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Introduction: Lung cancer remains one of the primary causes of cancer-related
deaths globally, emphasizing the urgent need for accurate and early diagnosis to
improve patient outcomes. However, existing computer-aided detection
systems often struggle with suboptimal feature extraction, low classification
accuracy, and limited generalizability across datasets.

Methods: To address these challenges, we propose a deep learning approach
named Residual-SwishNet, explicitly designed for the lung cancer classification
task. More specifically, we modified the ResNet50 framework by replacing the
conventional RelLU activation function with Swish during the feature engineering
phase. Further, we integrate three additional dense layers before the classification
module to obtain an enriched feature representation. Lastly, we employ a Softmax
output layer with Cross-Entropy Loss to tackle the class-imbalance issue.
Results: The approach was rigorously evaluated on 2 publicly accessible datasets,
named LUNA16 and IQOTH/NCCD, using precision, recall, F1-score, and accuracy
as performance metrics. Experimental results demonstrate the superiority of our
technique, achieving classification accuracies of 99.60% and 99.11% on the LUNA16
and IQ-OTH/NCCD datasets.

Discussion: Our approach has significantly outperformed existing state-of-the-
art techniques. These findings highlight the potential of the proposed model as a
robust and reliable tool for lung cancer diagnosis.
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1 Introduction

Lung cancer remains one of the most life-threatening health challenges worldwide,
which originates from the abnormal and uncontrolled proliferation of cells within the lungs
(1). This cancer is mainly categorized into 2 major categories: non-small cell lung cancer
(NSCLC) and small cell lung cancer (SCLC) (2). Among these, NSCLCs are common and
usually develop at a slower rate than SCLCs. Globally, lung cancer continues to be one of
the most frequently identified tumors and a major cause of death. According to reports by
the World Health Organization (WHO) and the International Agency for Research on
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Cancer (IARC), this category of cancer ranked as the second most
diagnosed tumor in 2021, having 2.2 million new cases, exceeded
only by breast cancer. Frighteningly, it was responsible for
approximately 1.8 million deaths out of a total of 9.96 million
cancer-related mortalities (3). The trend continued in 2022 and
resulted in affecting nearly 2.5 million individuals and causing the
same number of deaths, supporting its deadly impact (4). These
alarming figures reflect the urgent need for more accurate, efficient,
and early diagnostic techniques for this deadly disease. Timely
recognition plays a pivotal part in refining prognosis and survival
proportions. In this context, the current research is motivated by
the persuasive challenge of high mortality and diagnostic
complexity associated with lung cancer. This study proposes a
novel deep learning (DL)-based method for recognizing lung
cancer nodules with the aim of enhancing diagnostic reliability
and supporting clinical decision-making. A crucial aspect of lung
cancer analysis involves the detection and assessment of lung
nodules, which are small, abnormal growths that appear on
imaging modalities like chest X-rays and computed tomography
(CT) scans (5). These nodules are either benign or malignant, with
the latter potentially indicating early stages of lung cancer. Effective
evaluation of these nodules is essential, as it can result in prompt
intervention and significantly improved treatment outcomes.
Consequently, routine screening, accurate classification, and
conscientious monitoring of lung nodules form the cornerstone of
modern strategies aimed at reducing the burden of lung cancer and
improving patient care (6).

