articles from archive literature were also considered. 

.  

Our survey addresses this gap, specifically, the lack of comprehensive analysis of adversarial attack techniques and 

their defensive strategies in both generation and detection, by examining the precise strategies for attack and defence 

against these attacks and offering a thorough analysis of the adversarial dimensions in audio, image, and video 

deepfake detectors and generators. By concentrating on this pivotal domain, our research provides a comprehensive 

understanding of the challenges and solutions associated with combating deepfake technology, thereby constituting a 

significant contribution to the field. Our research encompasses a significant timeframe from 2018 to 2025. This allows 

us to track the evolution of deepfake technology and the corresponding advancements in detection and prevention 

methods over the years. By analyzing trends and patterns over this period, we can offer valuable insights into the 

future trajectory of deepfake technology and potential strategies for mitigating its negative consequences. A 

comprehensive summary of previously reviewed surveys in deepfakes are presented in Table 2. 

 

Table 2. A comprehensive summary of previously reviewed surveys in deepfakes. Here, “✔” denotes that the topic was covered 

in the survey, whereas “–” indicates that it was not addressed. 

Title Year 
Deepfake 

Generation 
Deepfake 

detection 

Adversarial 

Attacks on 

Visual 

Deepfake 

Detectors 

Adversarial 

Attacks on 

Visual 

Deepfake 

Generators 

Adversarial 

Attacks on 

audio 

deepfake 

detectors 

Defensive 

proactive 

and passive 

approaches 

Venue 
Year 

Convergence 

Number 

of Papers 

Reviewed 

Number 

of Pages 

Our 2025 ✔ ✔ ✔ ✔ ✔ ✔ 
Elsevier 

(INF) 
2018-2025 130 49 

Li et al. 

[23] 
2025 - ✔ - - - - ACM 2023-2025 200 38 

Liz-

Lopez 

[19] 

2024 ✔ ✔ - - - - Elsevier 2018-2023 66 37 

Pham et 

al. [24] 
2024 - ✔ - - - - arXiv 2015-2025 200 25 

Croitoru 

et al. [22] 
2024 ✔ 

✔ - 
- - - Springer 2020-2021 100 32 

Pei et 

al.[21] 
2024 ✔ ✔ - - - - arXiv 2021-2023 50 28 

Heidari et 

al. [25] 
2023 - ✔ - - - - Wieley 2020-2023 60 50 

Gambin 

et al. [26] 
2023 ✔ 

- - 
- - - Springer 2020-2023 100 32 

                  



Rana et 

al. [20] 
2022 - 

✔ - 
- - - IEEE 2018-2020 112 19 

4 Deepfake Generation, Detection, and Adversarial Attacks 

4.1 Deepfake Generation 

Deepfake generation refers to the process of synthesizing realistic but manipulated data using deep generative models. 

This data can include visual, auditory, textual, or multimodal content. Formally, let 𝑋𝑟  denote the distribution of real 

data samples. A generator 𝐺𝜃: 𝑍 → 𝑋𝑔, parameterized by 𝜃, maps latent variables 𝑧 ∼ 𝑝𝑧(𝑧) from a prior distribution 

to generated samples 𝑥𝑔. The objective of the generator is to approximate the real data distribution such that: 

                                                                      𝑝𝑔(𝑥) ≈ 𝑝𝑟(𝑥)                                          (1) 

This goal is typically achieved through generative frameworks such as Generative Adversarial Networks (GANs), 

Variational Autoencoders (VAEs), or diffusion models. In practice, 𝐺𝜃 learns to produce synthetic samples that are 

perceptually indistinguishable from authentic data across one or more modalities. The fidelity and diversity of these 

generated outputs are often evaluated using quantitative metrics (e.g., FID, precision-recall) or human perceptual 

studies. 

4.2 Deepfake Detection 

Deepfake detection aims to identify or localize synthetic or manipulated data to distinguish it from authentic samples. 

A detector 𝐷𝜙: 𝑋 → {0,1}, parameterized by 𝜙, is trained to output 0 for genuine data and 1 for fake data. The detection 

objective can be expressed as: 

    max 
𝜙

 𝔼𝑥𝑟∼𝑝𝑟(𝑥)[log (1 − 𝐷𝜙(𝑥𝑟))] + 𝔼𝑥𝑔∼𝑝𝑔(𝑥)[log (𝐷𝜙(𝑥𝑔))]                (2) 

 

Detectors may utilize unimodal or multimodal cues (e.g., visual, auditory, textual, or behavioral signals) to identify 

inconsistencies introduced during synthesis. These inconsistencies can manifest as spatial artifacts, temporal 

discontinuities, semantic mismatches, or other modality-specific anomalies. Advanced detectors also incorporate 

attention mechanisms or feature-level fusion to enhance cross-modal analysis. 

4.3 Adversarial Relationship between Generators and Detectors 

Deepfake generation and detection inherently exist in a mutually adversarial framework. Generators (𝐺𝜃) evolve to 

produce increasingly realistic synthetic data, while detectors (𝐷𝜙) adapt to better recognize such manipulations. This 

adversarial interplay forms a dynamic cycle of co-evolution, similar to a minimax game: 
 

min 
𝜃

max 
𝜙

 𝔼𝑥𝑟∼𝑝𝑟(𝑥)[log (1 − 𝐷𝜙(𝑥𝑟))] + 𝔼𝑧∼𝑝𝑧(𝑧)[log (𝐷𝜙(𝐺𝜃(𝑧)))]           (3) 

 

Progress in generative modelling directly challenges detection systems, while advances in detection motivate the 

development of more sophisticated synthesis techniques. Understanding this evolving relationship is critical for 

studying adversarial robustness, generalization, and counter-forensic strategies in deepfake research. 

4.4 Adversarial and Anti forensic Attacks and Key Terminologies 

In this paper, we review adversarial and anti-forensic attacks in detail, including traditional adversarial methods such 

as FGSM [28] and PGD [29], as well as anti-forensic techniques based on GANs [30] and diffusion models [31]. For 

convenience, we use the terms “adversarial” and “anti-forensic” attacks interchangeably throughout the paper; 

however, the term adversarial attack is more commonly used in existing literature. Adversarial attacks involve the 

addition of perturbations to the input image that cause the models or classifiers to misclassify the input image. These 

perturbations are imperceptible for the human eyes but can fail the model to provide accurate results. After the deep 

learning models have been successfully employed in computer vision tasks, Szeged et al. [32] introduced the concept 

of adversarial attacks in 2014. The authors demonstrated that deep neural networks misclassify the test input image 

with high confidence if a little perturbation is added to it. A linear amount of undetectable noise was introduced to the 

original image as a perturbation, which failed the model to identify the correct class for a perturbated input image. 

The main terminologies that are widely used in the adversarial attacks research field are provided in Table 3, while 

the timeline of adversarial attacks is given in Fig. 3. This timeline indicates the most frequently used adversarial 

attacks in multidisciplinary fields.  

                  



The categorization of adversarial attacks on visual and audio content can be based on many factors, including the 

intention, knowledge, and authority of the adversary. Adversarial attacks can be divided into targeted and non-targeted 

attacks depending on the adversary’s intention; however, poisoning and evasion categorization of attacks are based 

on the adversary’s authority. Based on the adversary’s knowledge, adversarial attacks can be mainly classified as 

white box and black box. These attacks are briefly described in Table 3, and the taxonomy of adversarial attacks is 

presented in Fig. 4.  

5 Adversarial attack techniques 
In this section, we discussed adversarial attacks, focusing on commonly used white box and black box attack 

techniques. By examining these attack techniques, we gain a comprehensive understanding of the potential 

vulnerabilities they can exploit. The general framework of white box and black box attacks is given in Fig. 5 and Fig. 

6. Whereas Table 4 and Table 5 present the categories of white and black box attack approaches. 

 

Fig. 3. Timeline of adversarial attacks between 2013 to 2025. 

Fig. 4. Detailed categorization of adversarial attacks on deepfake detection systems. 

                  



Table 3. Comprehensive terminologies and detailed classification of adversarial attack types. 
Terms Description 

Terminologies 

Victim Model Model on which adversarial attack is performed. 

Adversarial Example Perturbated image used to fail the victim model. 

Adversary One who performs the adversarial attacks on victim models to fail them. 

Adversarial 
Perturbation 

Mechanism of modifying the original image to the perturbated image. It can be iterative or non-iterative. 

Adversary Knowledge Information known to the adversary about the victim model. 

Transferability 
Adversarial examples generated to fail one model can be utilized to invade another model. This characteristic of 

adversarial examples is referred to as transferability. 

Adversarial Attacks 

Targeted Attacks 
The adversary specifies a target label for the misclassified samples and tempts the model to assign the targeted label 

to the adversarial examples. 

Non-Targeted Attacks 
Adversary induces the model to misclassify perturbated images without specifying a target label with the intention 

to fail the victim model. 

Poisoning Attacks 
The adversary has the authority to inject fake/erroneous samples into the training dataset of the victim model, which 

can cause the model to provide incorrect predictions. 

Evasion Attacks 
To fail the victim model, the adversarial example is used as input since the adversary has no access to the victim’s 

model and its training data. 

Black Box Attacks 

Black box attacks are performed in the scenario where the adversary has zero knowledge about the victim’s model. 

Black box attacks are based on the transferable nature of adversarial examples. In such attacks, adversarial examples 

generated to fail the surrogate model are utilized for the victim model. 

White Box Attacks 
White box attacks are performed when the adversary has the perfect knowledge of the victim model, including the 
model’s architecture, parameters, gradients, weights, training data, and model output. Keeping in view such 

information, particularly gradient knowledge, the adversary generates an adversarial example to fail the model.  

Gray Box Attacks 

While performing gray box attacks, the adversary has limited knowledge (such as knowledge regarding training data, 
which is known, but the model architecture is unknown). This attack also relies on the transferability of adversarial 

examples. The adversary trains the surrogate model on the known training data to mimic the victim model. Using the 

surrogate model information, an adversarial example is generated to fail the victim model. 

5.1 White box attacks  

5.1.1 L-BFGS 

Szegedy et al. [32] was the first to attack the deep learning models using adversarial examples. This attack was named 

as limited memory broyden fletcher gold farb shanno (L-BFGS) attack. The adversarial examples I′ were generated 

via introducing a minimum perturbation þ to the input image I such that a small difference exists between I and I′. 

When classified using model M, the adversarial example was misclassified by assigning a target label L′. 

min‖𝐈− 𝐈′‖                                     s.t

M (𝐈′)= L′               where  𝐈′∈[0,1]
      (4) 

Here, 𝐈 and 𝐈′ denote the original and adversarial image vectors, respectively, with pixel values normalized in the range 

[0, 1]. To approximate the minimum perturbation, the L-BFGS algorithm was implemented with the following loss 

function. 

min 𝑐‖þ‖ + 𝑙𝑜𝑠𝑠 (𝐈′, 𝐿′)    𝑤ℎ𝑒𝑟𝑒 𝐈′ ∈ [0,1]    (5) 

In Eq. (5), c > 0 is a constant that controls the trade-off between minimizing the perturbation magnitude and the 

classification loss. The loss term loss(𝐈′, L′) is the cross-entropy loss between the model’s predicted probabilities for 

the adversarial image 𝐈′ and the one-hot encoded target label L′. 

Fig. 5. General framework of white box attack involves an attacker having full knowledge of the target system's architecture, 

design, and implementation details. 

                  



5.1.2 FGSM 

In 2015, Goodfellow et al. [28] demonstrated that neural networks were vulnerable to adversarial attacks because of 

their linear nature. They introduced the one-step fast gradient sign method (FGSM) to create an adversarial example 

with the gradient computed using backpropagation. Perturbation þ was generated via updating the gradient along the 

perturbation direction, i.e., a sign of gradient, at each pixel of input image I. For instance, the value of the gradient 

was increased if the gradient was positive, whereas, for a negative gradient, the value was decreased. In a non-targeted 

FGSM attack, the value of classification loss of the model was maximized, while in the targeted FGMS attack, the 

probability of target label 𝐿′ was maximized for the input image I via minimizing the loss between the predicted class 

of I and 𝐿′. The targeted FGSM attack was introduced in [33] to avoid the label-leaking problem of a non-targeted 

FGSM attack. The formulation to generate the non-targeted and targeted FGSM attacks is shown in Eq. 5 and Eq. 6, 

respectively. 

𝐈′ = 𝐈 +  𝜀 ∙  𝑠𝑖𝑔𝑛 (𝛁𝐈 loss( 𝐈, 𝐿))     (6) 

𝐈′ = 𝐈 −  𝜀 ∙  𝑠𝑖𝑔𝑛 (𝛁𝐈 loss( 𝐈, 𝐿′))     (7) 

where 𝜀 represents the amount of perturbation added and L indicates the actual label of image I. Increasing the 𝜀 will 

increase the misclassification rate at the expense of the perturbated image being significantly different from the 

original image and vice versa. 

5.1.3 Basic iterative attack (BIM)  

BIM [34] is the extended version of the FGSM attack, which iteratively introduced the perturbation and clipped the 

pixel values of the intermediate perturbated image at each iteration. The number of iterations was equal to min (ϵ+4, 

1.25ϵ). BIM updates the image slightly at each iteration and thus prevents notable changes in pixel values.  

𝐈𝑛+1
′ = 𝑐𝑙𝑖𝑝𝐈,∈{𝐈𝑛 

′ + ∝ ∙  𝑠𝑖𝑔𝑛 (𝛁𝐈𝑙𝑜𝑠𝑠(𝐈𝑛 
′ , 𝐿))}    (8) 

Here, ∝ represents the change in the value of each pixel on each iteration (in a BIM attack ∝ = 1, meaning the pixel 

value is changed by 1 each iteration), the operator “.” denotes element-wise multiplication between the scalar step size 

α and the sign of the gradient vector, indicating that each pixel's update is scaled by α times the sign of its gradient 

component.  

5.1.4 Projected gradient descent (PGD) attack 

Madry et al. [29] introduced the variant of BIM named projected gradient descent that initialized the iteration through 

random noise in the L∞ ball around the original image. Instead of clipping the pixels, PGD projected the perturbation 

into ϵ-l∞ neighborhood of the input image. PGD attack generates adversarial examples with the largest local max-loss 

value, which are most likely to fool the target model. 

𝐈𝑛+1
′ = 𝑝𝑟𝑜𝑗𝐈,∈{𝐈𝑛 

′ + ∝. 𝑠𝑖𝑔𝑛 (𝛁𝐈loss(𝐈𝑛 
′ , 𝐿))}   (9) 

5.1.5 Jacobian saliency map attack (JSMA) 

In [35], a white box attack was introduced which constructed the saliency maps by computing the forward-feed 

derivative of the DNN framework. The forward feed derivative computed the gradient and was defined as the Jacobian 

matrix as given below: 

𝑱𝐹(𝐈) =
𝝏𝐹 (𝐈)

𝜕𝐈
= [

𝜕𝐹𝑛 (𝐈)

𝜕𝐼𝑚
]

𝑚×𝑛
      (10) 

Based on the gradient, the saliency maps output the set of important pixels to which the perturbation was introduced 

to generate the adversarial examples that fulfill the adversary goal, i.e., misclassification. Through this attack, only 

4% of the total pixels are perturbated, which might cause the perturbation to be visible to human eyes. 

5.1.6 C&W attack 

Carlini et al. [36] introduced a targeted attack following the optimization problem similar to LBFGS and put forward 

a new formulation by replacing a loss function with the objective function. In [36], seven different objected functions 

were presented to be used for scaling the minimization function. However, unlike LBFGS, it was an unconstrained 

optimization problem, as the author introduced ѡ  which satisfied þ =  
1

2
 (tanh ( ѡ) + 1) −  𝐈  and controlled the 

perturbation to the input image. The optimal formula for a C&W attack is shown in Eq. 10. 

 

                  



 

Table 4. Detailed overview of white box adversarial attacks. 

White Box Attacks Attacks Distance 
Target / 

Non-Target 
Advantages Limitations 

Optimization-Based 

Iterative Attacks 

L-BFGS L2 Target High stability and effectiveness. Computationally complex. 

C&W L0, L2, L∞ Target The attack is stronger than FGSM, 

PGD, and BIM. 

Generate highly transferrable 
adversarial examples. 

Computationally complex. 

 

UAP L2 Non-Target High fooling rate at smaller norm. 

Generalize well across different 
models. 

--- 

Gradient-based 

Iterative Attacks 

BIM --- Target, 

Non-Target 

The image is not distorted at a 

high value of ϵ.  
Computationally efficient than L-

BFGS. 

High success rate than FGSM. 

Adversarial examples fall into 

poor local maxima problems 
and overfit the model. 

Takes more time compared to 

FGSM. 

PGD --- Target, 
Non-Target 

High success rate than FGSM. Takes more time compared to 
FGSM. 

JSMA L0 Target High success rate and 

transferability. 

Computationally complex. 

Applicable only to feedforward 
DNNs. 

Gradient-based non-

Iterative Attacks 

FGSM L2, L∞ Target, 

Non-Target 

Computationally efficient. Lower success rate. 

A distorted image is produced at 

a large value of ϵ. 

min  ‖þ‖ + 𝑐. 𝑓 (𝐈′)    𝑤ℎ𝑒𝑟𝑒 𝐈′ ∈ [0,1]    (11) 

where 𝑓 (𝐈′) ≥  0 if and only if the classifier outputs the targeted label. The optimal value of c is found via binary 

search. Thus, the perturbated image that has a high score for target label L′ can be found by minimizing the f.  

5.1.7 Universal adversarial perturbation (UAP) 

In [37], a strong universal attack was introduced that generalizes well across different models. A single universal 

perturbation vector υ was identified by UAP that can be added to any input sample to fool the classifier up to the 

specified fooling rate 𝛾. To calculate υ, the author utilized the DeepFool attack [38] such that υ satisfies the following 

constraints: 

‖𝝊‖ ≤ ∈        (12) 

𝑃 (𝑔(𝐈 + 𝝊) ≠ 𝑔(𝐈)) ≥ 1 − 𝛾     (13) 

5.2 Black box attacks 

5.2.1 Zeroth order optimization (ZOO) attack 

Inspired by the white box C&W attack formulation, Chen et al. [39] presented a black box attack named the ZOO 

attack for which no gradient information of the victim model was required. To attack the black box classifier, the ZOO 

attack monitored the changes in prediction confidence and utilized the zeroth order oracle along with important 

sampling hierarchical attack, and dimension reduction. Symmetric differential quotient and the Hessian estimate were 

used to estimate the gradient as follows: 

𝜕𝐹 (𝐈)

𝜕𝐈𝑗
=  

 𝐹(𝐈+ℎ𝒆𝑗)−𝐹 (𝐈−ℎ𝐞𝑗)

2ℎ
       (14) 

𝜕2𝐹 (𝐈)

𝜕𝐈𝑗
2 =  

 𝐹(𝐈+ℎ𝒆𝑗)−2𝐹(𝐈)+𝐹 (𝐈−ℎ𝐞𝑗)

ℎ2       (15) 

where ei  is a basic vector with ith component as 1, and h is a small constant step size used for finite-difference gradient 

estimation. By following [34], h is set to 0.0001.  