CT scans stand out as one of the most effective tools among the
numerous imaging modalities used in the recognition of lung
cancer. CT imaging provides a detailed cross-sectional
representation of the chest, which permits clinicians to closely
examine the lungs for signs of malignancy or other abnormalities
(7). Its aptitude to produce high-quality, three-dimensional images
promptly makes it a vital resource for the timely detection,
recognition, and staging of lung tumors. By offering enhanced
visual clarity, CT scans play a critical role in differentiating
between benign and malignant nodules, supporting accurate
clinical assessments (8). Additionally, CT imaging serves as a
guide for subsequent diagnostic measures, like needle biopsies,
and aids in devising appropriate cure strategies and observing
disease progression (9). Despite its diagnostic value, the
traditional manual interpretation of CT scans poses several
challenges. Reviewing a large volume of medical samples is
laborious and mentally taxing for experts. This manual process is
not only labor-intensive but also prone to inconsistencies, as
complex anomalies can go unnoticed or be interpreted differently
by different observers. The inherent subjectivity in image analysis
eventually results in inter-observer variability, which compromises
diagnostic accuracy. Furthermore, with the increasing availability
and use of advanced imaging technologies, the sheer amount of data
generated has placed an added burden on healthcare professionals.
Such limitations demand the requirement for computerized,
intelligent systems that can assist in the accurate and efficient
interpretation of lung imaging data (10).
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Recent advancements in automated lung cancer detection have
increasingly relied on imaging data across several modalities, mostly
through the application of artificial intelligence (AI) and machine
learning (ML) methods. These approaches have appeared as
powerful solutions for analyzing complex medical images, which
empower them to identify the complicated patterns that are hard to
detect through traditional methods (11). Al-driven approaches,
especially when applied to CT scans, are capable of efficiently
processing huge amounts of imaging data, which supports
radiologists in pinpointing minute anomalies associated with lung
tumors or nodules. This capability significantly enhances both the
speed and precision of diagnosis. By automating the analysis
process, Al not only accelerates early detection efforts but also
plays a crucial role in standardizing diagnostic practices across
diverse clinical environments. It reduces reliance on subjective
interpretation, thus minimizing variability between observers and
enhancing consistency in results. The integration of intelligent
diagnostic systems supports healthcare specialists in making
accurate and timely decisions, eventually causing better patient
management and improved treatment outcomes (12). These
innovations underscore the transformative influence of AI in
modern medical imaging and reinforce its value in the fight
against lung cancer (13).

Early efforts in lung cancer detection primarily relied on
traditional ML algorithms, which involved analyzing hand-crafted
features computed from medical samples (14). Investigators focused
on quantifiable attributes like the outline, texture, and
concentration of suspected lesions in CT scans to perceive and
categorize irregularities. These features were then passed to train
classifiers that aimed to discriminate between the benign and
malignant cases. While this approach yielded encouraging results,
it was constrained by the challenges associated with medical image
complexity (15). One of the key limitations of traditional ML
methods was their dependence on manual feature extraction,
which required significant field knowledge and often failed to
capture delicate or higher-order patterns within the data.
Furthermore, conventional ML techniques struggled to manage
the hierarchical and nonlinear characteristics of medical images,
which limit their capability to generalize across diverse patient
datasets. As a result, their performance in the timely and precise
recognition of lung cancer was suboptimal. The advent of DL
revolutionized the landscape of medical image examination,
mainly in the area of lung cancer classification (16). DL
architectures like convolutional neural networks (CNNs) enabled
models to automatically compute hierarchical and complicated
Such
architectures eradicate the requirements for a manual feature

features right from a given suspected sample (17).

learning procedure and significantly improve the ability to
compute fine-grained and abstract patterns associated with
cancerous growths (18-20). DL-based models have demonstrated
exceptional performance in recognizing sophisticated visual cues,
for example, small nodules or early-stage tumors, often
undetectable to the human eye. The end-to-end learning
capability of deep networks allows them to process raw data and
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optimize predictions with minimal human intervention, thereby
progressing the correctness, consistency, and reliability of lung
cancer diagnostics (21-23).