5.2.2 One-pixel attack 

In [40], a one-pixel attack was introduced that perturbed only one pixel in the image to fool the classifiers. A one-

pixel attack perturbed the pixel in the direction on the axis of one of the n-dimensions of an input image. A differential 

evolution algorithm was used to solve the optimization problem and find a higher-quality solution compared to the 

gradient-based solution. The formulation of pixel attack is as follows: 

                  



maximize 𝑓 (𝐈 + Þ)  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ‖þ‖0  ≤ 𝐝    (16) 

where d represents the data point to be modified, and the value of d is set to 1 for the one-pixel attack. 

5.2.3 Universal watermark perturbation 

Wu et al. [41] introduced a universal watermark attack that combined the techniques of optimizing loss function and 

watermarking to generate adversarial examples. This attack modified the pixel values within the watermark and 

applied the watermark to any shape at any location of the image. The authors utilized SGD and ADAM optimization 

algorithms to optimize the loss function. The formulation for universal watermark perturbation is shown in Eq. 17. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 
∑ 𝑓(𝐈𝑗)𝑛

𝑗 − ∑ 𝑓(𝐈𝑗+𝐖)𝑛
𝑗

∑ 𝑓(𝐈𝑗)𝑛
𝑗

  𝑤ℎ𝑒𝑟𝑒 𝐖 = 𝐖(𝑅, 𝐺, 𝐵, 𝑆, 𝐿)   (17) 

Here, 𝑊(𝑅, 𝐺, 𝐵, 𝑆, 𝐿) represents the watermark perturbation function parameterized by its color channels (𝑅, 𝐺, 𝐵), 

geometric shape (𝑆), and spatial location (𝐿) on the image. This function generates the universal watermark pattern 

applied to input images to create adversarial examples. 

5.2.4 Statistical consistency attack 

Hou et al. [42] introduced a statistical consistency attack (StatAttack) that minimized the statistical difference between 

real and deepfake images. More precisely, statistically sensitive natural degradations such as exposure (𝑃𝒆), blur(𝑃𝒃), 

and noise (𝑃𝒏) were introduced to the fake images and then the distribution aware loss was utilized to optimize 

different degradations. StatAttack generated adversarial examples in which feature distribution was closer to the real 

images and thus evaded the spatial and frequency-based deepfakes detectors. The extended version, namely 

MStatAttack, was also presented in [42], which involved sequential multi-layer degradations and tuned the 

combination weights via utilizing loss. These attacks produce high visual quality adversarial images and show a higher 

success rate than the existing PGD, FGSM, and MIFGSM attacks. 

                                    𝑃𝜭(𝑿𝒇𝒂𝒌𝒆) =  𝑃𝑛(𝑃𝑏(𝑃𝑒(𝑿𝑓𝑎𝑘𝑒)))              (18) 

5.2.5 Facial Mole attack 

Despite advancements in deepfake detection methods, recent studies have shown that these systems are still 

susceptible to adversarial black-box attacks. For instance, a study demonstrated [43] a novel facial mole black-box 

adversarial attack that successfully disrupted shared attention patterns in detection models. To add black moles to each 

masked frame 𝑀𝑓𝑥𝑦, the first step is to calculate the number of moles 𝑛 that will be added. The parameter 𝑚𝑖 indicates 

the height and width of the mole, which can be either 1-pixel or 2-pixels in size, represented as 𝑚1 and 𝑚2, 

respectively. This attack was able to significantly reduce detection accuracy and achieve a success rate on state-of-

the-art detectors. 

5.2.6 Facial Distraction Black-Box Attack  

Facial Distraction Black-Box Attack (FDB attack) [44] framework that is visually realistic, resilient, and demonstrates 

formidable attacking capabilities. The proposed black-box attack is capable of successfully evading deepfake detectors 

without the need for access to the target detector's parameters or architectural specifications. It exhibits high 

transferability across a variety of deepfake detectors, including end-to-end deep learning, fused, and unified models. 

5.2.7 Functional adversarial attack 

To produce natural adversarial examples, Laidlaw et al. [45] presented a functional threat model that applied a single 

perturbation to each input image pixel. For example, changing all the green color pixels to light green color. The 

Fig. 6. General framework of black box attack involves manipulating a model without knowledge of its internal 

workings. 

                  



functional threat model utilized various regularization functions such as difference (Fdif) and smooth (Fsmo) to make 

the modifications imperceptible. The Fdif limits the amount of perturbation in the image, while the Fsmo perturbed 

similar features in the same direction. 

5.3 Other attacks  

Inspired by meta-learning, a plug-and-play meta-gradient adversarial attack (MGAA) was introduced in [46] that can 

be integrated with any other gradient-based attack. To generate adversarial examples, MGAA iteratively simulated 

the white box and black box attacks from the model. This attack [46] improves the transferability of adversarial 

examples by narrowing the gap of gradient directions between the white box and black box setting, thus enhancing 

the success rate of both black box and white box attacks. Duan et al. [47] introduced an AdvDrop attack that dropped 

the imperceptible features (i.e., subtle texture information) from the input image to generate an adversarial example. 

AdvDrop attack first transformed the input image into a frequency domain, and then some frequency components 

were reduced quantitatively. Cilloni et al. [48] introduced a gradient-based attack, namely a focused adversarial attack 

that introduced the perturbation in the sensitive region of the image. For this, a focused threshold was used to identify 

whether the output feature map should be considered or not for computing the perturbation. Intermediate layer attack 

with attention guidance (IAA) was presented in [49], which enhances the black box attack transferability while 

maintaining the performance of the attack in the white box setting. IAA introduced the perturbation to a specific 

intermediate feature space via attention loss and stabilized the optimization direction through projection loss. IAA 

attack degrades key features of the input image that are not model-specific and thus makes the adversarial example 

effective for different models. 

Table 5. Detailed overview black box adversarial attacks. 

6 Adversarial attacks on visual deepfake detectors 

This section provides an in-depth review of existing papers on evading image and video deepfake detectors using 

diverse adversarial attacks. The overview of such existing papers is provided in Table 6 and the taxonomy of 

adversarial attacks on visual deepfakes detectors is shown in Fig. 7. 

Table 6. Comprehensive overview of existing literature on adversarial attacks on deepfakes detectors. 

Yea

r 
Attacks Datasets Victim Models 

Results Perceptu

al 

Similarity 

Measures 

Limitations 
Before 

Attacks 

After Attack 

White Box 

Attack 

Black Box 

Attack 

Adversarial Attacks on Image Deepfakes Detectors 

GAN-based Adversarial Attacks  

202
1 

GAN-based 
attack [30] 

StyleGAN 

generated fake 

images 

EfficientNet-b3 Acc = 97 Acc = 0 Acc = 9 

MSE, 

PSNR, 

SSIM, 
learned 

perceptual 

image 
patch 

similarity 

(LPIPS) 

The 

transferability of 

the adversarial 

examples towards 

the other 

forensics 

detectors is 

limited.  XceptionNet Acc = 93 Acc = 0 Acc = 5 

Black Box Attacks Attacks Distance Target /  

Non-Target 

Advantages Limitations 

Gradient-based 

iterative 

ZOO Attack L2 Target, 

Non-target 

Achieves comparable 

performance to the C&W 
attack. 

Avoid performance loss while 

transferability. 

Computationally complex for 

large models. 
Requires expensive computation 

to query and estimate gradients.  

Optimization-based 

iterative 

 

One-Pixel 

Attack 

L0 Target, 

Non-target 

Only the label information is 

needed to perform the attack.  

It can affect multiple types of 

frameworks. 

---- 

Universal 

Watermark 

Perturbation 

L∞ Non-target Powerful attack compared to 

UAP and FGSM 

Perform well for the networks with 

shallow layers. 

--- Functional 

adversarial 

Attack 

L2, L∞  --- Perturbation is imperceptible. Features cannot be perturbated 

individually, making the attack 

more restrictive.  

                  



202
1 

GAN-based 
attack [50] 

100K-Faces, 

TPDN 

(StyleGAN) 

CCNDetector, 
ResNet18, 

VGG16, 

VGG19, 
XceptionNet 

CNNDetect
or Acc = 98 

CNNDetect

or Acc = 

34.8 

ResNet50 
Acc = 37.75 

XceptionNet 

Acc = 51.25 
VGG19 Acc 

= 65.25 

VGG16 Acc 
= 38.25 

--- Low 
performance on 

XceptionNet 

and ResNet18 
compared to 

FGSM. 

202

1 

GAN-based 

attack [51] 

GAN- 

generated 

images 
(StyleGAN, 

StarGAN) 

Xception Acc = 99.67 ASR = 100 ASR = 91.07 

PSNR --- ResNet-50 Acc = 78.26 ASR = 81.23 ASR = 24.35 

DenseNet Acc = 96.39 ASR = 97.08 ASR = 87.30 

202

1 

Anti-
forensic 

GAN attack 

[52] 

GAN generated 

images 

MISLNet, 
SRNet, 

DenseNEt, 

VGG-19 

Avg. Acc = 

98 
Avg. ASR = 96 

PSNR, 

SSIM 

--- 

202

3 

Trace 

removal 
attack [53] 

All-in-one 

dataset 

(CelebA, 
ProGAN, 

STGAN, 

DeepfakeTIMI
T) 

 

Xception Acc = 99.9 
Acc = 18.9 

 

PSNR, 

SSIM 

Less effective 

for spatial-

based 
(Xception, 

Path-CNN) 

and frequency-
based (DCTA, 

F3Net) 

Patch-CNN Acc = 92.8 
Acc = 13.06 

 

DCTA Acc = 93 Acc = 30.16 

F3Net Acc = 99.9 Acc = 56.10 

LF Acc = 93 Acc = 14.10 

NF Acc = 74.9 Acc = 21.74 

202
5 

GAN-based 
attack [54] 

AI-generated 
images 

DenseNet121 
Inception-V3 

MobileNetV3 

ResNet101 
Xception 

Avg. Acc = 
93.8 

Avg. Acc = 27.7 

PSNR 

SSIM 

LPIPS 

--- 

Reconstruction-based Adversarial Attacks 

202

0 

FakePolish

er [55] 

Used 16 GAN-
based method 

to generate fake 

images. 

GANFingerprin
t 

Acc = 99.74 

PCA Reconstruction 

Acc = 36.65 
KSVD Reconstruction 

Acc = 54.36 
cosine 

similarity 

(COSS), 
PSNR and 

SSIM 

Not removing 

all the fake 

artifacts from 
the fake 

images 

DCTA Acc = 99.6 

PCA Reconstruction 
Acc = 53.43 

KSVD Reconstruction 

Acc = 64.77 

CNNDetector Acc = 68.4 

PCA Reconstruction 
Acc = 14.77 

KSVD Reconstruction 
Acc = 48.44 

202

1 

DeepNotch 

[9] 

Used 16 GAN-
based method 

to generate fake 

images. 

GANFingerprin

t, 
Acc = 99.74 Acc = 14.52 COSS, 

PSNR, 
SSIM 

--- 

DCTA Acc = 99.6 Acc = 30.96 

CNNDetector Acc = 68.4 Acc = 11.2 

202

1 

GAN based 

attack [56] 

DFDC, Celeb-

DF, FF++ 

XceptionNet 
Acc = 98.95 
(Celeb-DF) 

Acc = 7.33 
--- --- 

FAW 
Acc = 84.39  

(FF++) 
Acc = 23.04 

DenseNet 
Acc = 96.72 

(FF++) 
Acc = 7.97 

ResNet 
Acc = 96.55 

(FF++) 
Acc = 5.57 

Other Adversarial Attacks 

202
0 

Flip the 

lowermost 
bit of 

pixels. [57] 

Private dataset 

Fake images were 

generated using 

11 methods. 

The dataset not 

only consists of 

faces 

Existing 

Deepfakes 
detection 

methods [4,5] 

AUC reduces from 99% to almost zero in 
different scenarios 

L0, L2 
Norm 

Highly 

restrictive 

attack. 

202

0 

Universal 

adversarial 

attack, 
individual 

FF++ 

(Deepfakes, 

Faceswap, 
Face2Face) 

MesoInception-

4 
Acc = 94.88 --- 

UAP 

Acc = 19.19 
RMSE 

Perceptual loss 
in adversarial 

example 
ForensicTransf
er 

Acc = 86.39 --- UAP 
Acc = 24.06 

                  



adversarial 
attack [58] 

Y-shaped 
Network 

Acc = 91.98 UAP 
Acc = 3.17 

 generated 
using IAA. 

202

1 

Disrupting 

attack [59] 

WIDER, 300-
W, 

UMD faces, 

Celeb-DF 

Faster RCNN, 

Fv16(VGG16), 

Fr101(ResNet101), 

Pr50(ResNet50), 

Sv16(VGG16) 

--- SSIM = 90 (approx.) 

Data 

utility 

quality 
(DUQ), 

SSIM 

Time 

consuming 
attack. 

202
1 

Poisson 
noise Deep 

Fool 

(PNDF) 
[60] 

11 dataset 
including FF++ 

ResNet 50 and 
other GANS 

Acc with 

cycle GAN 

= 0.972 

Acc = Almost 0 --- 
Computationally 

complex due to 

iterative nature. 

202

1 

Universal 
adversarial 

attack [61] 

DFDC 

EfficientNetB7 
AUC = 

0.717 
ASR = 100 

mean 
distortion 

L∞ 

Perturbation is 

perceptual on 

higher 
magnitude. 

EfficientNet 
Seli B7 

AUC = 
0.724 

ASR = 100 

EfficientNetB3 
AUC = 

0.724 
ASR = 100 

XceptionNet AUC = 0.7 ASR = 100 

202

1 

Key Region 

Attack [62] 
FF++ 

Xception 

Acc = 99 

Acc = 0.006 

--- 

KRA 
combined with 

other attacks 

(PGD) is better 
instead of 

individual. 

Resnet-50 Acc = 0.001 

Resnet-101 Acc = 0.001 

Inception-v3 Acc = 0.40 

202

1 

Noise 

attack [63] 

DFGC-21 testing 

dataset, 

FaceForensic++, 

Deepfake 

Detection 

Challenge 

(DFDC), Deeper 

Forensics 

Challenge 

Own teacher, 

student models. 
--- 

AUROC 

DFDC test = 0.682, 

FF++-test = 0.732 

--- 

Less diverse 
dataset 

(DFGC-21), 

limited to 
generated 

samples. 

202
1 

Label 

flipping 

attack, 

backdoor 
attack [64] 

FF++ Xception 
Combine 
Acc = 96 

Acc = 37.5 --- 

Detectors were 

limited to 
detect in 

adversary. 

202

2 

Double-

masked 

guided 
attack [65] 

StyleGAN 
generated fake 

faces 

ResNet 
Acc = 100 

 
SR = 99.9 

DenseNet121 

SR = 99.2 

SSIM, 
PSNR, 

LPIPS 

The 

transferability 
of attack needs 

to be 

improved. 

MesoIncepion4 

SR = 94.09 

Xception 
Acc = 99.99 

 
SR = 100 

AlexNet 

SR = 21.15 

Discriminator 

SR = 99.04 

EfficientNet-b0 
Acc = 99.93 

 
SR = 99.9 

GramNet 
SR = 96.84 

RFM 

SR = 89.10 

ResNet-18 Acc = 93.2 

FGSM 

Acc = 7.5 

C&W 

Acc = 0 

FGSM 

Acc = 20.8 

C&W 

Acc = 4.6 

202

2 

Two-phase 

attack, SA-

GD, SA-
EA [66] 

--- ResNet-50 Acc = 99.6 

Two phase 

attacks 

SR = 90 
SA-GD 

white box 

SR = close 
to 100 

SA-EA Black 
box 

Below 20% 

--- 

To increase the 

success rate, a 

generation of 

large 

perturbation is 

required which 

affects the visual 

quality of the 

perturbated 

image 

202
2 

Frequency 

adversarial 

attack [67] 

DFDC, FF++ 
EfficientNet-b4 

and others 

FF++ 

Acc = 94.3 

DFDC 

FF++ 

SR = 83.2 

DFDC 

ResNet 

FF++ SR = 22.7 

DFDC SR = 

20.1 

MSE, peak 

signal-to-

noise ratio 

(PSNR) and 

Transferability 
is not good. 

                  



Acc = 91.1 SR = 97.1 XceptionNet 

FF++ SR = 1.4 

DFDC SR = 2.7 

structural 

similarity 

(SSIM) 

Less effective 
for spatial-

based models. 

202
2 

Apply 

makeup 

artifacts to 

identified 

landmarks 

[68] 

FF++ 
F2F subset 

MesoInception-

4, 
Acc = 86 Acc = 52 

--- 
Not effective as 

other attacks i.e., 

PGD, FGSM etc. TwoStreamNet Acc = 99.62 Acc = 55 

202
3 

StatAttack, 

MStatAttac

k [42] 

StyleGAN, 

StarGAN, 

ProGAN, 
DeepFakes 

subset of FF++ 

dataset 

ResNet50 
EfficientNet 

DenseNet 

MobileNet 
--- 

Success rate 

ranges from 
26.5 – 88.3 

SR ranges 

from 96.5 – 
100 

BRISQUE 

Poor 

performance in 

case of black box 

attack on 

frequency based 

deepfakes 

detectors 

DCTA 

DFTD 

Success rate 
ranges from 

85 – 96.4 

Success 

rate ranges 

from 12 – 
38.8 

202

4 

AdvShado

w [69] 

DFDC, FF++, 

Celeb-DF 

spatial-based, 
frequency-

based, and 

physiological-
based Deepfake 

detectors 

FF++ 

Acc = 76.81 

DFDC 
Acc = 65.09 

Celeb-DF 

Acc = 73.74 
 

SSIM = 0.9584 

PSNR = 31.5303 

SSIM, 

PSNR 

Computationall

y complex due 

to iterative 
nature. 

Adversarial Attacks on Video Deepfakes Detectors 

Other Adversarial Attacks 

202

1 

Robust 

white box 
and black 

box attack 

[70] 

FF++, DFDC 

XceptionNet 
Acc = 96.04 

 
Acc = 1.77 
SR = 98.23 

Acc = 16.06 
SR = 83.94 

L∞ 
distortion 

metrics 

--- MesoNet Acc = 84 
Acc = 0.5 

SR = 99.5 

Acc = 21.67 

SR = 78.33 

3D EfficientNet Acc = 91.74 
Acc = 0 

SR = 100 
Acc= 48.98 
SR = 51.02 

202
2 

FGSM, 
C&W [71] 

FF++ 

Conv-LSTM Acc = 81.3 

FGSM 

Acc = 14.8 
SR = 72.31 

C&W 

Acc = 8.3 
SR = 99.72 

FGSM 

Acc = 44.7 
SR = 21.73 

C&W 

Acc = 38.4 
SR = 63.82 L∞ 

distortion 
--- 

FacenetLSTM Acc = 84.5 

FGSM 

Acc = 20.9 

SR = 68.23 
C&W 

Acc = 13.5 

SR = 98.83 

FGSM 

Acc = 53.5 

SR = 33.89 
C&W 

Acc = 28.7 

SR = 67.14 

202

2 

Universal 

adversarial 

perturbatio
n [72] 

FF++, DFDC 
XceptionNet, 
MesoNet, 3D 

CNN 

--- 
3D CNN 

Acc = 91.74 

Robust and 

Transferable 

attack Acc = 
0 

mean 

distortion 
--- 

202
3 

Adversarial 

Deepfakes 

Video 
Generation 

Framework 

[73] 

FF++, CelebDF 

ResNet, 

XceptionNet, 

MesoNet 

Acc = 99.4 
Acc = 1.3 
SR = 98.7 

Acc ranges 

from 28.4 to 

47.3. 
SR ranges 

from 52.1 to 

71.6 

PSNR, 
SSIM 

--- 

202
4 

eXplainable 
AI [74] 

FF++, CelebDF 
XceptionNet, 

MesoNet 

Acc = 80.11 

 

 

Acc = 21.94 
 

Average time 

taken 

MesoNet=4.9
4 

XceptionNet, 

2.52 

Average 
time taken 

--- 

202

5 

GAN-based 

attack [54] 

AI-generated 

images 

DenseNet121 

Inception-V3 

MobileNetV3 
ResNet101 

Xception 

Avg. Acc = 

93.8 

Avg. Acc = 

27.7 

PSNR 

SSIM 
LPIPS 

--- ---- 

*(Acc=Accuracy, ASR=Attack Success Rate) 

                  



6.1 Adversarial attacks on image deepfakes detectors 

Adversarial attacks on image deepfake detectors involved attacks on images and video frames. These attacks are 

categorized as GAN-based attacks, reconstruction attacks, and other attacks. The details and literature related to these 

categories are coming in this section.  

6.1.1 GAN-based adversarial attacks 

GAN-based adversarial attacks mostly employ the GAN frameworks to generate adversarial examples to evade the 

different deepfakes detectors that detect GAN-generated fake images. In [30], the author introduced a GAN-based 

approach in which gradient descent was performed to the input latent vector and modified the manifolds of StyleGAN 

to generate the adversarial examples. The attack was performed on two deepfakes detectors (XceptionNet and 

EfficientNet-b3) in the black box and white box settings while reducing the detection accuracies to less than 1%. This 

attack method [30, 50] generates high-quality adversarial examples compared to FGSM and PGD attacks. However, 

the transferability of the adversarial examples to other forensics detectors is limited. Wang et al. [50] generated the 

content preserving adversarial examples from the fake images using the two GAN-based frameworks for evading the 

CNNDetector (ResNet50) under black box and white box scenarios. In the black box scenario, real data was provided 

to the discriminator of the GAN model along with the introduction of a Real Extractor as an auxiliary network for 

extracting real data features to increase the adversarial ability of the framework. For the white box scenario, the victim 

classifier was included in the GAN architecture and generated images without sampling to fool the classifier. For the 

seen data, a 63.2% and 32.55% drop in accuracy occurred; however, for unseen data, an accuracy drop of 61% and 

58.55% were observed for white box and black box attacks, respectively. The method [50] also showed good 

transferability when an attack was performed on four other classifiers, including ResNet18, XceptionNet, VGG16, 

and VGG19. Liu et al. [53] introduced the trace removal attack based on an adversarial learning method encompassing 

multiple discriminators and one generator. By thoroughly investigating the deepfakes creation pipeline, the trace 

removal net empirically discovered and removed the deepfakes traces, such as spatial anomalies, spectral disparities, 

and noise fingerprints from the fake images. This attack was performed on spatial-based, frequency-based, and 

fingerprint-based deepfake detectors and significantly reduced the detection accuracies. Trace removal attacks are less 

effective than PGD attacks when performed on spatial and frequency-based detectors; however, the attack is more 

effective for fingerprint-based forensics detectors.  

Uddin et al. [54] introduced transferable anti-forensic attacks on deepfake face forgery detectors targeting both real 

and synthetic samples, and proposed a robust detection framework based on multi-model knowledge distillation. Zaho 

et al. [51] introduced an adversarial attack that complicates GAN-generated image detection by forensic classifiers. 

The attack, using an anti-forensic generator, introduces traces resembling actual images, deceiving detectors. The 

Fig. 7. Taxonomy of attacks on audio and visual deepfakes detectors. 

                  



attack is transferable and highlights vulnerabilities in current synthetic image detection methods. Zhao et al. [52] 

developed a method to deceive forensic CNNs by creating a generator that removes forensic traces from manipulated 

images, making them appear unaltered. This attack is effective against multiple CNNs, transferable, and maintains 

high image quality by minimizing visual distortions. However, its effectiveness depends on its transferability and the 

precise manipulation operations on the images. Ding et al. [75] developed a novel GAN model called ExS-GAN that 

employs an extra supervision system to generate high-quality, manipulated images for anti-forensics applications. 

While maintaining image quality, the model can launch attacks; however, its long-term efficacy may be restricted by 

the potential for sophisticated forensic tools. Peng et al. [76] developed a novel approach that employs GAN to convert 

computer-generated and genuine facial images, thereby improving anti-forensic applications. The model produces 

convincing facial images from computer-generated (CG) inputs, which complicates the differentiation between CG 

and natural faces. However, the study limits its dependence on the quality of training data.  

Among the reviewed GAN-based attacks, [30] is more effective in fooling the spatial-based deepfakes detectors and 

has greater transferability compared to the other two attacks [30, 53]. Furthermore, a comparison of the SSIM value 

of the attacks indicates that the adversarial examples crafted via the GAN-based attack [30], which are better in quality 

and look more similar to the original fake images compared to the trace removal attack [53]. So, it can be inferred that 

GAN-based attacks generate high visual quality adversarial examples which performed quite well in white box 

settings. 

6.1.2 Reconstruction-based adversarial attacks 

Reconstruction-based adversarial attacks involve the post-processing methods used to further enhance the visual 

quality of the fake images to recreate the high visual quality forged images that are then used to fool the forensics 

classifiers. FakePolisher introduced in [55], was a post-processing method that reduced the fake artifacts introduced 

in the GAN-generated fake images. FakePolisher reconstructed fake images using dictionary learning methods such 

as K-SVD and principal component analysis (PCA). It was used as a black box attack to evade deepfake detectors, 

including DCTA, GAN Fingerprint, and CNNDetector, and significantly reduced the detection accuracy. K-SVD 

reformed images are more like the actual fake images; however, PCA reconstruction is more effective than K-SVD 

reconstruction while fooling the deepfakes detector. Similarly, in [9], a DeepNotch method was introduced that 

performed notch filtering in the spatial domain by intelligently adding the noise using the semantic information of the 

image. Later, image filtering was performed to reproduce noise-free fake images. The fake images were generated 

using 16 Deepfakes methods, and the attack was performed using three existing detection methods: GAN Fingerprint, 

CNNDetector, and DCTA. The detection accuracy of the victim models was improved when re-trained on the 

reconstructed images, indicating that the attack was not too effective in evading the deepfakes classifier. In [55], the 

PCA reconstruction attack appears to be more effective for all three victim models as compared to the K-SVD attack. 

However, the DeepNotch attack [9] significantly reduced the detection accuracies of the classifiers when compared 

with the PCA reconstruction attack. Ding et al. [56] proposed a GAN-based adversarial attack and introduced a novel 

loss function to make the GANs an adversarial tool. Instead of adding perturbation or visual distortion, this method 

generated more natural and realistic deepfakes, which could easily cause the detector to fail. This attack degrades the 

accuracy of models up to 4.30% from 97.24%. This work can be extended to add perturbation to real images or add 

visual artifacts on deepfake videos to bypass the deepfake detector. 

6.1.3 Other adversarial attacks 

To fail the forensic classifiers that detect the GAN-generated fake faces, Zhang et al. [65] presented a double-masked 

guided attack that introduced the perturbation to the important face regions on which most deepfakes detectors 

concentrated when detecting fake images. The attack was performed on nine forensics classifiers in a white box and 

black box setting and achieved a good success rate. However, the transferability and robustness of the adversarial 

examples need to be improved. Similarly, Carlini et al. [57] introduced the perturbation to the GAN-generated images 

(StyleGAN, ProGAN) by flipping the lowermost bit of pixels to fail the existing deepfake detection methods [55, 77]. 

The rate of misclassification increases as the number of perturbated pixels increases. For method [55], the 

misclassification rate was 89.7% by perturbing 4% of the pixels, while for method [77], the addition of perturbation 

to 50% of the pixels caused 100% misclassification. Being a restrictive attack, it is difficult to execute such an attack 

in the real world. In [66], semantic perturbations were added that alter the target semantic attributes (pose, expression, 

age) while retaining the original identity to fail the forensics system (based on ResNet50). For the white box attack, a 

two-phase attack and the semantic aligned gradient descent (SA-GD) approach were introduced, while for a black box 

attack, a semantic aligned evolutionary algorithm (SA-EA) was utilized to generate adversarial examples. The two-

phase attack achieved the highest success rate, reaching 90%, whereas the SA-EA attack attained the lowest success 

rate (below 20%). However, increasing perturbation affects the visual quality; for example, a two-phase attack 

                  



introduces noise in the image while the SA-GD and SA-EA attacks alter the non-targeted attributes. To fail several 

face detectors and facial landmark extractors, Li et al. [59] introduced imperceptible adversarial perturbation for facial 

images. In the white box attack scenario, training instances were disrupted. However, zero-mean Gaussian noise was 

introduced for the gray box and black box. On the landmark extractor and face detector, the highest SSIM was achieved 

at 90% and 98%. This technique [59] is more time-consuming for a large number of images. Fan et al. [60] introduced 

a Poison Noise DeepFool (PNDF) adversarial attack to degrade the performance of deepfake detectors, including 

ResNet50 and two other customized classifiers. Images from ten different deepfake generators were collected to be 

perturbed iteratively in the white box manner. The AUC and accuracy of detectors reduce to 0.3331 and 0.071 with 

the PNDF attack on ProGAN-generated images. PNDF attack is quite effective in degrading the performance but is 

computationally complex. Liu et al. [69] developed AdvShadow, a transferable adversarial attack designed to exploit 

natural shadows in real-world scenarios to target Deepfake detectors. AdvShadow uses a randomized shadow 

generator, shadow overlay network, and adversarial shadow-generating method to minimize differences in brightness 

between actual and generated images. However, its evaluation focuses on DeepFake detectors, and its application to 

other detection architectures has not been explored.  

In [58], DNN-based forensics classifiers were evaluated against adversarial attacks and demonstrated that individual 

and universal adversarial perturbations could cause the deepfakes classifiers to misclassify the input image. To craft 

the individual adversarial attack (IAA), a gradient-based iterative method was used, which considered the length of 

the gradient along with its direction to add perturbation to the image. However, for universal adversarial attack (UAA), 

a new objective function was introduced that utilized the resource-conserving over-firing approach to craft the 

universal perturbation in a data-free manner. Both attacks (IAA, UAA) drastically reduced the classification accuracy 

of the Y-shaped network [78]. The transferability of UAA was also demonstrated on MesoNet [79] and Forensic 

Transfer [80]. The UAAs are more imperceptible than IAAs because condensed local distortion causes serious 

perceptual loss in case of individual adversarial perturbations. In [67], frequency adversarial attack (FAA) was 

proposed to evade both spatial-based and frequency-based deepfakes detectors. The average success rate of the attack 

for spatial models using the FaceForensic++ (FF++) dataset was 73%, whereas for frequency-based models, it was 

90.9%. Similarly, for spatial and frequency-based models, the average success rates of 87.5% and 99.3% were 

achieved, respectively, using the DFDC dataset. Although perturbation is imperceptible to humans, FAA is less 

effective for spatial-based models compared to frequency-based victim models. Moreover, the transferability of the 

attack is not good enough, as the success rate lies between 1.5% and 49% in black-box settings. However, FAA attacks 

outperform the PGD and FGSM attacks. Hou et al. [42] introduced a statistical consistency attack (StatAttack) that 

minimized the statistical difference between real and deepfake images. More precisely, statistically sensitive natural 

degradations such as exposure, blur, and noise were introduced to the fake images and then the distribution aware loss 

was utilized to optimize different degradations. StatAttack generated adversarial examples in which feature 

distribution was closer to the real images and thus evaded the spatial and frequency-based deepfakes detectors. The 

extended version, namely MStatAttack, was also presented in [42], which involved sequential multi-layer degradations 

and tuned the combination weights via utilizing loss. These attacks produce high visual quality adversarial images and 

show a higher success rate than the existing PGD, FGSM, and MIFGSM attacks. Lim et al. [68] introduced a black 

box attack in which makeup artifacts (eyeliner, blush, lipstick) were applied to the regions identified through facial 

landmarks to produce the perturbated images. The accuracies of the victim models (MesoInception-4 and 

TwoStreamNet) decreased to 50% on the perturbated images, which indicates that the attack is not effective compared 

to other attacks (i.e., PGD, FGSM, and C&W). However, the result indicates that such subtle changes in the input 

image can easily fool the deepfakes classifier.  

Neekhara et al. [61] introduced an imperceptible universal adversarial attack, which was performed on EfficientNet 

(EN) B7, B3, and XceptionNet (XN) victim models. A perturbation was introduced to each frame of 100 videos 

collected from the DFDC dataset. An attack was performed on the models in white and black box settings using 

gradient-based saliency maps. In comparison with the white box and transfer attacks, universal attacks in the black 

box setting attained the highest attack success rate on all victim models. The attack success rate of the universal attack 

was 100.0% on EN-B7 Selim, 77.5% on XN, and 66.5% on EN-B3, with an L∞ threshold. This attack perturbed video 

frames imperceptibly; however, perturbation is visible at a higher magnitude. Liao et al. [62] introduced a Key Region 

Attack (KRA) that added imperceptible perturbation in key regions of the image to disrupt deepfakes detectors. A 

KRA attack was also performed with a PGD attack, and the highest ASR achieved 0.99 with a KAR-PGD attack on 

ResNet-50 and Xception in the white box setting. This technique performed well as a combined attack, so it should 

be improved to perform well individually. Peng et al. [63] designed a two-party game between deepfake generators 

and detectors. Three different creation tracks were introduced based on face shifters and faceswap generators. In the 

first track, the FGSM attack was used to add adversarial noise to fake images generated through the face shifter 

                  



method. In the second track, “teacher and student”, face shifter models were used and L2 loss was introduced in the 

student model to resemble the outcomes with its teacher model. In the third track, more realistic face-swapped images 

were created to fail deepfake detectors. However, these techniques were employed only on generated images, not on 

real ones. Ivanovska et al. [31] proposed Denoising Diffusion Models (DDMs) to generate realistic images for black-

box attacks on deepfake detection systems being explored. A guided conditional DDM is used to reconstruct FF++ 

deepfakes with a predetermined number of diffusion steps. However, this approach lacks generalizability to attacks 

produced with different denoising steps. Cao et al. [64] highlighted the vulnerability of deepfake detectors in backdoor 

adversarial attack settings. In the label flipping attack, the training data was poisoned by flipping the labels of some 

training data from real to fake, while in the backdoor attack, the small triggers were embedded into images to perturb 

it. On label flipping, the accuracy of the classifier only dropped to 0.07, whereas triggers were added to 5% of training 

data that failed testing in the deepfake detector. 

6.2 Adversarial attacks on video deepfakes detectors 

Adversarial attacks against the video deepfake detectors entail the creation of an adversarial video that is used to fool 

the video deepfake classifiers. For this purpose, perturbation is introduced to the frames of the fake videos to generate 

an adversarial video. In [70], adversarial videos generated via adding the perturbation to the frames of the video (FF++ 

dataset) were used to fail two CNN models including MesoNet and XceptionNet, and one sequence-based model 

named 3D EfficientNet. The authors conducted robust white box and black box attacks on the models and reported 

success rates on compressed and uncompressed videos. The success rate of these attacks was good on uncompressed 

videos, while performance degrades on compressed videos. Likewise, Shahriyar et al. [71] showed the effectiveness 

of FGSM and C&W attacks on the sequenced-based deepfakes detector in a white box and black box setting. For this 

purpose, the victim models were Conv-LSTM [81] and FacenetLSTM [82] which attained an accuracy of 81.3% and 

84.5% on unperturbed images from the FF++ dataset. Similar to  [70], the white box attacks crafted for one model 

were used as black box attacks for the other model and vice versa. Adversarial attacks reduced the accuracy of models 

to 8%-20.9% in the white box setting, while in the scenario of a black box attack, accuracy decreased to 28.7%-53%.  