Although DL frameworks have meaningfully advanced lung
cancer detection, they are not without limitations. A major concern
is the risk of diagnostic errors, including false positives where non-
cancerous structures are misidentified as malignant and false
negatives, where actual tumors may go undetected. These
misclassifications can have serious clinical implications,
potentially leading to unnecessary interventions or missed
treatment opportunities. Another persistent challenge is the lack
of interpretability in DL models. Many DNNs operate as opaque
systems, making it problematic for medical experts to understand
the reasoning behind a specific prediction, thereby reducing trust
and limiting their integration into decision-critical environments.
In addition, the computational demands of DL models are
substantial. Training and deploying these models typically require
high-performance hardware and significant processing time, which
can be a barrier to real-time application in clinical workflows,
particularly in resource-constrained sites. Furthermore, the
outcomes of DL algorithms can be influenced by disparities in
imaging protocols, scanner types, and image quality. These
inconsistencies across datasets and healthcare institutions may
hinder the generalizability of the models, limiting their robustness
and effectiveness when applied to new or diverse populations.
Addressing these limitations is essential to ensure the safe,
efficient, and wide-scale adoption of DL systems in lung tumor
recognition and classification.

To address the existing challenges of this field, we propose a
refined ResNet50-based model named Residual-SwishNet, designed
to enhance classification performance and model robustness. In our
approach, the conventional activation functions in the
convolutional layers have been replaced with the Swish activation
function, known for its smooth, non-monotonic properties that
enable improved gradient propagation and feature computation.
This modification permits the network to extract complicated
patterns more effectually, specifically in complex or low-contrast
regions of lung scans. Additionally, we introduce three extra dense
layers before the final categorization layer to enrich the feature
space and improve the model’s capacity to recognize benign and
malignant samples. Further, the usage of the cross-entropy loss
method in the softmax layer assists the Residual-SwishNet approach
to tackle the class-imbalance problem. These architectural
enhancements contribute to more reliable predictions and help
mitigate false positives and negatives by offering a more accurate
and interpretable solution for lung cancer classification. The main
contributions of this framework are listed as:

1. Integration of the Swish activation function in
convolutional layers improves non-linear representation
learning and model convergence, outperforming
traditional functions like ReLU.

2. The addition of three fully connected layers before the
classification unit enhances the capability of the approach
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to extract deep semantic features, which leads to improved
decision boundaries.

3. The proposed architecture demonstrates better handling of
ambiguous cases due to its high recall ability, which
minimizes the incidence of false positives and negatives in
lung cancer classification.

4. The model is capable of tackling the class-imbalance issue
due to the employment of the cross-entropy loss method in
the softmax layer of the proposed approach.

5. The refined model offers a practical and computationally
efficient solution that bridges the gap between high
accuracy and interpretability, which makes it suitable for
deployment in clinical diagnostic workflows.

6. Massive experimental analysis of our work was performed
using two standard datasets to demonstrate the efficacy of
our method.

The rest of the article comprises the given hierarchy: the related
work is provided in Section 2, whereas the suggested work is
presented in Section 3. The used dataset, performance indicators,
along with a detailed description of achieved outcomes, are given in
Section 4. Lastly, the conclusion is stated in Section 5.

2 Related work

Here, we have discussed the existing works presented to
accomplish the classification task of lung nodules.

Raza et al. (24) proposed a model named Lung-EffNet for
classifying lung cancers. Initially, the approach performed data
augmentation to increase the sample size. After this, the
EfficientNet approach was trained using the concept of transfer
learning via applying its variants from BO to B4. The work was
tested over the IQ-OTH/NCCD dataset and obtained a
classification score of 99.10%. This work shows good outcomes
for categorizing lung nodules; however, it requires a huge number of
samples to train the model. Nahiduzzaman et al. (25) introduced a
DL method for classifying lung tumors. For this, the model first
applied a preprocessing step to enhance the visual representation of
the input images. After this, the work applied a model named
lightweight parallel depth-wise separable convolutional neural
network (LPDCNN) to compute the relevant information of the
input images. Next, the Ridge-ELM classifier employed the
extracted features from the previous step and performed the
categorization of nodules. The work provides better results for
binary problem; however, it faces performance degradation for
the multiclass classification task. Another DL approach named
FocalNeXt was presented in (26) to execute the classification task
of lung nodules. The work merged the attention strategy of
FocalNet along with the feature computation capability of
ConvNeXt inside the vision transformer model. The work has
attained a classification score of 99.81%, however, at the cost of
an enhanced computing load. Priya et al. (27) proposed a DL model
for lung cancer classification. First, samples were preprocessed to
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improve their appearance. Then, the data size was increased by
applying various augmentation techniques. Finally, the work used
the SE-ResNeXt-50 approach to calculate the deep features and
performed the classification job. The work performed well in
recognizing lung cancers; however, it suffered from a high
computational cost.