Moreover, C&W attacks outperform the FGSM attack while evading sequence-based forensic classifiers. Gowrisankar 

et al.[74] reveals that traditional explainable Artificial Intelligence (XAI) evaluation methods are insufficient for 

deepfake detection models due to their unique functionality. The evaluation focuses on deepfake detection models 

without considering their application to other classifiers. The proposed XAI approach lacks consideration for 

computational efficiency and resource requirements. In [73], a novel framework was introduced that generated 

coherent adversarial videos to evade the video deepfake detectors including ResNet, XceptionNet, and MesoNet. To 

maintain consistency among adjacent frames, this framework [73] utilized optical flow to restrict perturbation 

generation and then introduced adaptive distortion cost for visual quality improvement and imperceptibility via 

constraining total perturbations. The attack was performed in the white box and black box scenarios utilizing F++ and 

CelebDF datasets. For the white box setting, the success rate achieved ranged from 97.5% to 99.4%, whereas for the 

black box setting, the success rate was in the range of 52.7% to 71.6%. Hussain et al. [72] employed different white 

box and black box attacks on deepfake videos to bypass deepfake detectors. Simple white box, robust and transferable, 

query-based black box, and query-based robust black box attacks were performed based on existing attacks like 

universal and transformation-based attacks. From all attacks, robust and transferable attacks attained a higher 

misclassification rate of up to 99.9%, with the lowest classification accuracy of 0.02 on the neural texture subset of 

the FF++ dataset. In [43] facial mole-based black-box attack was proposed that reduces detector accuracy by up to 

40.3%. The findings underscore the need for more robust, attack-resistant deepfake detectors. 

6.3 Analysis and discussion 

In this analysis, the potential strengths and limitations of adversarial attacks performed on visual deepfakes detectors, 

are discussed. For the GAN-based adversarial attacks, it is observed that these attacks are evaluated on GAN-generated 

facial images. Attacks [30, 50] are evaluated on the perturbated images generated using the StyleGAN-generated 

synthetic fake images. While the trace removal attack [53] is evaluated on the adversarial examples generated from a 

private dataset consisting of different deepfakes types including synthetic faces, attribute manipulation, and face 

replacement. However, GAN-based adversarial attacks are not evaluated for the perturbated images generated utilizing 

the challenging and standard datasets (i.e., FF++, DFDC, CelebDF) in the domain of deepfakes detection. In terms of 

victim models, these attacks are evaluated only for spatial-based deepfakes detectors except for trace removal attacks. 

The effectiveness of trace removal attack [53] is evaluated for spatial-based, frequency-based, and fingerprint-based 

deepfakes detectors; however, it only significantly affects the misclassification rate of fingerprint-based detectors. For 

reconstruction-based attacks, it is inferred that these attacks are not assessed specifically for fake facial images; 

however, they are evaluated for different fake images generated via 16 GAN-based methods. So, a need exists to 

                  



access reconstruction-based attacks specifically for the deepfakes facial images covering the diverse types of 

deepfakes. Moreover, such attacks cannot be considered too powerful compared to state-of-the-art adversarial attacks 

(i.e., C&W, FSGM, PGD), as the adversarial training on reconstructed images can significantly improve the detection 

results. In the reviewed papers, different attacks are performed on different models using adversarial examples that 

are crafted using either GAN-generated images or other deepfakes dataset images such as FF++ and DFDC. Most of 

the evaluated victim models are spatial-based classifiers. Only the frequency adversarial attack and StatAttack are 

evaluated on frequency-based models. Furthermore, none of the reviewed papers have utilized the GANFingerprint-

based classifiers as a victim model. From the reviewed papers, it can also be concluded that, for the GAN-generated 

images, the success rate of the attacks is quite good in both white box and black box settings, compared to the other 

deepfakes dataset images. However, the SA-EA black box attack was not effective as it achieved a success rate below 

20%. Additionally, the UAP attack is quite effective in both white box and black box scenarios and shows notable 

transferability.  Overall, the adversarial attacks performed very well in the white box setting but in the case of black 

box setting, the misclassification rate decreases which indicates the limited transferability aptitude. However, pure 

black box adversarial attacks that are assessed on deepfakes detectors, are limited in numbers. Also, the success rate 

of the black box attacks is comparatively lower compared to the white box adversarial attacks, while fooling the 

deepfakes detection methods. 

7 Adversarial attack on visual deepfakes generators 
This section provides a detailed review of existing works on disrupting deepfakes creation through adversarial attacks.  

Adversarial attacks on deepfakes generations can be classified as watermark-based, and other adversarial attacks on 

real images. An overview of such existing literature is provided in Table 7 and the taxonomy of adversarial attacks on 

visual deepfake generators is given in Fig. 8. 

7.1 Watermark-based adversarial attacks 

Researchers have also introduced image tags and watermark-based approaches to stop the disinformation spreading 

on social media and the creation of fake personas. For instance, Wang et al. [10] introduced an image tagging approach 

based on an encoder, GAN simulator, and decoder to defend against deepfakes generation proactively. The DeepTag 

approach embedded a tag on the image using the encoder and then effectively recovered the hidden message through 

the decoder after the GAN-based manipulation was applied using the GAN simulator. The GAN simulator employed 

the existing frameworks, i.e., STGAN, StarGAN, and StyleGAN, to generate the manipulated facial images. This 

approach produces high-quality visuals but is computationally complex and resource intensive. Moreover, if the image 

is highly compressed, the embedded message might be lost. Likewise, Wang et al. [11] introduced a fake tagger, an 

imperceptible tag with images to bypass the deepfake generators to generate a falsified image. For implementation, 

U-Net was used as an image encoder to embed an imperceptible message into the image, and the decoder decodes the 

message from the tagged image. The CelebA-HQ dataset was used with several GAN-based architectures. The 

experiment was performed in a white and black box set. The quality of the encoded image was measured using PSNR 

and SSIM; the highest measure was achieved on entire synthesis deepfakes. This technique performed well in 

comparison with other watermark-based techniques. Zhao et al. [83] proposed a proactive detector utilizing an 

encoder-decoder architecture to encode facial identity features with watermarks that serve as anti-deep fake labels. 

Fig. 8. Comprehensive taxonomy of adversarial attacks targeting deepfake generators. 

                  



The injected label exhibits sensitivity to translations involving face swaps. Experimental results demonstrate an 

average detection accuracy of over 80%. This approach offers users a dependable method to authenticate the 

legitimacy of their images, thereby mitigating the adverse consequences associated with deepfakes. In [84], the smart 

watermark framework was proposed, which consists of a watermark and attention module to generate unperceptive 

water-marked images. Such adversary images caused the deepfake generation models to produce the blur deepfake 

images. The watermark module extracted semantic information to create a personalized watermark while the attention 

module enabled the model to add the perturbation to the facial area utilizing the attention mask. Likewise, [85] 

introduced a cross-model universal adversarial (CMUA) watermark that can be applied to multiple facial images to 

generate adversarial examples to combat the various deepfakes generation models. Neekhara et al. [86] introduced a 

watermark-based technique named FaceSigns that is robust for image transformations (such as compression and 

filters) and fragile to GAN-based manipulation. FaceSigns framework embedded an imperceptible message in the 

images and was designed to detect the image as fake if the secret message’s recovery rate is lower. 

7.2 Other adversarial attacks 

To protect the real images from being converted into deepfakes, many researchers have introduced the approach of 

performing adversarial attacks on the real images and thus hinder the creation of deepfakes. The major objective of 

such frameworks is to prevent the deepfakes GAN-based generators from manipulating the individuals’ images that 

can be easily accessible from social media. To attack the style transfer model named CycleGAN, Liu et al. [87] 

introduced the PGD-based attack in which the starting point of the iteration was found using the output diversification 

initialization (ODI) method. ODI utilized the output space distance to locate the initial point for the iteration, and the 

adversarial image was generated using the iterative PGD attack, which was distinct from the input image. Ruiz et al. 

[88] applied existing adversarial attacks such as FGSM, I-FGSM, and PGD on the input real images to prevent fake 

images generated using the conditional image translation models, including GANimation, StarGAN, CycleGAN, and 

pix2pixHD. The authors also presented the spread-spectrum attack to evade the blur defense while generating deepfake 

images. In [89], a multi-objective algorithm based on a PGD attack was introduced for generating adversarial examples 

that caused the multiple image translation models to generate deteriorated fake images. When this non-transferable 

attack was performed on models (StarGAN-v2, STGAN) separately, the achieved success rate was 94.8% and 89.9%. 

However, the success rate reduced to 73.3% and 66.6%, respectively, when the models were simultaneously attacked. 

Yeh et al. [90] disrupted the image-to-image translation frameworks at inference time by utilizing the GAN 

discriminator as an adversarial loss function, where the utilized attacking technique was PGD. More specifically, two 

adversarial attacks, named nullifying attack and distortion attack, were performed on CycleGAN, pix2pix, and 

pix2pixHD frameworks. The nullifying attack enabled the model to output the image identical to the input image, 

while the distortion attack caused the model to generate distorted images that were clearly recognized as fake.  

To improve the distortion attack [90], a training-resistant oscillating GAN (OCGAN) attack was introduced in [91] 

and failed the face-swapping frameworks by introducing imperceptible perturbation to the video frames. In the 

OCGAN framework, the adversarial generator and faceswap autoencoder were trained against one another such that 

the input image, along with the targeted distortion was given to the generator to produce an adversarial image. When 

the faceswap model was applied, it resulted in a distorted fake image. OCGAN attack introduced spatiotemporal 

perturbation and improved the transferability of different face-swapping models compared to the distortion attack. In 

[92], the latent adversarial exploration (LAE) method was introduced that searched the latent representations of the 

image to embed the perturbation, which resulted in high-quality perturbated real images that can defeat the different 

types of deepfakes generation. There is a lesser chance of the reconstructed image being identified as anomalous; 

however, the appearance of the image is sometimes slightly different from the original image. This demonstrates that 

the LAE method is not able to produce a perturbated image like the original one. Ruiz et al. [93] introduced an effective 

and simple black box attack named leaking universal perturbation (LUP) for disrupting the fake image generation 

through StarGAN and GANimation models. LUP attack achieved a success rate of 98% and 100% for GANimation 

and StarGAN frameworks, respectively, and significantly reduced the number of queries to perform the attack. Wang 

et al.[94] argued that making the fake image visually perceptible from the human viewpoint is insufficient as 

sometimes such images can fool the deepfake detectors. The deepfake disrupter, a perturbation generator was 

presented that added imperceptible perturbation to the real image and protected it to be manipulated by the deepfakes 

generation models such as StarGAN and GANimation. The deepfake images generated through perturbated real 

images can be identified as fake by both human and deepfake detection models.  

Without degrading the visual quality, a perceptual aware perturbation was introduced in [95], which generated the 

adversarial examples natural to human eyes via introducing the noise on the color space in an incessant manner. The 

perturbation was added to the whole image and disrupted the generation of different deepfakes types (i.e., attribute 

                  



manipulation, face swap, facial reenactment). The adversary can crop the background to evade the perturbation if it is 

not in the facial region. Dong et al. [96] performed adversarial attacks against faceswap autoencoders to disrupt the 

fake images generated through GANs. Three different attacks were performed simultaneously on the Face-Scrub 

dataset. The first attack performed on images was a transfer adversarial attack, which was image agnostic. Later, 

Siamese attacks and Latent Siamese attacks were performed specifically to source images. All three experiments were 

performed on both reference and non-reference images of the dataset. The best SSIM and FSIM achieved on reference 

images were 0.49 and 0.79 respectively, based on the Siamese attack, while on a non-reference image, the quality 

latent Siamese adversarial attack achieved the best BRISQUE of 46.19.  

Qiu et al. [97] proposed a gradient-based Cross-domain and model adversarial attack (CDMAA) to disrupt the 

generation samples of GANs. CDMAA attack was based on an I-FGSM attack, and generalization multi-gradient 

descent (MGDA) was used to provide generalization. The perturbation was added to the original images of the CelebA 

dataset, which fails GAN-based algorithms by generating unrealistic and distorted images. On StarGAN and U-GAT-

IT, the highest achieved attack rate was 100%, whereas on AttaGAN and STGAN, the attack rate was 62.9 and 69.6, 

which is comparatively less. This attack was limited to images generated through GANs; it will be extended to audio 

and video as well. Yeh et al. [98] introduced a novel Nullifying adversarial attack for GANs to defend against a 

generation of malicious content. This attack was designed in a black box setting corresponding to the Limit-Aware 

Self-Guiding Gradient sliding attack (LaS-GSA) and nullified the effect of translation in GAN-generated images. The 

attack was performed on Black2Blond, None2Glasses, and Blue2Red GAN architectures and achieved the highest 

success rate of 95% on None2Glasses GAN, indicating the venerability of GANs towards adversarial attacks. In future 

work, the vulnerability of GANs against adversarial attacks will be reduced. Dong et al. [99] introduced a restricted 

black box attack that utilized a transferable cycle adversary generative adversarial network (TCA-GAN) to disrupt the 

face-swapped image generation.  This technique protects deepfake generation based on translation methods. In 

comparison with existing attacks like FGSM, PGD, etc., this attack achieved the highest FISM and SSIM of 0.73 and 

0.87. This technique was limited to the disruption of faceswap deepfake generation, and it will be extended to the 

generation of other deepfake types as well. Li et al. [100] proposed a saliency-aware attack framework to defend a 

well-trained deepfake generation model by manipulating the raw image with unperceived perturbation. It is achieved 

by selectively perturbing only the foreground person region and maintaining the irrelevant background to fool the 

model while minimizing alterations to the original image. This method [100] is limited to reliance on a pre-trained 

saliency detection model, which may not accurately detect the foreground region and reduce the effectiveness of the 

perturbation. 

Table 7. Comprehensive overview of existing literature on adversarial attacks on deepfakes generations. 

Year Attack Dataset Victim Model Results 

Perceptual 

Similarity 

Measure 

Limitations 

Watermark-based Adversarial Attacks 

2020 
DeepTag 

[10] 
CelebA-HQ 

StarGAN 
PSNR = 26.32 
SSIM = 0.862 

PSNR, SSIM 

Computationally 

complex and resource 
intensive. 

STGAN 
PSNR = 27.48 

SSIM = 0.901 

StyleGAN 
PSNR = 29.89 
SSIM = 0.927 

2021 
Fake tagger  

[11] 
--- 

DeepFaceLab, 

Face2Face, 

STGAN, Style 

GAN 

--- SSIM, PSNR --- 

2021 

Smart 

watermark 

[84] 

CelebA StarGAN SSIM = 0.8231 SSIM --- 

2022 

CMUA- 

watermark 

[85] 

CelebA, 
Film100 

StarGAN FID = 2.3032 

Frechet Inception 
Distance (FID) 

--- 
AGGAN FID = 1.7072 

AttGAN FID = 1.8133 

HiSD FID = 1.9672 

2022 

Semi-
Fragile 

Watermarks 

[86] 

CelebA --- 
PSNR = 36.08 

SSIM = 0.975 
PSNR, SSIM 

Embedded messages will 

be lost for unseen 

deepfakes manipulation. 

Does not perform 

experiments on victim 

models to show attacks’ 

effectiveness. 

                  



2023 
Proactive 

mechanism 

[83] 

FFHQ, 
CelebA-HQ, 

CelebA 

AttGAN 

STGAN 
Acc = 80 --- --- 

Other Adversarial Attacks 

2020 

FGSM, I-

FGSM, 
PGD [88] 

CelebA 

GANimation 

FGSM 
L1 = 0.090, L2 = 0.017 

I-FGSM 

L1 = 0.142, L2 = 0.046 
PGD 

L1 = 0.139, L2 = 0.044 
L1 norm, L2 norm --- 

StarGAN 

FGSM 

L1 = 0.462, L2 = 0.332 
I-FGSM 

L1 = 1.134, L2 = 1.525 

PGD 
L1 = 1.119, L2 = 1.479 

2020 
PGD-based 
attack [89] 

CelebA 

StarGAN 

PSNR = 2.1561 

SSIM = 0.1852 

L2 = 1.6697 

PSNR, SSIM --- STGAN 

PSNR = 26.5652 

SSIM = 0.9153 

L2 = 0.0082 

StarGAN-v2 

PSNR = 11.711 

SSIM = 0.4304 

L2 = 0.0884 

2020 

Nullifying 

attack, 

Distorting 
attack [90] 

CelebA-HQ 

CycleGAN 

Nullifying attack 

Similarity score = 0.21, 

Distortion score = 0.0725 
Distorting attack 

Similarity score = 0.03, 

Distortion score = 0.165 

Similarity score, 

distortion score 

Transferability of 
distortion attacks 

needs to be improved. 

Pix2PixHD 

Nullifying attack 

Similarity score = 0.34, 

Distortion score = 0.12 

Distorting attack 

Similarity score = 0.02, 

Distortion score = 0.15 

Pix2Pix 

Nullifying attack 

Similar score = 0.27, 

Distortion score = 0.09 

Distorting attack 

Similarity score = 0, 

Distortion score = 0.17 

2020 
OCGAN 

[91] 
Own dataset 

realface, ST score = 0.018 
Spatial-temporal 

score (ST score) 
--- dfl-h128 ST score = 0.061 

dfl-sae ST score = 0.075 

2021 
PGD-ODI 

[87] 
CelebA CycleGAN 

L2 = 0.283 

Distortion score = 0.47 

L2 norm, distortion 

score 

Limited to the gradient-

based attacks and target 

only one GAN model. 

2021 

Transfer, 

Siamese, 

Latent 

Siamese  [96] 

Face Scrub 

dataset 

Deepfake 

autoencoders 
BRISUE=46.19 

SSIM, FISM, 

BRISUE 

 
 

Results were 
concluded on 1500 

samples only. 

2021 
Nullifying 
Attack [98] 

HQ-CelebA 
Img2Img 

GANs 
LAS-GAS ASR= 85 

Query Count 

 

 

The vulnerability of 

Img2Img GANs against 

attacks should be 

reduced 

2022 
LAE attack 

[92] 
CelebA-HQ 

SimSwap Similarity = 0.21 L norms, 

normalized mean 
error (NME), 

mean confidence 

difference (MCD) 

Not able to produce 

an adversarial 
example identical to 

the original fake 

image. 

GANimation, 
L2 = 0.001, 

NME = 0.025 

StarGAN 
L2 = 0.014, 

MCD = 0.10 

2022 LUP [93] CelebA 

GANimation 
Avg. Norm = 3.07, 
Success Rate = 98.6 

--- --- 

StarGAN 
Avg. Norm = 6.36, 

Success Rate = 100 

2022 

Deepfake 

disrupter 

[94] 

CelebA, 
VoxCeleb1 

StarGAN, L2 = 0.326 
L2 norm --- 

GANimation L2 = 0.073 

                  



2022 

Perceptual 
aware 

adversarial 

attack [95] 

CelebA 

StarGAN 
PSNR = 5.292, 
SSIM = 0.251 

MSE, PSNR, 

SSIM 

Adversary can evade 
the attack by 

cropping the 

background, if the 
perturbation is not 

introduced in the 

facial area 

AttGAN 
PSNR = 15.975, 

SSIM = 0.634 

Fader Network 
PSNR = 11.047, 
SSIM = 0.320 

2022 

CDMAA 

(based on I-

FGSM) [97] 

CelebA 

StarGAN ASR = 100 

--- 

Experiments were 

performed on image 

dataset only. 

AttGAN ASR = 62.9 

SRGAN ASR = 62.4 

U-GAT-IT ASR = 100 

2023 
Restricte 

Black Box 

Attack [99] 

TCA-GAN 

StarGAN, StarGAN = 0.591 

BRISQUE, SSIM, 
FISM 

Limited to distort 
face swap generation. 

GANimation GANimation = 0.796 

SaGAN, SaGAN = 0.864 

AttGAN AttGAN = 0.841 

2023 

Saliency-

aware 

Attack 

[100] 

CelebA StarGANs 
L1 = 0.016, 

L2 = 0.068 

L1 and L2 error 

 

Limited to fail 

starGAN only. 

*(Acc=Accuracy, ASR=Attack Success Rate, PSNR = Peak Signal-to-Noise Ratio, SSIM = Structural Similarity Index) 

7.3 Analysis and discussion  

This section includes an analytical discussion of adversarial attacks on visual deepfake generation methods. 

Adversarial attacks on deepfakes generators mainly involve two types of attacks, one that causes the deepfakes 

generation model to output the disrupted images. The other causes the generation model to be non-functional and 

output an image like the input image. LAE attack [92] disables the deepfakes generation by not putting the desired 

manipulation in the input adversarial example (LAE-generated image). When the LAE-generated image is passed to 

the manipulation algorithm, it outputs an image like the target image but still a deepfake image that is not visibly 

disrupted. So, this attack [92] cannot be considered too effective in preventing the deepfakes generation. Mostly, 

existing works introduce attacks that lead image translation models (such as StarGAN, Pix2Pix, CycleGAN, etc.) to 

deliver distorted images. For instance, the paper [90] performed both types of attacks but evaluated only for 

CycleGAN, Pix2Pix, and Pix2PixHD models (which generate attribute-manipulated deepfakes). The methods [84] 

and [85] utilized the watermark techniques, which caused the deepfakes generation models to output the blur or 

disrupted fake images. The smart watermark framework [84] only defends against the StarGAN manipulation 

algorithm, while the CUMA watermark [85] fails the StarGAN, AttGAN, HiSD, and AGGAN manipulation 

techniques. Most of the attacks are performed using GAN-based methods that generate either attribute-manipulated 

images or entire synthetic faces. Thus, the effectiveness of such attacks for other types of deepfakes generated through 

different deepfakes generation models is unknown. Most of the adversarial attacks generate adversarial examples 

against specific deepfake generation models, indicating the limited transferability aptitude of such attacks. However, 

the OCGAN attack [91] showed good transferability but only for the two different face swap generation models. 

Moreover, in existing works, significantly less attention is given to the black box attacks for disrupting the deepfakes. 

Fig. 9. General framework of attacks on speaker verification system. 

                  



Additionally, the existing works cause the generation models to generate disrupted fake images, which can be easily 

identified as fake by humans, but the performance of deepfake detection methods on such images is not demonstrated. 

Only in [94] it shown that the disrupted images generated through their method were also correctly identified as fake 

ones by deepfakes detectors. 

Overall, the limitation exists in the transferability of adversarial examples among different deepfakes generation 

methods. So, it is required to show the effectiveness of adversarial attacks for unknown deepfake generation methods, 

because, in a real-world scenario, it is unknown which deepfakes generation method is going to be used. Additionally, 

adversarial attacks on deepfakes generation models can be ineffective in the case when adversarial noise detectors are 

utilized to identify the anomalies before the deepfakes generation. Also, the blurring and compression techniques, if 

applied to the adversarial examples generated, can minimize their effectiveness while disrupting the deepfakes 

generation. 

8 Adversarial attacks on audio/voice recognition models and system 

Adversarial attacks on the audio/voice domain include the addition of perturbations to the audio signal to trick deep 

learning models or voice detectors. Existing surveys [3, 23, 101, 102] include multiple attacks with categorization in 

this domain; however, we reviewed selective literature of recent years, including targeted or non-targeted attacks. In 

addition, depending on the knowledge of attacks, white box and black box attacks are also reviewed. We categorize 

these attacks into gradient sign methods and optimization attacks. The general framework of attacks on audio detection 

and speaker verification systems shown in Fig. 9 and Table 8 presents the overview of audio-based attacks.  

8.1 Gradient sign-based adversarial attacks 

In this categorization, gradient-based methods were used to generate adversarial examples. Liu et al. [103] proposed 

targeted gradient sign-based FGSM and PGD attacks. These attacks were performed on mel spectrograms of the 

ASVSpoof 2019 dataset in a white and black box setting. Several victim models were used, including LCNN-Big, 

LCNN-Small, and SeNet. The best EER achieved on the LCNN model is 93.11% by PGD attack. Li et al. [104] 

proposed room impulse response (RIR) modeling to investigate the realism and practicability of adversarial training 

with a real-time, over-the-air attack. A practical and systematic white box adversarial attack named X-vector was 

conducted to challenge the state-of-the-art deep neural network (DNN) based speaker recognition system. It caused 

the speaker recognition system to make inaccurate predictions or even force the audio to be recognized as any 

adversary-desired speaker by adding a carefully constructed, unobtrusive noise to the original audio. It is possible that 

incorporating an assault on the estimated room impulse response (RIR) into the adversarial example training process 

will result in useful, over-the-air audio adversarial examples. This attack [104] gives a 98% success rate in digital 

attacks and a 50% success rate with ASR 50 on over-the-air attacks to the x-vector using the VCTK dataset. Zhang et 

al. [105] proposed an ensemble method based on the MI-FGSM adversarial attack in a white box setting. In addition, 

adversarial examples created through this technique failed ResNet 34 with an ASR of 100%. The black box attacks 

vary significantly in ASR across models, from 24% to 84%, and this method causes perceptible perturbation Wang et 

al. [106] proposed an imperceptible, inaudible white box adversarial attack. This method [106] achieved an ASR of 

98.5% by limiting the perturbation to the actual audio’s mask threshold and producing targeted, inaudible perturbed 

samples of the original sound waveform. They also applied their method to other waveforms, such as music. 

8.2 Optimization based attacks 

Nakamura et al. [107] proposed a white box verification-to-synthesis attack on the voice conversion (VC) system. 

With the possibility of the trained network distorting the input voice's phonetic features, an automatic speech 

recognition model is incorporated into the optimization process to control the amount of phonemic information that is 

lost. The resulting output voice is not only convincing to the ASV system but also retains its perceived quality. The 

experiments were performed on a d-vector using a Japanese dataset. Xie et al. [108] proposed an attack, which adds 

distortions in the sound due to the physical over-the-air propagation of the room, utilizes that information to estimate 

the impulse response of the room (RIR), and achieves an attack success rate of over 90% and an ASR of 90.19 on the 

x-vector using the VCTK dataset. Li et al. [109] examined the susceptibility of Gaussian Mixture Model (GMM) i-

vector-based speaker verification systems to adversarial attacks. Adversarial samples created for GMM i-vector-based 

systems may be used successfully in x-vector-based systems, and FGSM enhances testing phrases for producing 

adversarial samples in a white box setting. Both the i-vector and x-vector versions of the GMM are vulnerable to 

attacks as the accuracy of the system falls from 87.50% to 25.75% on the VoxCeleb1 dataset. Chen et al. [110] 

introduced optimization-based FGSM for adversarial training, where white box and black box attacks were performed 

against the same ASV in a cross-corpus and cross-feature scenario. This method [110] employed an optimization-

based approach to estimate the score threshold and perform targeted attacks against the i-vector and GMM-UBM 

                  



using the LibriSpeech and VoxCeleb1 datasets. For speech emotion recognition (SER), a generator-based STAA-Net 

attack was proposed [111] that efficiently generates transferable and sparse adversarial perturbations in an end-to-end 

manner. The generator was trained using Emo18 and WavLM as threat models and produced adversarial examples in 

a single forward pass. The generated adversarial examples were used to attack the Zhao19 and wav2vec 2.0 models 

and show good transferability. 

8.3 Other attacks 

These attacks are comprised of techniques that are either an ensemble or a combination of multiple methods, not 

included in the categories. In [112], dictionary attacks on ASV were proposed, in which attackers can target a large 

speaker population with this method, even if they don't have detailed information about any particular speakers or 

models. It also suggested an adversarial optimization method for artificially creating master voices. Dictionary attacks 

are a realistic security concern for mission-critical applications of speaker verification. The attack was performed in a 

white box setting on the VGGVox model using the VoxCeleb2 dataset. Tian et al. [113] investigated black box attacks 

on ASV using a feedback-controlled VC architecture. The feedback ASV score is used together with the objective 

function to maximize the training of the feedback-controlled VC. The findings suggested that ASV functionality can 

be harmed by black box attacks. The adversarial examples generated without ASV input are indistinguishable, and 

experiments were performed on an i-vector using the ASV spoof 2019 dataset with a 30.73% EER rate. Chen et al. 

[114] proposed multiple targeted and non-targeted attacks in white and black box settings against the speaker 

recognition system that are combinations of gradient sign, evolutionary, and optimization-based methods. These 

perturbations based on PGD, FGSM, FAKEBOB, and C&W attacks, etc., were injected into Mel-spectrograms of 

voice signals to fool the system. Experiments were performed on the LibriSpeech dataset in different experimentation 

settings, but overall, the C&W attack with the L2 white box attack attained the highest attack success rate of 97.1%.  

Abdullah et al. [115] proposed a discrete Fourier transform (DFT) and singular spectrum analysis (SSA)-based 

targeted black box attack that introduces perturbations to every single phoneme after a few words. This feature-based 

method targets the MFCC of the TIMIT and word audio datasets. Chen et al. [116] proposed an arbitrary source-to-

target attack by adding perturbation to waveform signals of voice on 14 different speaker verification systems; these 

attacks include multiple gradient signs and optimization methods. This attack included target and non-targeted 

scenarios in white and black box settings on the LibriSpeech dataset. This attack achieved the best ASR rate of 100% 

on the ECAPA model, but it is limited to the source-to-target attack only. Rabhi et al. [117] show audio deepfake 

classifiers are vulnerable to adversarial assaults. Two new methods target the Deep4SNet classification algorithm, 

which first detects counterfeit audio samples with 98.5% accuracy. Generative adversarial network (GAN) assaults 

reduce detector accuracy to almost 0%. The detector's accuracy reduces to 0.08%, even with gray box attacks. The 

paper emphasizes the need to research the reliability of alternative audio-deep fake detection structures. He et al. [118] 

explored the unique characteristics of adversarial audio, focusing on phonetics. Researchers analyzed 2,400 audio 

samples, revealing 612,000 acoustic-statistical features, including energy gaps, speech-like morphology, disordered 

signals, and anomalous linguistic patterns. They developed a naturalness score and proposed an adversarial example 

detector with an average precision of 91.1%. Experimental investigations showed that adversarial examples 

significantly affect model accuracy, increasing false positives and false negatives and decreasing overall accuracy. 

Further research is needed to refine detection techniques, explore innovative defense strategies, and understand 

adversarial attacks. Umar et al. [119] introduced an ensemble of surrogate model–based losses combined with a 

transcription loss to enhance the transferability of GAN-based anti-forensic attacks across white-box, gray-box, and 

black-box audio deepfake detectors. 

8.4 Analysis and discussion  

The susceptibility of audio-based systems to adversarial attacks and their potential vulnerabilities are discussed in this 

section. A gradient-based adversarial attack [103-106] includes modifying the loss function's gradient concerning the 

input instances and then introducing a small, carefully prepared perturbation in the direction that maximizes the loss. 

This technique is quick and capable of producing adversarial samples quickly, but these attacks may degrade the 

performance during transferability from the white to black box setting [103]. Gradient-based adversarial attacks may 

be less effective than optimization-based attacks, as they may not identify the optimal perturbation that maximizes the 

loss.  

An optimization-based adversarial method [107-110] involves the resolution of an optimization process to determine 

the ideal perturbation that maximizes the loss. This method is computationally costly, but it can produce more effective 

adversarial examples since it determines the ideal modification that maximizes the loss. Optimization-based 

adversarial attacks may employ gradient descent, optimization, genetic algorithms, or other optimization approaches. 

However, optimization-based adversarial attacks may be more complex to implement and demand additional computer 

                  



resources than gradient-based attacks. There are several techniques that are either combinations of other methods or 

attacks [112-116]. In general, the decision between several categories of adversarial attacks is determined by the 

requirements and resources of the system. Gradient-based adversarial attacks are quicker and less complicated, but 

they may not be as effective as optimization-based attacks. Optimization-based adversarial attacks are more 

successful, but they demand additional computer resources and may be more challenging to implement. 

Table 8. An overview of adversarial attacks on audio. 

Year Attack Victim Model Dataset 

Perceptual 

Similarity 

Measure 

Results 

Limitations Before 

Attack 
After Attack 

Adversarial Attacks on Audio 

Gradient Sign Based Adversarial Attack 

2019 

FGSM, PGD 

(White and 

Black box)  

[103] 

LCNN-Big 

LCNN-Small 

SeNet 

ASVspoof2019 EER=93.11 - Acc= 48.4 
Less effective in a 
black box setting 

2020 

Adding 
perturbation 

with RIR, 

black box 
[104] 

x-vector 
VCTK corpus, 
Kaldi toolkit 

- ACC=98 ASR=96.9 
Some perturbations 

are less effective 

2020 

MI-FGSM 

ensemble-
based attack 

[105] 

LCNN/AFNet, 

SENet50, 

ResNet34 

ASVspoof2019 

ASR = 

84(black) 

100(white) 

- - 

ASR degraded 

during white to 
black box. 

Transferability. 

2021 
Inaudible 

[106] 
x-vector Aishell-1 

Score=91.5, 

ASR=98.5 
- - 

Limited to 1 dataset 

testing 

Optimization-Based Adversarial Attack 

2019 

White box 

V2S attack 

[107] 

d-vector Japanese dataset Score= 0.713 - - 
Results were not 

measured by standard 

measures. 

2020 

Adding 

perturbation 

with RIR, 

White box 

[108] 

x-vector VCTK corpus 
ASR= 90.19 

 
- - 

computationally 

complex, evaluated 
on one dataset 

2020 
FGSM (white 

box) [109] 

GMM (i-vector 

and x-vector) 
Voxceleb 

EER= 99.95, 

FAR=99.99 
- - 

Computationally 

complex, limited to 
one model. 

2021 

FGSM 

(Targeted 
White and 

black ) [110] 

i -vector, GMM-
UBM 

LibirSpeech 
Voxceleb 

FRR=4.2, 

FAR=11.2, 
ASR=99, 

UTR=99 

- 
 
- 

Tested with two 
datasets only. 

2024 
STAA-NET 

[111] 

Emo18, Zhao19, 

Wav2vec, 
WavLM 

DEMoS, 

IEMOCAP 

ASR=17.5 

SNR=92.8 
- - 

Tested with two 

datasets only. 

Other Adversarial Attack 

2019 
Dictionary 

attack, white 

box [112] 
VGGVox VoxCeleb 

EER=8, 

FAR=1 
- - Not robust 

2019 

Feedback-

controlled VC 
attack [113] 

i-vector 

(WSJ) corpus 
and CMU-

ARCTIC 

database 

area of shift 

(female=7.40, 
male= 4.62) 

- - 

Results were not 

measured by 
standard measures. 

2021 FGSM [114] 

GMM i-vector, 

x-vector, 
AudioNet 

LibirSpeech 

ASR=100, 
L2=0.082, 

SNR=46.93, 

PESQ=3.77 

ACC=99.8 
C&W=20, 

ACC=5.9 

Limited to few 

attacks. 

2021 
4 targeted 
black box 

attacks [115] 

Google (Normal), 

Google (Phone), 

Wit, DeepSpeech1, 

and Sphinx 

Word audio 
dataset and 

TIMIT 

PEQS=1.7, 

ASR=100 

AUC=0.93 

 
AUC=0.52  

2022 
AS2T attack(white 

and black) [116] 

GMM, CNN, LSTM, 

and 11 other LibirSpeech 
ASR= 97.4, 

EER=  2.2 
- - 

Limited to specific 

systems 

2024 
White, grey, 

and black box 

attacks [117] 
Deep4SNet LJSpeech dataset ASR= 87.6 Acc=98.5 Acc=0.8 

Limited to the 

specific dataset 

                  



2024 
White and 
black box 

attack [118] 

Kaldi DNN-HMM 

model, DeepSpeech 

model, and LAS 

model 

VCTK corpus Acc=91.1 - - - 

2024 
GAN-based 
attack [119] 

AI-generated 
audio 

RawNet2, 

TSSDNet, 
ResNet, 

MS-ResNet2 

PSNR, SSIM 
Acc=93.0, 

 
After_Acc = 

61.4 

Less effective and 

less performance 

drops. 

*(Acc=Accuracy, ASR=Attack Success Rate, PESQ = Perceptual Evaluation of Speech Quality, EER= Equal Error Rate, FRR = False Rejection 

Rate, FAR = False Acceptance Rate) 

9 Countermeasures against adversarial attacks on visual deepfakes detection and generation 
Adversarial defense techniques are designed to prevent malicious attacks from deceiving the models. The objective 

could be accomplished by either strengthening the model's robustness or eliminating the attacker process. The former 

can be further subdivided into proactive and passive defense algorithms. The distinction between these two categories 

is that proactive defense intends to enhance the performance of the model, whereas passive defense seeks to reduce or 

completely remove adversarial perturbations. The following sections provide the existing literature for these 

methodologies. The taxonomy of defensive techniques against visual adversarial attacks is shown in Fig. 10. 