In (28), a DL method was used to recognize the lung tumors.
First, a step was followed to eliminate the noisy information from
the samples and enhance their visual appearance. The enhanced
samples were then passed to the feature extraction phase, where 6
statistical features were estimated based on Improved Empirical
Wavelet Transforms (IEWT). After this, the calculated visual
characteristics were passed to the Attention-based Convolutional
Neural Network with DenseNet-201Transfer Learning (AtCNN-
DenseNet-201 TL) to accomplish the categorization task. The
approach presents an effective solution to diagnose lung cancer;
however, it faces the model overfitting issue. Murthy et al. (29) used
an ML approach to categorize lung cancer from CT scans. For this,
the Adaptive Median Filter (AMF) was used initially to enhance the
quality of the samples. Next, M-SegNet was used to extract the focal
areas. After this, the visual information from the segmented regions
was computed by computing various types of features named
statistical, deep, and textural features, which were combined to
make the final vector. After this, the classification was accomplished
using the Tree-based Pipeline Optimization Tool with Support
Vector Machine (TPOT_SVM). The approach shows better
outcomes in the recognition of lung nodules; however, the work
is effective for a binary classification task. Mothkura et al. (30)
designed a method for classifying lung tumors. The approach used a
dense CNN to get dense features and performed the classification
task. The work has attained a highest classification rate of 85.21%,
which needs further improvements. In (31), a DL network was
proposed for lung cancer classification. To accomplish this, the
work used s Multimodal Fusion Deep Neural Network (MFDNN)
framework that combined features from various types of visual
samples like medical imaging, genomics, and clinical data, which
was combined for lung cancer classification. The work performed
well in recognizing the lung cancer nodules; however, at the cost of a
huge computing burden. Mohamed et al. (32) suggested a CNN
approach to extract a related group of features and perform the
categorization of samples into relevant groups of lung cancers.
Further, the work used an optimization strategy to boost the
model’s running behavior. The work shows better outcomes in
recognizing the relevant cancer groups of the lung; however, the
results need further enhancements.

Hossain et al. (33) employed the concept of the ensemble
approach for categorizing lung cancer nodules. For this, the
approach initially utilized a step to boost the quality of input
samples. After this, the work used the CNN-SVD-Ensemble
approach to compute the relevant set of visual information and
execute the dimensionality reduction. Next, the computed features
were passed to various ML classifiers to perform the cataloguing of
lung nodules. The strategy gains better outputs in diagnosing the
lung tumors; however, it lacks the generalization power. Naseer
et al. (34) proposed a DL approach to perform the lung cancer
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classification task. For this, the approach follows 3 stages, where in
the first step, the work used the UNet approach to segment the lobe
from CT scans. Next, the enhanced UNet framework was used to
compute the nodule mask. In the third stage, the computed masks
were passed to a CNN approach named the AlexNet for deep
features computation and executing the classification task. The
network was tested using the LUNA-16 data sample and attained
an accuracy score of 97.98%. The technique attains better scores;
however, it requires more improvements. Uddin et al. (35) applied a
DL network for lung cancer diagnosis. For this, the work proposed
two dense frameworks to learn a representative set of features and
execute the recognition task. Further, the work has proposed a
hybrid model by joining both networks, and attained a highest
classification accuracy of 93%. This technique exhibits better
performance in categorizing lung cancer nodules; however, the
outcomes need further improvement. In (36), a DL network was
designed for the recognition of lung tumors. For this, initially, the
samples were preprocessed to enhance the visual information by
propagating the sample to the convolution filter and down-
sampling it by employing max pooling. Next, the autoencoder
approach was applied to compute a set of dense features based on
a CNN, and a multispace image reconstruction method was utilized
to lessen error while restructuring the sample to enhance the nodule
recognition ability of the approach. Lastly, the SoftMax classifier
was applied for grouping the samples. Alsallal et al. (37) designed a
framework to identify and classify lung tumors. First, various
transformations were used to advance the visual aspects of the
samples. Next, various structural features were computed by
applying the PyRadiomics library. Next, a dense CNN model was
merged with attention mechanisms to compute a deep set of sample
information. Next, the model used different feature nomination
approaches like Non-negative Matrix Factorization (NMF) and
Recursive Feature Elimination (RFE). Finally, various ML
classifiers like XGBoost and Stacking were applied to perform the
classification task. The work performs well for lung cancer
classification; however, it needs further improvements.

While numerous studies have explored ML and DL methods for
recognizing lung tumor nodules, several limitations remain
unresolved. Many existing approaches struggle with issues such as
limited generalizability, lack of interpretability, and susceptibility to
false predictions. These gaps underline the pressing need for a more
effective and robust solution that can enhance feature
representation, improve diagnostic accuracy, and ensure
consistency across diverse imaging conditions.

3 Proposed method

This study presents a novel DL model named Residual-
SwishNet, which is specifically designed to classify lung CT
images into benign and malignant groups accurately. The
proposed architecture builds upon a refined version of the
ResNet50 CNN model, which is modified to capture relevant and
complex details found in lung cancer imaging. To improve the
learning capability of the approach, we replace the conventional
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ReLU activation with the Swish activation within the convolutional
layers. The smooth and non-monotonic behavior of the Swish
activation allows for better gradient flow and the retention of
minor negative values, which enhances feature learning in deep
layers. Furthermore, the architecture is extended by introducing
three additional dense layers before the final classification stage.
These layers strengthen the capability of the technique to extract
deep semantic features and support more precise decision-making.
This enriched feature representation contributes to more reliable
classification outcomes, particularly in cases where tumor
boundaries or nodular characteristics are complicated. Moreover,
to tackle the category imbalance issue, we have used the cross-
entropy loss method in the final classification stage. A workflow of
the model training is provided in Figure 1. For model evaluation,
the employed datasets were partitioned into train and test groups,
and framework parameters were optimized to ensure stable
convergence and robust performance. Residual-SwishNet was
then trained to identify key discriminative features in lung CT
scans and accurately categorize them into their respective classes. A
representation of the designed framework is given in Figure 2.

3.1 Feature calculation

To boost the accuracy of lung cancer classification, it is essential
to compute a robust set of feature representations that effectively
capture the differences between malignant and benign lung tissues.
High-level features, often referred to as semantic features, are vital
in distinguishing such complex visual patterns in CT scan images.
In the proposed Residual-SwishNet framework, we utilize a
modified ResNet50 backbone to extract these discriminative
features. A key enhancement involves replacing the traditional
ReLU activation with the Swish, which advances the aptitude of
our framework to compute complex spatial information by
permitting small negative scores to pass through the network.
This helps retain valuable information during feature learning
and supports deeper, more expressive representations. As a result,
the feature computation stage in Residual-SwishNet becomes more
effective in encoding semantic details crucial for improving
classification performance.

3.2 ResNet50

The base of the proposed Residual-SwishNet framework lies in
the ResNet50 architecture (38), which is a powerful and widely

10.3389/fonc.2025.1729021

adopted deep CNN model known for its use of residual learning.
Unlike traditional CNNs that suffer from vanishing gradients as
layers deepen, the ResNet50 model addresses this issue through
identity-based skip links, which allow gradients to flow more
successfully through backpropagation. These skip links empower
the system to capture residual mappings rather than direct
transformations, which results in both improved convergence and
accuracy in deep architectures.