9.1 Proactive defensive techniques against visual adversarial attacks  

Proactive defense strategies aim to improve the model's robustness and enable it to perform accurate predictions for 

adversarial samples. Proactive defense typically requires further training of the model or additional optimization of 

model parameters and structure to make it different from the original model. We focus on representative proactive 

defenses in this section, primarily adversarial training, optimal neural networks, and ensemble learning. The general 

framework of proactive defense is given in Fig. 11. 

9.1.1 Adversarial training-based defense  

Adversarial training is the process of injecting adversarial samples into the model's training data to make it adversarial 

robust. The adversarial training framework is widely considered one of the most effective principled defenses against 

adversarial attacks as it exposes the model to adversarial samples in training to gain some level of immunity. In [16], 

an adversarial training-based min-max game was introduced as a proactive measure to an adversarial attack. Training 

samples of the FF++ dataset were blurred with pixel-wise Gaussian blurring during the generation process. This 

technique helped the model to detect deepfakes in a generalizable and robust manner. The efficient and combined 

model achieved the best results, which was 98%. In [66], Naive Max-pooling and Feature Max-pooling defense 

methods are used against various attacks in both black and white box testing. To improve the robustness of the 

defensive method, the detector is retrained with the adversarial samples obtained after the attacks. The detector is 

based on ResNet-50 and trained on CelebA-HQ, with four provided attribute vectors: age, smile, pose, and gender. 

Without any attacks, the original detector has classified 1000 inputs with 99.6% accuracy and with an average 

prediction rate of 98.7%. The defense detector retrained with StyleGAN has correctly classified all 1000 inputs with 

an average confidence prediction rate of 99.5%. In [120] GAN-based network features a dual channel that consists of 

multiple modules to provide supplementary knowledge from latent space. It is proposed as a countermeasure against   

Fig. 10. Comprehensive Taxonomy of Defensive Techniques Against Visual Deepfake. 

                  



adversarial attacks on deepfakes. The model is beneficial for training forensic detectors with strong robustness against 

adversarial attacks. It is neutralized by adversarial perturbations by injecting new noises. The results show that the 

defensive method has shown good precision on DenseNet, ResNet, XceptionNet, and DefakeHop when tested against 

the other methods. Uddin et al. [121] introduce a novel method for identifying anti-forensic attacks on High-Efficiency 

Video Coding (HEVC) compressed videos, with a particular emphasis on those produced by GANs. The study 

enhances the efficacy of forensic tools in identifying tampered videos by employing deep learning to analyze coding 

patterns and detect GAN-based manipulations. However, it may not cover all attack scenarios and is dependent upon 

the use of extensive datasets. Furthermore, the efficacy of the method may fluctuate depending on the type of video 

content and the compression level. Chen et al. [17] proposed a deceptive mechanism based on statistical hypothesis 

testing to detect deepfake manipulation and adversarial attacks. A deceptive model with two isolated sub-networks is 

designed to generate random variables for deepfake detection, and a maximum likelihood loss is used to train the 

model. The experiments show the effectiveness of the decoy mechanism in detecting both Deepfake and adversarial 

attacks across different methods. A limitation of the proposed method [17] is that it assumes the attacker is unaware 

of the decoy mechanism and the training process. If the attacker gains knowledge of these aspects, they can develop 

targeted attacks that may bypass the detection system. 

9.1.2 Ensemble and fusion-based defense 

Ensemble learning for adversarial defense can be summed up as training an ensemble of models to achieve the same 

class label, but every model should be different as much as possible for improved generalization performance. In 

[122], a robust deepfake detection architecture was proposed called EnsembleDet. This ensemble model can detect 

deepfakes against the fast gradient sign method and basic iterative method. For the experiment, the FF++ dataset was 

used to train the classifiers. Different classifiers, including MesoNet, XceptionNet, simple ensemble, and GASEN-

based ensemble, were used. The simple ensemble model achieved higher accuracy against both FGSM and BIM 

attacks on all subsets of FF++ datasets, whereas the DF subset of the FF++ GASEN-based ensemble achieved the 

highest accuracy against FGSM attacks. Although the simple ensemble model showed good accuracy, its precision 

rate is lower than that XceptionNet. The increasing number of parameters during the ensemble-based model training 

causes high computational costs. An ensemble method [123] tackles the adversarial attacks like L2 and L infinity 

perturbation norms performed on multiple shallow architectures of Flickr faces HQ dataset under both black and white 

box testing. In this paper, Disjoint Deepfake Detection (D3) is proposed as a defensive method against adversarial 

attacks. D3 utilizes disjoint partitions of the input characteristics to construct a solid ensemble of models. By analyzing 

the results with state-of-the-art defense methods, it can be noticed that D3 maintains 100% adversarial accuracy against 

AutoAttack, whereas the other methods drop below 20%. Kumar et al. [124] studied modern methods for identifying 

generative artificial intelligence-generated multimedia content. They classified single-modal and multi-modal 

detection strategies as conventional or advanced techniques, using machine learning for handcrafted features and deep 

learning and hybrids for improved detection. Amerini et al. [125] developed an ensemble approach called D-Fence to 

detect deepfakes. The system classifies altered facial and vocal features and Video-Audio and Audio-Text interactions. 

The D-Fence layer was tested against two novel adversarial attacks: Bogus-in-the-middle and down sampling. D-

Fence achieved 92% detection accuracy despite obstacles. In sophisticated multi-modal deepfake detection, D-Fence 

outperforms the classifiers.  

9.1.3 Autoencoder-based defense 

Autoencoder-based defensive techniques provide reconstruction phenomena against adversarial modified samples to 

remove perturbation. In [126], a residual fingerprint-based defense is introduced against BIM, FGSM, PGD, Inversion, 

and additive noise attacks. The reconstruction method poses strategies to degrade adversarial efficacy and extract 

discriminative residual fingerprints. It also reconstructs adversarial samples by removing the original deepfakes from 

the corresponding adversarial ones. To maximize the difference between real and fake images, another strategy of 

Fig. 11. Detailed schematic of the proactive defense technique in deepfake detection. 

                  



transforming the residual fingerprints with a Discrete Cosine Transform component is used, which produces 

discriminative traces for further deepfake detection. The defense model shows significantly improved accuracy from 

50.88% to 84.05% in classifying the FGSM-based adversarial images. In [127] MagDR, a Mask-Guided Detection 

and Reconstruction pipeline, is used to defend deepfakes from adversarial attacks by C&W and PGD. MagDR starts 

with a detection method that establishes a few criteria for assessing the abnormality of deepfake output and uses those 

criteria to direct a learnable reconstruction process. To record the change in specific facial regions, adaptive masks 

are extracted. From the experiments, it can be analyzed that MagDR defends three main types of deepfakes under both 

black and white box attacks. Extensive experiments are performed to demonstrate the effectiveness of the model on 

defense-aware and defense-unaware attacks, and it can be analyzed that the MagDR has shown the highest detection 

as compared to the state-of-the-art models. Ding et al. [120] proposed a method to improve the security of facial 

bioinformation by identifying and eliminating adversarial perturbations. This includes the preprocessing of facial 

images to prevent potential perturbations, thereby guaranteeing accuracy and reliability. The effectiveness of the 

experiment is in protecting bioinformation from attacks. However, the method's potential performance degradation 

and the difficulty of employing it in sophisticated techniques are among its limitations. 

9.1.4 Regularization as optimized defense 

According to researchers, deep neural networks are vulnerable because of their weak structure and parameters, making 

them susceptible to adversarial perturbations at the image level. The methods based on neural network optimization 

aim to increase the robustness of the model by enhancing its parameters, such as regularization, or modifying its 

structure. In [128], adversarial attacks FGSM and C&W L2 are performed on ResNet and VGG in black as well as in 

white box settings on the fake images created through Few Shots face Translation GAN [129]. Lipschitz 

Regularization and Deep Image Prior (DIP) defensive techniques were used in [128] to make the model resistant to 

adversarial perturbation. On average, Lipschitz regularization improved the detection of adversarial perturbed 

deepfakes by ResNet models in the white box CW- L2 setting, where even the regularized model correctly classified 

only 2.2% of the perturbed fake images. However, the DIP defense illustrates more encouraging findings. With a 

classification threshold of 0.25, it achieved a recall of 97.8% for both perturbed and unperturbed fake images. It can 

be noticed that DIP defense outperformed regularization for deepfake detection, as it improved robustness to 

adversarial perturbations slightly, but the performance remains impractical for real-world scenarios. In [130] a 

regularization based video deepfakes detector is proposed. Regularization strengthens the model’s generalizability, 

making it robust against diverse manipulations and postprocessing attacks. 

9.1.5 Other techniques 

Many other proactive defense techniques are introduced with the aim of protecting the content from malicious attacks. 

Deb et al. [131] introduced a unified attack detection system (UniFAD) that can learn 25 coherent attack types from 

the three categories of adversarial, digital manipulation, or physical spoofs. Mostly, defensive techniques achieve 

perfect accuracy when tested against one of three types of attacks; however, when tested against all three types of 

attacks, their accuracy is downgraded. UniFAD learns joint representations for coherent attacks using a multi-task 

learning framework and K-means clustering, while uncorrelated attack types are learned separately. On the FakeFace 

dataset, having 25 different attack types of all three categories, the proposed UniFAD outperforms existing defense 

methods with an overall TDR of 94.73% and 0.2% FDR. Even UniFad can recognize the attack categories with 

97.73%. Without affecting the significant artifact features, the DF-UDetector introduced in [132] detected the 

degraded deepfake images by converting the degraded feature maps into high-quality ones. The deepfake images are 

degraded with different strength levels of noise, blur, and compression. The attained accuracy of the model on different 

datasets was less than 90% for the degraded images but better than existing models. This method is robust against 

degradation attacks but is still vulnerable to adversarial attacks such as PGD, FGSM, etc. Uddin et al. [133] introduced 

a novel method to improve the resilience of digital face image classifiers against adversarial attacks. The technique 

enhances its capacity to manage adversarial inputs by employing open-set multi-instance learning to differentiate 

between known and unknown instances in an image. It evaluates the consistency of predictions across multiple 

instances to identify anomalies. However, it has limitations such as computational complexity and potential varying 

effectiveness based on attack nature.  

Asha et al. [134] introduced an optical flow-based CNN with self-attention architecture that was robust against 

adversarial attacks while detecting deepfakes. Self-attenuated VGG16 extracted the informative facial features from 

which optical flow vectors were computed and then passed to the sequential CNN. This model attained a classification 

accuracy of 74% in the presence of adversarial attacks, which is reasonably good. Pinhasov et al. [135] introduced a 

defensive mechanism for the security of deepfake detectors by employing XAI to improve the identification of 

malicious adversarial attacks. However, the assessment depends on the FF++ dataset, and the computational expense 

                  



continues to be a hurdle for real-time implementation. Wang et al.  [136] proposed a platform named DEEPFAKER, 

which is designed to evaluate the efficiency of deepfake creation and detection models. The platform's modular design 

enables effortless incorporation of new approaches, enabling researchers to include innovative detection techniques 

as the field progresses. However, it recognizes constraints such as the adequacy of the dataset and biases in the model. 

Park et al. [137] explore the simultaneous presence of deepfake disruption and detection in conventional security 

concerns. DDPM denoising training framework is employed to diminish defense time and minimize image distortion. 

The method produces deepfake images that closely resemble authentic ones, reduces defense time by 7.75%, and 

exhibits superior detection accuracy in disruption attacks compared to StarGAN and DiffPure.  

9.2 Passive defensive techniques against visual adversarial attacks  

Passive defense is intended to mitigate the damage induced by adversarial perturbation rather than to strengthen the 

model itself. The main advantage of this method is its ability to decouple model training and adversarial defense 

without modifying the already trained model, which allows defense methods to be implemented. The following section 

discusses passive defensive methods for protecting against adversarial attacks on visual deepfakes. The general 

framework of passive defense is given in Fig. 12. 

9.2.1 Image transformation 

Deep neural networks have been found to be generally robust when random image transformations are applied. 

However, perturbations are fragile under this method for adversarial samples, particularly those generated by the 

gradient. Based on this observation, researchers devised several defensive methods based on random image 

transformation techniques to counter adversarial attacks. In [63], in the first detection track, EfficientNet-B3 was used 

for deepfake detection of the Celeb-DF dataset. The fake image in the dataset was perturbed by PGD and MI-FGSM 

attacks. For better defense, the cross-entropy loss was employed with smoothing and up-sampling to prevent the model 

from misclassifying. In the second detection track, data augmentation, like a Gaussian blur, affine transformation, etc., 

was used to increase the dataset and trained with Efficientnet-b0 to improve the classification of a model against any 

adversarial attack. In the third detection track, FGSM was introduced in training samples to make the deepfake detector 

robust against adversarial attacks. EfficientNetV2 was used to train Celeb-DF original, augmented, and perturb 

images. Luo et al. [138] proposed bilateral filtering against three typical adversarial attacks: BIM, PGD, and FGSM 

on Xception and MesoInception in both black and white box settings on the subsets of the FaceForensics++ dataset. 

In this work, bilateral filtering is used in the passive defensive strategy, and joint adversarial training is used in the 

proactive defensive strategy. Leporoni et al. [139] proposed the Masked Depthfake Network (MDN), a technique that 

incorporates depth data into an RGB detector. For detection, the method extracts depth maps from RGB images and 

combines RGB features with depth information. MDN outperforms the average RGB detector, as evidenced by its 

91.26% accuracy on Deepfakes and 96.86% accuracy on the FF++ dataset. In addition, this method outperforms black 

box attacks and exhibits an accuracy of 95.69%. All these techniques help to prevent deepfake detectors from 

misclassifying against adversarial attacks. 

9.3 Analysis and discussion 
Adversarial-based defense methods aim to make a model more robust to adversarial examples by either modifying the 

model's architecture or training it on adversarial examples. These defensive methods are more robust against white 

box attacks; however, they still fail in the presence of strong attacks. Ensemble-based defense methods involve 

combining multiple models to make a more robust system. Ensemble defensive methods perform very well on black 

box attacks but are very computationally complex. Autoencoder-based defense methods reconstruct the input data to 

detect and remove adversarial examples. These methods reconstruct the input and compare it to the original samples, 

and if the reconstruction is significantly different from the original input, it is an adversarial example. The 

autoencoder-based defensive methods have not shown remarkable results against adversarial attacks as compared to 

other defense methods. It can be seen from literature that some methods, which do not fall under a specific category, 

have shown remarkable results against the attacks and their subtypes. All these methodologies have their own pros 

Fig. 12. Comprehensive diagram illustrating the general framework of passive defense techniques. 

                  



and cons; it depends on the nature of the problem, and the researcher decides which one is the best fit for their use 

case.   

There is limited literature available on passive techniques against adversarial attacks. Researchers are mostly focusing 

on proactive defensive techniques for several reasons, such as aiming to prevent an attack from happening in the first 

place and being more cost-effective. As proactive defense methods have shown to be more effective in preventing 

attacks, there is still room for improvement in passive defense techniques. The research community can work towards 

making passive defense methods more efficient and effective by improving the ability of passive defense methods to 

detect and respond to attacks in a timely manner. Therefore, the research community has an opportunity to bridge the 

gap between proactive and passive defense methods by enhancing their performance of passive defense methods. 

In this section, we comprehensively reviewed defensive methods against adversarial attacks and compared them in 

Table 9. Work reviewed under adversarial training and optimization-based methods has shown remarkable results 

against adversarial attacks. It is robust to adversarial attacks as it trains the model on small perturbations in the input 

by adding adversarial examples to the training data. This helps the model to learn to recognize and classify even 

adversarial examples that it has not seen before during training. This can make the model more robust to a wide range 

of attacks. Optimization-based methods aim to find the closest possible inputs to the adversarial example while still 

maintaining the desired output from the model. By finding the closest input, the optimization method can effectively 

reduce the impact of the adversarial perturbations and increase the model's robustness to attacks. 

10 Countermeasures against audio-based adversarial attacks 
In this section, defensive countermeasures against adversarial attacks on audio verification systems are presented. 

These systems are vulnerable to even small adversarial attacks, such as impulses and Gaussian noise, which can 

compromise their accuracy and reliability. To counteract these attacks, we reviewed several defensive techniques 

against well-known voice spoofing and adversarial attacks. We categorize these countermeasures into two groups: 

proactive and passive defense. The general framework of the audio defensive method is given in Fig. 13, and the 

literature is compared in Table 10.  
Table 9. An overview of Visual Defense Techniques. 

Year 
Defensive 

Methods 
Model Dataset 

Baseline 

Measures 

Results 
Limitations 

Attack Defense 

Proactive Defense 

2020 

Lipschitz 

Regularization, 

Deep Image 
Prior [128] 

VGG-16, ResNet-18 Celeb-A 
Accuracy, 

AUROC 

FGSM, 

C&W 

Acc = 

60.0 

Robust on one 
class, and its 

time taking/ 

2021 
EnsembleDet 

[122] 
Simple Ensemble FF++ 

Accuracy, 

F1 

FGSM 
Acc = 

94.45 
High 

computational 

cost. BIM 
Acc = 
94.1 

2021 

Residual 
Fingerprint-

Based Defense 

using CNN 
[126] 

Meso4, MesoIncpetion 
Deepfake detection 

dataset 
Accuracy, 
Precision 

MesoInception 

Computationally 
complex. 

BIM = 35.43 
Acc = 

81.65 

FGSM = 

44.32 

Acc = 

84.05 

PGD = 33.30 
Acc = 

83.91 

Inversion = 

44.32 

Acc = 

85.25 

Fig. 13. Comprehensive diagram of audio defensive techniques in deepfake detection. 

                  



 

Additive 
noise attack 

= 30.56 

Acc = 

85.25 

2021 

MagDR, a 

Mask-Guided 
Detection and 

Reconstruction 

[127] 

CycleGAN, StarGAN, 

GANimation 
FF++, CelebA 

PSNR, 

SSIM, 
MSE, 

Feature 

Similarity 

Face editing 

Leave 
perceptible 

artifices. 

C&W Acc = 96 

PGD 
Acc = 
100 

2022 

Adversarial 

training [16] 
 

EfficientNet, 
In-v3 

Grad-AAT, Grad-SAT, 

etc 

FF++ 
Accuracy, 

AUC 

PGD 

Acc = 22.06 

(Inc-v3) 

 

Pixel 

level 

blurring 
Acc = up 

to 99.46 

It may fail on a 

strong attack. 