ResNet50 is structured using multiple residual blocks (RBs),
each consisting of a series of convolutional layers accompanied by
batch normalization and an activation method. The distinguishing
feature of an RB is the shortcut path, which allows the input to avoid
one or more layers and be directly added to the output of the
transformation layers. This process is mathematically represented
as Equation 1.

I=R(o)+o0 (1)

Where o is the input to the block, R(0) is the residual mapping
learned through convolutional operations, and I is the final output.
This formulation helps hold vital features across layers while
enabling the approach to focus on learning only the necessary
adjustments. Owing to its architectural efficiency and strong feature
extraction capabilities, the ResNet50 model serves as an effective
base for the Residual-SwishNet model in analyzing lung CT images
for cancer classification.

3.3 Residual-SwishNet

The proposed Residual-SwishNet framework builds upon the
ResNet50 architecture (39), which is famous for its residual learning
mechanism and robust feature extraction capabilities. Even though
ResNet50 performs well in solving various image classification
tasks, however comes with certain limitations when applied
directly to medical imaging, mainly for detecting complex
abnormalities in lung CT scans. Specifically, its dependence on
the ReLU activation function leads to the suppression of important
negative activations, which can carry useful information in low-
contrast medical images. Additionally, the standard architecture is
unable to provide sufficient depth in the final layers to fully capture
the complicated variations between benign and malignant tissues.
To address these challenges, we introduce three key modifications
to the original ResNet50 structure, which build the foundation of
the Residual-SwishNet model. First, we incorporate the Swish
activation function into the residual blocks to replace ReLU in the
process of feature capturing. The capability of the Swish method to
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enhances the power of the model to learn complex and refined
visual features by improving convergence and reducing training
loss. Second, we append 3 extra dense layers before the classification
unit to deepen the semantic understanding behavior of the model,
which improves its discrimination power before executing the final
grouping task. These fully connected layers refine the high-level
features and help the model detect more meaningful patterns
associated with lung abnormalities. Lastly, we have used the
cross-entropy loss technique in the classification layer, which
assists the Residual-SwishNet in tackling the sample imbalance
problem. Despite these enhancements, the overall complexity of the
network remains manageable, which ensures that Residual-
SwishNet is suitable for practical clinical applications. The final
feature representations are passed to a Softmax layer, which outputs
class probabilities for the classification of lung conditions. The
architectural overview of Residual-SwishNet is illustrated in
Figure 3, and a detailed layer-wise structure is provided in
Table 1. The next sections delve into the internal components of
the model in greater detail.

3.3.1 Convolutional layer

In the Residual-SwishNet architecture, convolutional layers
form the foundational component responsible for extracting
spatially-aware features from lung CT scan images. These layers
apply a series of learnable filters to the input image, which enables
the technique to detect local patterns such as edges, textures, and
shapes that are critical for identifying cancerous regions. As the
depth of the network increases, these layers progressively learn
more abstract and complex representations, which are essential for
distinguishing between benign and malignant conditions. -The
operation of a convolutional layer can be mathematically
expressed as Equation 2.
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Where F/' denotes the output feature map at layer n, Kj
represents the convolutional kernel applied between input map i
and output map j, * is the convolution operator, [5’1-” is the bias term, f
() denotes the activation function (Swish in our case), and x; denotes
the total features maps. To standardize the input across all samples
and maintain consistency with the architecture, CT scan images are
resized to 224 x 224 pixels before being passed through the network.
In total, the proposed Residual-SwishNet model incorporates 48
convolutional layers, which are distributed across multiple residual
blocks, and each contributes to the hierarchical extraction of features
necessary for accurate lung cancer classification.