2022 

Naïve Max 

Pooling, 
Feature Max 

Pooling [66] 

Resnet-50 CelebA-HQ 

Attack 

Success 

Rate 

Pixel level 

adversarial 

perturbation 

Acc = 75 -- 

2022 
GAN based 

model [120] 

DenseNet, ResNet-50, 

XceptionNet, DefakeHop 
FF++, Celeb-DF 

Accuracy, 

Precision 

Adversarial 

noise 

FF++: 

Acc = 

99.24 

Celeb-

DF: Acc 

= 97.39 

-- 

2023 

Unified attack 

detection 
system 

UniFAD using 
JointCNN 

[131] 

Joint CNN 
GrandFake dataset 

(own) 

TDR, 

Accuracy 

25 coherent 

attacks 

Acc = 

94.73 

Not 
generalizable on 

generic image 
manipulations. 

2023 

CNN with self-

attenuated 
VGG16 [134] 

VGG16 CelebDF, FF++ 

Accuracy, 

AUC, 
EER 

FGSM, BIM, 

PGD 
Acc = 74 --- 

2023 
DF-UDetector 

[132] 
EfficientNet CelebDF, DFDC  

Blur Acc = 85 Not vulnerable 

to adversarial 

attacks such as 
PGD, BIM, etc. 

Noise Acc = 78 

Compression 
Acc = 
76.17 

2024 
XAI based 

detection [135] 

Xception net, 

EfficientNetB4ST 
FF++ Precision 

PGD, 

APGD, NES, 

Square 
Attack 

 

Precision 

= 89.78 

Computationally 
complex, 

Robust on one 

class 

2024 D-Fence [125] 
Ensemble 

VGG-16 

DFDC, DF TIMIT, 
FakeAVCeleb, 

MMDFD 

 

BERT Acc=92 --  

Passive Defense 

2021 

Cross entropy 

loss with 

image 
preprocessing 

techniques [63] 

Own teacher and student 

models. 

DFGC-21 testing 

dataset, 
FaceForensic++, 

AUROC 
Noise, 

augmentation 

DFDC 

test 

AUC = 
0.682 

FF++-

test 
AUC = 

0.732 

--- 

2021 

Bilateral 
filtering 

(passive) Joint 

adversarial 
(proactive) 

[138] 

XceptionNet FF++ Accuracy 
BIM, PGD, 

and FGSM 

Acc = 

90.79 

Highly 
restrictive 

attack. 

2024 

Masked 

Depthfake 
Network [139] 

MDN FF++ Accuracy 

Gaussian 

blur, 
Gaussian 

noise, 

rescaling, 
translation 

AUC= 

98.50 

Restrictive to 

black-box 
attacks only. 

                  



10.1 Proactive defense techniques against audio adversarial attacks  

10.1.1 Adversarial training-based defense 

In the adversarial training defensive technique, gradient-based perturbed voice samples were added during model 

training. Wang et al. [140] introduced regularization-based adversarial training and produced adversarial examples 

through FGSM and local distributional smoothing methods. The experimentation was performed on the TIMIT dataset 

on the GE2E-ASV system. This technique slightly reduces the ERR rate of adversarial attacks, but the overall results 

are not satisfactory. Wu et al. [141] introduced a defense against PGD and FGSM attacks to greatly boost the 

performance of VGG and SENet on the ASVspoof 2019 datasets. To quantify and analyze the efficacy of deep models 

against adversarial noise, they generate high-level representations of voice samples retrieved by the self-supervised 

model and a layer-wise noise-to-signal ratio (LNSR), which provides up to 90% defense against white and black box 

attacks as well. Pal et al. [142] proposed hybrid adversarial training based on cross-entropy and marginal loss to 

withstand black-box attacks and have greater adversarial robustness. The experiments were performed on 1D-CNN 

on several white and black box scenarios and attained good defense, but the defense is limited to one tested model.  

According to [143], adversarial attacks on ASV systems can reduce their accuracy, and various attacks like Gaussian 

noise make the detection task more sophisticated and challenging. To lessen the impact of an adversarial attack, [143] 

used adversarial training (adversarial samples are incorporated into the training dataset) and adversarial Lipschitz 

regularization (ALR). ALR relies on a function that is designed to overlook incremental changes to the input. But this 

defense technique [143] is only limited to PGD, FGSM, and C&W attacks with 73% accuracy on the LibriSpeech 

dataset. Isik et al. [144] proposed neuromorphic audio processing, which examines security vulnerabilities in 

neuromorphic audio, specifically addressing adversarial techniques such as FGSM and PGD. A system with an FPGA 

has a 94% detection rate, excellent spike encoding, and a balanced signal-to-noise ratio. Technology outperforms 

current methods with a 5.39 dB signal-to-noise ratio. 

10.1.2 Refactoring-based defense  

For data purification against adversarial attacks, a pre-processing module can be used to denoise or rearrange the data 

for cleansing. This will help to achieve the purpose of defense and minimize the likelihood of an attack happening. 

Denoising and noise addition are two components of the larger process known as input refactoring, which refers to 

the collection of algorithms that preprocess the input data on the input layer. Wu et al. [145] proposed spatial 

smoothing and adversarial training based on the Mockingjay technique [146] on LCNN and SENet detectors. Since 

different attacks leave distinctive patterns on the sample, this approach [145] has only been tested on PGD attacks, it 

may have a limited defensive capacity due to the fact that adversarial training is less effective against novel attacks. 

The Transformer encoder representations from the alteration (TERA) model were proposed in [147] that employed 

self-supervised learning techniques to predict sequences of future frames based on the input. This research was heavily 

influenced by the Mockingjay defense that used self-supervised learning by processing audio samples with Gaussian, 

mean, and median filters. This technique is useful since it cleans up the samples without requiring any prior knowledge 

of the adversarial sample generation process and achieves an EER rate of 22.49%. 

10.2 Passive defense techniques against audio adversarial attacks  

The following section discusses passive defensive methods against adversarial attacks on audio deepfakes. Wu et al. 

[141] proposed a passive defense known as spatial smoothing through the use of median or mean filters. This method 

does not modify the attack model, but it enables it to detect adversarial examples without the need for additional 

training. Assuming that the adversary is unaware of the implementation of spatial smoothing on the input data before 

it is fed into the model, however, this intentionally created perturbation will be neutralized by the spatial smoothing, 

rendering the adversarial attack ineffective. Li et al. [148] constructed a defensive network, a VGG-like binary 

classification detector that discriminates between adversarial samples and authentic ones in the convolutional layer 

and pools the speech sequences for decision-making in the pooling layer. The binary classification detector exhibited 

good adversarial robustness on cross-model SRSs but decreased recognition accuracy in the face of various attacks 

(the model trained on adversarial examples generated by the BIM algorithm could detect 99.83% of BIM attacks but 

only 48.61% of JSMA attacks). Wu et al. [149] introduced self-supervised learning models (SSLMs) to filter out noise 

at the surface level in the inputs and reconstruct clean samples from interrupted ones. SSLM consists of two modules: 

one removes inconsistencies from audio, and the other compares the unaltered sample to the one that has been cleaned 

up to identify potentially harmful recordings. This method achieved an R-Vector of 14.59% GenEER and an X-Vector 

of 11.29% GenEER against JSMA, FGSM, and BIM attacks.  

Wu et al. [150] proposed neural coders to re-synthesize audio and discover discrepancies between the original sample 

and the re-synthesized audio samples against a BIM (PGD type) adversarial attack. Using this technique [150], 

adversarial noise was removed, and the authentic waveform was regenerated with less distortion. It is helpful because 

                  



it does not require knowledge of the attack algorithm. To add insult to injury, only a single neural vocoder 

implementation was employed. This method achieved the highest AUC of 99.94% against a BIM attack. Yoon et 

al.[151] introduced a new deepfake detection method, TMI-Former, which integrates features across visual, auditory, 

and linguistic modalities. This approach addresses challenges in sparse data environments and aims to overcome the 

limitations of traditional AI-based methods. TMI-Former is structured into four stages: vision feature extraction, 

representation, residual connections, and late-level fusion. It performs effectively in scenarios with limited identity 

data and single-instance deepfake examples. The model achieves accuracy rates of 18.75% to 19.5% and F1-scores 

from 0.2238 to 0.3561, surpassing previous multi-modal AI systems. This performance demonstrates the potential of 

complex, cross-modal interactions in enhancing deepfake detection systems, especially in restricted data 

environments. Villalba et al. [152] used representational learning to classify adversarial attacks and identify distinct 

attacks. Probabilistic linear discriminant analysis (PLDA) was implemented for the x-vector system and achieved a 

recognition accuracy of 71.8% for the classification of attacks within the training set and an error rate of 19.6% for 

identifying unknown attacks. Joshi et al. [153] trained the representation learning network with adversarial 

perturbations rather than adversarial training and used the time-domain denoiser to estimate the adversarial 

perturbations. This allowed us to train the network without the need for adversarial examples. In contrast to other 

methods, this method [153] can identify previously unknown attacks, although its detection accuracy is still poor. 

Uddin et al. [154] introduced a novel collaborative learning framework that is designed to identify anti-forensic 

manipulation generated by GANs. The authors proposed a system that employs multiple detectors to identify complex 

GAN-based forgeries, thereby improving the accuracy and robustness of anti-forensic detection. However, the method 

is limited to a substantial amount of training data, potential scalability concerns, and the expectation that all detectors 

are equally effective and reliable. Uddin et al. [155] proposed a robust defense framework against GAN-based anti-

forensic attacks on audio deepfake detectors. Their work also presented a comprehensive empirical analysis [156] of 

twelve state-of-the-art audio deepfake detection methods, evaluated across five benchmark datasets under four 

statistical and four optimization-based anti-forensic attack scenarios. 

Table 10. An overview of audio defense techniques. 

Ref. 
Defensive 

Methods 
Model Dataset Baseline measure 

Results 
Limitations 

Attack Defense 

Proactive Defense 

Adversarial Training-Based Defense 

2019 
Regularization 

[140] 

GE2E-

ASV 
TIMIT ERR = 4.87 

FGSM = 11.89 

LDS = 9.26 

FGSM = 8.31 

LDS = 4.60 

Slightly 

reduce ERR. 

Not robust. 

2020 
Adversarial 

training PGD 

[141] 

VGG, 

SENet 

ASVspoof 

2019 
Acc = 99.99 PGD = 37.06 Acc = 98.60 

Limited to 

defend against 

PGD and 
FGSM 

2021 

Hybrid 

adversarial 
training [142] 

1D-CNN LibriSpeech Acc = 99.95 

FGSM = 6.03, 

PGD = 0, C&W 
= 0 

FGSM = 90.60, 

PGD = 81.12, 
C&W = 80.12 

Limited to 

defend one 
model. 

2021 

Adversarial 

Lipschitz 

Regularization 
[143] 

1DCNN, 

TDNN 
LibriSpeech Acc=96 

PGD = 43.0, 
FGSM = 73.0, 

C&W = 58.0 

Acc = 93.0 
Limited to 

defend against 

few attacks 

2024 
NEUROSEC 

[144] 

RNN, 

CNN, 
DNN 

DDR4 

SDRAM 
- 

PGD, 

FGSM 

Detection rate = 

94 

Limited to 

defend against 
few attacks 

Refactoring Based Defense 

2020 

Spatial 

smoothing and 
adversarial 

training [145] 

LCNN, 
SENet 

ASVspoof 
2019 

Acc= up to 90 
PGD, FGSM 

(5-10) 
Acc= (80-90) 

Limited to 

defend against 

PGD attack 

2021 TERA [147] r-vector Voxceleb1 Err rate = 8.87 BIM = 66.02 22.94 
Tested with 

BIM attack 

Passive Defense 

2020 
Median and 

Mean filter [141] 

VGG, 

SENet 

ASVspoof 

2019 
ACC = 99.97 PGD = 37.06 Acc= 99.76 

Limited to 

defend against 

PGD and 
FGSM 

2020 
Detection 

network [148] 
VGG-like Voxceleb1 - BIM-even ERR = 0.46 

Performance 

degrades on 
other attacks. 

                  



2021 SSLM [149] 
x-vector, r-

vector 
Voxceleb1 AdvFAR = 5.97 BIM = 87.36 16.54 -- 

2021 
Re-synthesis 

[150] 
Vocoder 

Voxceleb1 

and 

Voxceleb2 

- 
BIM 

(FPR=0.01) 
Acc= 98.92 

Limited to one 
attack only. 

2021 
Representation 
learning [152] 

Espresso 

Voxceleb1 

and 

Voxceleb2 

- C&W- L2 Acc= 82.9 

Performance 

degrades on 

other attacks. 

2022 
Representation 

learning [153] 
AdvEst Voxceleb2 - 

FGSM, PGD, 

CW 

Acc= 96 

EER= 9 
 

2025 
GAN-based 
attack [155] 

AI-

generated 

audio 

RawNet3, 
RawNet2, 

TSSDNet, 

ResNet, 
MS-ResNet2 

Avg. Acc=95.5 
Avg. Acc = 59.7 

--- ----  

2025 

Statistical, 

Optimization, 
and GAN-based 

AF attacks [156] 

AI-

generated 

audio 

12 SoTA 

deepfake 

detectors 

AUC= 75 (raw), 

AUC= 86 

(spectrogram)AUC 
= 57.6 (statistical), 

AUC = 38.5 

(Optimization) 

MSE, SSIM  
Less methods 

explored. 

*(Acc=Accuracy, ASR=Attack Success Rate, EER= Equal Error Rate) 

10.3 Analysis and discussion 

This section presents the analysis and discussion of defensive approaches to audio deepfake methods, which cover 

both proactive and passive defense in audio. Proactive defense entails taking measures to prevent adversarial attacks 

from ever occurring. This involves adversarial training [140-143], in which the model is trained on adversarial 

examples to improve its robustness. These techniques include known adversarial examples during adversarial training 

[141] or hybrid adversarial instances [141]. In addition, the use of a regularization [140, 143] also provides detection 

models to better protect them from adversarial attacks. Other proactive defense strategies include refactoring and data 

preprocessing to eliminate hostile perturbations. It includes a feature-based pre-processing [145-147], but in 

comparison, adversarial training provides better defense than refactoring-based techniques. In contrast, passive 

defense entails detecting and mitigating adversarial attacks after they have been launched. This may involve 

employing anomaly detection or post-processing techniques to determine and eliminate adversarial perturbations from 

the inputs [141, 148-150, 152, 153]. Both proactive and passive defenses have benefits and drawbacks. Proactive 

defense has the benefit of being able to prevent adversarial attacks, but its implementation may be time- and resource-

intensive. Passive defense, on the other hand, can be more effective and less resource-intensive, but it does not prevent 

adversarial attacks and may only mitigate their effects. In general, the choice between proactive and passive defense 

is determined by the needs and resources of the system. Passive defense may be more suitable for systems with limited 

resources and low overhead, whereas proactive defense may be more suitable for systems requiring high security and 

robustness. 

11 Evaluation and perceptual similarity measures 
This section describes the perceptual similarity measures used in the reviewed papers to quantify the similarity 

between perturbed and original images. Most of the reviewed papers utilized the L-Norm (L0, L2, L∞) distance metrics 

to measure the extent to which the adversarial example is different from the original image. However, a few papers 

also used other metrics, including distortion score, perceptual image patch similarity (LPIPS), Fréchet Inception 

Distance (FID), etc.  

11.1 Attack success rate (ASR) 

The attack success rate [157] is a metric used to assess an adversarial attack's effectiveness as the percentage of times 

the attack successfully changes the model's prediction. This metric is a useful tool for providing insight into the 

performance of adversarial attacks, as well as potential measures that can be taken to mitigate the threat of such an 

attack. ASR can be computed as: 

𝐴𝑆𝑅 =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑)

(𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠)
                   (19) 

11.2 Equal error rate (EER) 

The EER [158] is the intersection of the false acceptance rate (FAR) and the false rejection rate (FRR) on the ROC 

curve. The EER quantifies the compromise between the FAR and FRR. The greater the performance of the biometric 

                  



system, the lower the EER. The EER can be calculated as the value at which the FAR and FRR are equal or by 

interpolating between the two closest points on the ROC curve. 

                            𝐸𝐸𝑅 =
(𝐹𝐴𝑅+𝐹𝑅𝑅)

2
                                                        (20) 

11.3 L-Norm 

L-norm is used in adversarial learning to measure the dissimilarity between the original and adversarial samples as 

well as to evaluate the robustness of a model [159]. Choosing an appropriate L-norm can effectively minimize the 

perturbation while still producing an incorrect prediction. The L-norm is easy to optimize and can be used to limit the 

size of adversarial perturbations to make them more realistic and less likely to be found. The formula for the L-norm 

in adversarial learning is: 

       minimize ||𝑥′ −  𝑥||𝑝, 𝑠. 𝑡. 𝑓(𝑥′) ! =  𝑦                                (21) 

Where x is the original input, 𝑥′ is the adversarial input, 𝑓(𝑥) is the model's prediction for input 𝑥, 𝑦 is the target label 

for the adversarial example, and p is the order of the L-norm. This formula is the mathematical expression of the trade-

off between model accuracy and the degree to which an adversarial example can be generated from a given input. This 

equation tries to find the smallest change (as measured by the L-norm) that can be made to the original input x to make 

an adversarial input 𝑥′that is different from the target label y. 

11.4 Similarity score 

The similarity score is determined by calculating the difference between the original and adversarial inputs. In other 

words, a higher similarity score implies that the adversarial attack has been successful in fooling the model, and a 

lower score indicates that the model has been robust against the attack [160]. The equation for the similarity score can 

take many forms, such as L-norm distance, cosine similarity, etc., depending on the specific task and the type of input. 

Consequently, choosing the appropriate similarity score for each task and input type is important. The L-norm distance 

between the original input and the adversarial input is often used as a basis for the similarity score equation and can 

be computed as:  

             𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =   
1 − ||𝑥′ − 𝑥||2

||𝑥||2                                 (22) 

where 𝑥 is the true input, 𝑥′ is the adversarial input, and L2 (𝑥) is the norm of x. Another example is the cosine 

similarity, which is calculated as: 

                   𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =  
(𝑥′ ∗ 𝑥) 

(||𝑥||∗||𝑥′||)
                       (23) 

where x and x' are inputs and L2 norms of the original and adversarial inputs, respectively; * is the dot product; and 

||𝑥|| and ||𝑥′|| are the L2 norms of 𝑥 and 𝑥′. 

11.5 Distortion score 

The distortion score in adversarial machine learning is a measure of how much the original input has been changed to 

create the adversarial input [161]. It is used to evaluate the success of an adversarial attack and to measure the 

robustness of a model against adversarial examples. Typically, the distortion score is calculated as a scalar value, with 

higher values indicating more distortion and lower values indicating less. One common equation for the distortion 

score is based on the L2-norm distortion score, which is calculated as: 

            𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =  
 ||𝑥′ − 𝑥||2

||𝑥||2                           (24) 

where x is the original input, x' is the adversarial input, and ||x||2 is the L2-norm of the original input. Another example 

is the L1-norm distortion score, which is calculated as: 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =
 ||𝑥′ − 𝑥||

||𝑥||
                           (25) 

where 𝑥 is the original input, 𝑥' is the adversarial input, and ||x||1 is the L1-norm of the original input. 

11.6 Fréchet inception distance (FID) 

Fréchet Inception Distance (FID) is a metric used to measure the similarity between two sets of images in adversarial 

machine learning [162]. It is based on the idea that a pre-trained network can be used to compare the feature 

representations of the images in the two sets. The Fréchet distance is a measure of the similarity between two 

                  



multivariate Gaussian distributions. FID only compares the feature representations of the images and does not account 

for the content or semantic information of the images. 

𝐹𝐼𝐷 = ||𝑥1 − 𝑥2||
2

2
+ 𝑇𝑟((𝐶1𝐶2) − 2(𝐶1𝐶2)

1

2)                          (26) 

11.7 Mean squared error 

Mean Squared Error (MSE) is a metric used to measure the difference between original images and adversarial images 

[163]. This loss function is frequently employed in regression analyses. The MSE can be calculated as: 

(𝑀𝑆𝐸) =  
1

𝑛
    ∑  (x′ −  x)2𝑛

𝑖−1                                                          (27) 

The square of the difference between the original and adversarial data is denoted by  (x′ −  x)2, where N is the total 

number of data points and x and x' are the original and adversarial data, respectively. 

11.8 Peak signal-to-noise ratio  

In adversarial machine learning, the peak signal-to-noise ratio (PSNR) is a method to compare the quality of a 

reconstructed image to the quality of the original image [164]. The PSNR is determined by dividing the maximum 

possible signal power by the maximum possible noise power. PSNR can be computed as: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑆𝑁𝑅 =  20 ∗  𝑙𝑜𝑔10(𝑀𝐴𝑋)  −  10 ∗  𝑙𝑜𝑔10 (𝑀𝑆𝐸)            (28) 

Where MAX is the pixel's maximum value, MSE is the mean squared error between the original and adversarial image, 

and log10 is the base 10 logarithm.  

11.9 Structural similarity index measures 

In adversarial machine learning, the Structural Similarity Index measures (SSIM) is the similarity between two images 

in terms of structural information and luminance, contrast, and structure [165]. It is a perception-based method that 

considers image degradation as a perceived change in structural information, as opposed to pixel value changes. SSIM 

can be computed as follows. 

𝑆𝑆𝐼𝑀 =  
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(2𝜇𝑥
2+ 𝜇𝑦 

2 +𝐶1)(2𝜎𝑥
2+ 𝜎𝑦 

2 +𝐶2)
                                                   (29) 

SSIM formula computes brightness, contrast, and structural similarities by using the means (𝜇), standard deviations 

(𝜎), and covariance (𝜎𝑥𝑦) of two images 𝑥 and 𝑦. To avoid division by zero, constants (𝐶) values are also added. 

11.10 Normalized mean error 

Normalized Mean Error (NME) is a metric used to measure the dissimilarity between two images, it compares the 

normalized pixel values of the two images and calculates the mean error between them [166]. The NME is calculated 

as the average of the absolute differences between the pixel values of the two images divided by the maximum value 

of the pixel as shown in Eq. (26). 

                                             (𝑁𝑀𝐸) =  
1

𝑛
    ∑

||x′ − x||2

𝑑

𝑛
𝑖−1                                            (30) 

NME compares the pixel values of two images by determining the sum of absolute differences divided by the highest 

pixel value (𝑑). NME values range from 0 to 1, with 0 representing perfect similarity and 1 representing total 

dissimilarity. 

12 Open issues, future direction, and recommendations 
Adversarial attacks, anti-forensics using GAN based approaches and defenses play a crucial role in the endless war 

between deepfake generation and detection. While considerable progress has been made in both the generation and 

detection of deepfakes, there are still limitations and challenges that must be overcome. Deepfakes, for instance, may 

be generated with high precision, especially given access to a massive amount of diverse training data, but even a 

small watermark may disrupt the generative process. Additionally, deepfake detection methods can be deceived by 

small perturbations or changes in parameters. The employment of adversarial attacks can easily fool deepfakes 

generators and detectors. In this section, we discuss the limitations of existing research and recommendations for 

continued efforts. 

12.1 Robustness of detectors against combined adversarial and anti-forensics attacks 

As technology advances, adversarial attacks pose a significant threat to the security and integrity of deepfake 

generators and detectors. To mitigate this threat, researchers introduce anti-forensics and adversarial attacks to their 

                  



systems as penetration testing to enhance the generalizability of these systems. However, existing adversarial attacks 

have various limitations, i.e., transferability, high dependency on model knowledge, limited multi-modal capability, 

high computational cost, limited realism and interceptability, domain dependency, lack of defense awareness, 

temporal inconsistency in video, vulnerability to detection, lack of adaptability to GAN-based generation, etc. Some 

of the limitations [67] and potential future directions of adversarial attacks on deepfake detectors and generators 

include adversarial training, GANs, and transfer learning. The detectors need to be robust against the combined effect 

of anti-forensics and adversarial attacks, and multi-order anti-forensics attacks.  

12.1.1 Evade generalization of GANs 

GANs and VAEs are powerful tools to generate deepfakes, however, adversarial attacks can be launched to undermine 

their generalizability by changing the parameters of the generator or discriminator module, especially in white-box 

scenarios. White box attacks can alter the generalizability of these models and lead to a generation of disrupted 

deepfakes. Additionally, adversarial attacks on GANs [83] are susceptible to adaptability and transferability problems. 

Attacks designed for one specific GAN architecture often fail when applied to a different type of GAN, limiting their 

broader applicability. This architectural dependency reduces the real-world effectiveness of such attacks, especially 

in diverse environments where multiple generative models may be deployed. Therefore, a key future direction in 

adversarial research is the development of transferable attack strategies that can degrade the performance of a wide 

range of GANs regardless of their specific design. Such advancements could be instrumental in building more resilient 

detection systems, as understanding how different models fail under pressure is critical to anticipating and mitigating 

their weaknesses. Ultimately, improving the adaptability and reach of adversarial techniques not only tests the 

robustness of current generative models but also guides the creation of more secure and trustworthy deepfake 

generation and detection frameworks. 

12.1.2 Watermarks and tags 

Watermarks and tags [10, 11, 167] on input samples can also cause the deepfake generators to create undesirable 

output. One possible direction can be the use of imperceptible watermarks, nearly invisible markers that are embedded 

in visual or audio data in a way that is undetectable to human perception but can disrupt deepfake generation models. 

These watermarks are particularly valuable because they are difficult for the generator to detect and remove, making 

it significantly harder for the model to produce convincing forgeries. It would be more difficult for the deepfake 

generator to avoid the watermark and produce realistic outcomes. As a result, imperceptible watermarks provide a 

powerful instrument in the continuing battle against deepfake technology. Unlike traditional watermarks, 

imperceptible versions are designed to blend seamlessly with the input data while still affecting the internal workings 

of generative models. Their subtle interference can degrade the quality of synthesized content, making it easier to flag 

manipulated media. This approach not only hinders the generator’s ability to create realistic outputs but also offers a 

more robust layer of defense in the arms race between deepfake generation and detection. Furthermore, the integration 

of imperceptible watermarks could enhance existing detection mechanisms by acting as passive markers for 

identifying synthetic media. Their presence can support forensic analysis and contribute to the development of more 

trustworthy media authentication systems. Overall, imperceptible watermarks represent a strategic, low-cost, and 

scalable method for disrupting deepfake generation while reinforcing the integrity of digital content. They hold great 

potential as a defensive tool in both research and real-world applications aimed at combating synthetic media threats. 

12.1.3 Adversarial training as an attack 

Adversarial training as an attack has shown promising results, but it has some limitations, such as the possibility of 

overfitting, in which the model becomes extremely specific to the training data and cannot generalize effectively to 

new data. This inability to transfer adversarial examples generated during training [141] to attack other models reduces 

its impact. The adversarial examples generated through training often lack transferability, they may succeed against 

the model they were trained on but fail to deceive other architectures, reducing their practical effectiveness in black-

box or real-world settings [35]. Additionally, adversarial training is computationally expensive. It requires iterative 

optimization processes like Projected Gradient Descent (PGD), significantly increasing training time and resource 

demands [168] . Despite these challenges, adversarial training remains a viable direction for creating more potent 

attack strategies. Future research could focus on developing unsupervised adversarial training methods that do not 

rely on labeled data, potentially expanding the attack surface and applicability across domains [169]. 

Furthermore, hybrid techniques that combine adversarial training with generative models such as GANs or diffusion 

models may offer new pathways for crafting robust and highly transferable attacks [170].This underscores the 

importance of continued exploration into adversarial training as both a threat vector and a benchmarking tool for 

robustness. 

                  



12.1.4 Model-specific attacks 

Model-based attacks can be created to exploit weaknesses in the architecture and settings of the deepfake detection 

model. These attacks can evade the model's security and cause it to inaccurately classify input samples. In a model-

based attack, the attacker constructs a surrogate model [171] using the target system and then produces input data 

intended to reclassify or attack the target system; however, these models are not transferable. The development of 

transferable surrogate models is a potential future direction in adversarial attacks. In addition to model transfer, key 

areas of emphasis include addressing domain adaptation challenges and improving attack optimization efficiency. 

12.1.5 Black box attack 

Black box attacks [99] test a model's robustness against adversarial cases or generate novel attacks for real-world 

scenarios. In these attacks, the attacker typically has no information about the target model other than its output in a 

query-based setup. Several current techniques calculate attack transfer rates on pre-trained models to generate 

perturbations in those models. This suggests that they possess full awareness of the target model's training data and 

thus violates the definition of a black box setup, which requires that the target model be trained on unobserved data 

and have an unknown number of output labels. True black box testing remains an unexplored area. 

12.1.6 Multi-modal attack 

Adversarial attacks on multimodal systems, process and integrate information from more than one modality, pose 

unique challenges and risks amplifies [172]. Although they provide enhanced performance by leveraging 

complementary signals, their multimodal nature inherits vulnerabilities of all the modalities, and ultimately, the 

adversarial threat.  
Future multi-modal adversarial attacks [173] against multi-model systems will become increasingly frequent and 

complex, and attackers will be capable of exploiting flaws in existing models to deceive those systems. For multi-

model (audio-visual) detectors, perturbation can be added to either audio or video to fail the detection capability. As 

a result, the multi-model system will become less dependable and trustworthy, and organizations will need to be more 

cautious to ensure their systems are adequately protected against adversarial threats. 

12.2 Defense  

A feasible way to protect deepfake generators and detectors from adversarial attacks is to develop more generalizable 

and resilient defensive methods. The future of defense against adversarial attacks on deepfake generators and detectors 

is likely to involve a combination of multiple approaches. Some potential strategies include adversarial training, 

ensemble methods, which are discussed in this section. 

12.2.1 Adversarial training as defense  

Adversarial training has emerged as a defense mechanism against adversarial attacks. In this method, the model is 

trained on both clean and adversarial instances to increase its resistance to future attacks. The following are potential 

future approaches for adversarial training [140-143] as a defense, as the field continues to progress. As adversarial 

attacks become increasingly complex, the efficacy of present adversarial training approaches will decline. 

Additionally, Bai et al. [174] highlighted the issue of generalization in adversarial trained systems on both unperturbed 

and perturbed test data scenarios, and on unseen attacks as well. Thus, future research can focus on developing more 

sophisticated adversarial training systems that can protect against a broader range of attacks with improved 

generalizability. Adversarial training has shown potential, but its efficacy in real-world conditions remains 

undetermined. Future studies should evaluate the efficacy of adversarial training in practical applications. 

12.2.2 Deep reinforcement learning and game-theoretic approaches 

Deep reinforcement learning can be used to defend against adversarial threats by developing a model that can 

withstand such malicious inputs. In [175], an adversarial attacks resistant reinforcement learning framework, coupled 

with Xception and Inception-ResNetv2, was proposed to counter deepfakes. In addition, game theory [16] can be used 

as a strategy that utilizes rewards or penalties as feedback signals to learn the optimal response to adversarial attacks. 

This strategy can be used to effectively recognize disrupted inputs and defend the system from harm or disruption 

caused by attackers. Another direction is the creation of more interpretable and explicable deep RL and adversarial 

ML models, which is another key direction. Interpretable models can provide insights into how they make decisions 

and enhance trustworthiness and credibility. Additionally, explainable models can aid in identifying and mitigating 

potential weaknesses in adversarial attacks. 

12.2.3 Proactive defense 

A proactive defense technique [135] can also be introduced before training models to detect adversarial examples, 

preventing the production of perturbed instances. Existing works have employed proactive defense methods using 

identity watermarks [83, 176, 177]. One potential future direction of proactive defense can be the use of explainable 

                  



AI to address this issue by revealing how models make decisions and highlighting flaws that attackers can exploit. 

This can be useful to protect the system from any attack. Another future direction can be the use of hybrid strategies, 

which include the implementation of various defense mechanisms, including feature fusion, decision fusion, and 

adversarial training, to protect against adversarial attacks better than using individual defensive mechanisms. More 

advanced strategies for integrating and optimizing these mechanisms may be developed in the future. 

12.2.4 Decoy mechanism as defense 

Deepfake detector attack resilience can be increased through the use of decoy techniques [17]. Adversarial training, 

defensive distillation [18], gradient masking, input transformation, ensemble approaches, and feature squeezing can 

all be used as decoy mechanisms. Using multiple deepfake detectors in parallel and combining their outputs as an 

ensemble method [105] can be used to enhance the system's accuracy and robustness. Another direction can be an 

exploration of feature fusion and decision fusion, as these methods can be explored as an effective approach to 

defending against adversarial attacks, as they mix several models with diverse architectures and parameters. This 

builds more robust protection than any single model can achieve by making it difficult for adversaries to identify the 

same flaws in all of them. 

12.2.5 Attack-resistant automatic speaker verification and face recognition systems  

Several end-to-end and unified countermeasures have been developed against audio [141] and visual deepfakes [127], 

to protect automatic speaker verification and face recognition systems. However, these countermeasures protect 

against specific types of attacks and are susceptible to other adversarial attacks [166-168]. There is a need to develop 

a unified attack-resistant system that not only protects against audio-visual deepfakes but is also resistant to adversarial 

attacks. Future research should focus on the development of more effective countermeasures to enhance the robustness 

of anti-spoofing systems, face recognition systems, and deepfake detectors against adversarial attacks. 

12.2.6 Fusion-Based Defensive Techniques 

Fusion-Based defensive approaches are emerging as a promising strategy for improving the robustness and 

generalizability of deepfake detectors. Instead of relying on a single model or modality, these frameworks defend 

against adversarial attacks by combining complementary spatial, temporal, and frequency cues or fusing output from 

several networks. Recent studies [54, 155] show that generative models as defense, and multi-model fusion and 

knowledge distillation can improve resilience to unseen manipulations. Future research should look into hybrid fusion 

of visual, aural, and semantic modalities to develop adaptive and trustworthy deepfake defense systems. 

12.2.7 Spatiotemporal Defense Techniques 

Spatiotemporal and holistic deepfake defense methods [178] have emerged as highly effective strategies for detecting 

both traditional 2D GAN-generated forgeries and advanced 3D neural-rendered deepfakes. Unlike spatial-only 

detectors that analyze individual frames, these approaches integrate complementary spatial, temporal, and joint 

spatiotemporal features to capture subtle inconsistencies in motion, dynamics, and facial geometry that generative 

models struggle to reproduce consistently. Recent works [178-181] demonstrate that combining embeddings from 

multiple representation dimensions significantly improves robustness, generalization, and resistance to unseen 

manipulations. Transformer-based fusion architectures further enhance detection accuracy while remaining 

lightweight and computationally efficient. Future research should explore holistic multi-modal fusion including visual, 

motion, audio, and semantic signals to build adaptive, scalable, and resilient deepfake defense frameworks capable of 

countering rapidly evolving generative models. 

12.2.8 Testbed against adversarial attack 

It is necessary to develop a testbed for gauging the robustness of deepfake models against adversarial attacks. This 

can be a powerful resource for analyzing the integrity of detectors against adversarial attacks, but so far there is no 

testbed or penetration testing tool available to even individuals, let alone multiple types of adversarial attacks. By 

replicating actual attack scenarios, penetration tests can reveal system vulnerabilities that can be exploited by 

malicious actors. This knowledge can then be utilized to strengthen existing defenses or develop new ones to protect 

against these threats more effectively. Additionally, penetration testing helps developers become more aware of the 

possible threats posed by attackers and allows them to rehearse response processes before actual crises. 

  

13 Conclusion 
This paper has presented a detailed review of existing adversarial attacks and defenses on audio-visual deepfake 

generation and detection approaches, analyzing their strengths and shortcomings. The field of deepfake creation and 

detection is in a continuous process of evolution, with new methodologies and strategies being created to address the 

                  



most recent deepfake-related challenges, but adversarial attacks on these methods hinders the trustworthiness of these 

methods. In addition, the development of effective and robust deepfake detection methods will continue to be a crucial 

area of research. Lastly, a comprehensive study on the limitations and potential for future research in this field is also 

presented. Addressing these challenges can only increase the efficacy of deepfake generative and detection models. 

 

This thorough research has highlighted the rapid advancement and complex issues of adversarial attacks and defences 

in deepfake technology. The domain continues in its expansion, driven by the uncompromising momentum of 

innovation and the essential need for reliable detection techniques. We anticipate that the insights and criticisms 

included in this study will enhance existing research and stimulate the interest of emerging researchers in this 

intriguing field. We aspire that the diverse array of options presented will stimulate an additional influx of research 

that expands the limits of deepfake generation and detection, enhancing the robustness and dependability of future 

systems. 
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