3.3.2 Activation layer

To enhance the capacity of the approach to learn fine-grained
features from lung CT images, the proposed Residual-SwishNet
architecture replaces the conventional ReLU activation with the
more advanced Swish activation function after every 2D conv layer.
Swish is famous for its smooth and non-linear behavior that enables
better gradient propagation and feature retention, particularly in
deeper networks. Its ability to pass small negative values in place of
completely discarding them, as ReLU does, assists the proposed
work in preserving complex patterns in medical images that might
otherwise be lost, which is especially critical for detecting early-stage
or low-contrast lung abnormalities (40). Unlike ReLU, which is
piecewise linear and can lead to dead neuron problems, the
employed Swish activation function offers a non-monotonic and
differentiable structure, enabling better optimization and more
stable training. This leads to stronger generalization performance
and improved convergence behavior. A pictorial analysis of the
Swish vs ReLU methods is depicted in Figure 4. The mathematical
expression for the Swish activation is given by Equation 3.
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FIGURE 3
A visual representation of the Residual-SwishNet.

swish(u) = u x o(nu) (3)

Where u is the input to the activation layer, o denotes the sigmoid
function, and 7 is a trainable parameter that scales the input
dynamically. However, in our implementation, the parameter 1 in the
Swish equation is fixed to 1 (non-trainable), corresponding to the
standard Swish activation rather than the trainable Swish-f variant.
The fixed version provided more stable convergence and avoided
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additional parameters that could lead to overfitting on medical
datasets with limited samples. In the context of lung cancer
classification, in which learning relevant morphological changes is
crucial, the Swish activation approach significantly improves feature
sensitivity and learning depth. Its computational efficiency and stability
under varying learning rates make it particularly suitable for deep
architectures like Residual-SwishNet, which delivers better performance
and faster convergence compared to traditional activation functions.
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TABLE 1 The layer-wise analysis of Residual-SwishNet.

Layer Residual-SwishNet

Conv_L1_x 7x7, 64

3x3 max pooling

Conv_L2_x [1x1, 64
3x3,64|x3

[ 1% 1,256

Conv_L3_x [1x1, 128]
3x3, 128 x4

| 1x 1,512 |

Conv_L4_x [1x1, 256]
3% 3,256 |x6

[ 11,1024 |

Conv_L5_x [1x1, 512]

3x3,512|x3

[ 1% 1,2048 |

Average Pooling

Dense Layerl

Dense Layer2

Dense Layer3

Softmax layer

3.3.3 Pooling layer

In the Residual-SwishNet architecture, pooling layers are
integrated to reduce the spatial dimensions of feature maps while
retaining the most informative patterns. The pooling operation
helps in minimizing redundancy, improving computational
efficiency, and enhancing the ability of the model to manage
spatial variations in lung CT scans by aggregating features from
neighboring pixels. Specifically, an average pooling layer is
employed before the fully connected stages to summarize the
extracted features into a compact vector, which is then passed to
the appended dense layers for further processing and classification.

— RelLU oL
— Swish, =1 I
s
af
e S
FIGURE 4
Pictorial analysis of ReLU and Swish activation (40).
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3.4 Incorporated dense layers

After the pooling stage, Residual-SwishNet incorporates 3
additional dense layers to refine and enhance the extracted
features before classification. The decision to incorporate three
dense layers in the final stage of Residual-SwishNet was guided by
empirical experimentation conducted during model development.
We evaluated multiple configurations, including one, two, three,
and more than three dense layers. Models with only one or two
dense layers demonstrated weaker feature abstraction and produced
lower classification accuracy, indicating insufficient refinement of
high-level representations. In contrast, architectures with more than
three dense layers began to show signs of overfitting and increased
training instability. The configuration with three dense layers
consistently achieved the most favorable balance between feature
discrimination, computational efficiency, and generalization
capability. These layers are activated using ReLU and are focused
on emphasizing critical patterns associated with lung abnormalities
while filtering out less relevant information. This added depth
improves the capacity of the approach to form a more
discriminative feature representation from CT scans. The
resulting dense feature vector is then forwarded to the Softmax
layer for final classification.

3.5 Softmax layer

The last stage of the Residual-SwishNet framework utilizes a
Softmax layer to convert the dense feature vector into class
probabilities, which causes the model to classify lung CT images
as benign or malignant. The Softmax function normalizes the
outputs of the last dense layer by producing a probability
distribution over the target classes. It is defined as Equation 4.

exp(S;)

o(S) = av
j=01 exp(Sj)

(4)

where §; is the score for class i, §; presents the output vectors,
and » shows the total groups. For optimization, the model uses
categorical cross-entropy loss (41), which measures the divergence
between predicted and true class labels and supports learning even
under class imbalance.

4 Results

In this section, a thorough explanation of the employed
datasets, along with the evaluation parameters, is provided.
Further, a vast evaluation of the Residual-SwishNet is performed
to prove the robustness of our network.

4.1 Implementation details

The proposed Residual-SwishNet was implemented using
Python and TensorFlow/Keras. The model was optimized using
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the Adam optimizer with an initial learning rate of 0.0001, chosen
for stable convergence when training deep residual networks. A
batch size of 32 was used for all experiments to maintain a balance
between training stability and computational efficiency. Both
datasets were divided into 70% training, 10% validation, and 20%
testing splits to enable fair performance evaluation. The model was
trained for 100 epochs with early stopping based on validation loss.
Further, Figure 5 shows the training and validation curves for both
datasets. As the epochs increase, the accuracy for both training and
validation steadily improves, while the loss gradually decreases. The
two curves stay close to each other, which means the model is
learning well and not overfitting. These curves confirm that our
Residual-SwishNet trains smoothly and generalizes well to
unseen data.

4.2 Evaluation parameters

To measure the classification outcomes of the proposed
Residual-SwishNet technique, we have used the standard
evaluation parameters named accuracy, precision, recall, and F1-
Score, which are computed as mentioned in Equations 5-8.

10.3389/fonc.2025.1729021

TP

Precision = ———
recision = ————> (6)
P
Recall = ———— 7
= Tpy N @
2 X Precisi
F1 — Score = 2 x re.Cfszon X Re call) ®)
(Precision + Re call)
4.3 Dataset

To train and test the proposed approach, we utilized two
standard online repositories of lung cancer samples, namely
LUNA-16 (42) and IQ-OTH/NCCD lung cancer dataset (43),
both of which were accessed on July 01, 2025. The LUNAIL6
dataset, a curated subset of the publicly available LIDC-IDRI
repository, is a broadly recognized standard for tuning networks
for lung cancer diagnosis. It contains chest CT scans that have been
meticulously annotated by expert radiologists, who evaluated each
scan to confirm the incidence, locality, and characteristics of
pulmonary nodules. As part of its refinement, the LUNA16
dataset excludes CT images with slice thicknesses greater than 2.5

TP+ TN
Accuracy = (5) mm to ensure consistent imaging quality across the dataset. The
V= TP+ FP+IN + FN ging quaity
LUNA-16 Accuracy Curves LUNA-16 Loss Curves
1.000 [ —— Train Accuracy E——————— ] 0.8 —— Train Loss
—— Validation Accuracy — —— Validation Loss
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FIGURE 5
LUNA-16 Training curves (a), LUNA-16 Loss curves (b), IQ-OTH/NCCD Training curves (c), IQ-OTH/NCCD Loss Curves (d), respectively.
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complete dataset comprises 888 CT scans, which are reviewed by
four radiologists, providing reliable annotations of the size, location,
shape, and density of nodules. These images focus specifically on the
lung regions containing nodules, allowing the framework to extract
appropriate patterns. To facilitate the lung tumors classification
task, the nodules were divided into two categories based on the
mean malignancy score assigned by radiologists. Nodules with a
mean score of 2.5 or below were categorized as benign, indicating
non-cancerous conditions, while those with a mean score of 3.5 or
higher were classified as malignant, reflecting a higher likelihood of
cancer. The second data sample utilized in this work is the IQ-
OTH/NCCD lung cancer dataset, which was gathered at the
National Center for Cancer Diseases in Iraq over a period of 3
months during the fall of 2019. This sample comprises a total of
1,190 CT image slices obtained from 110 victims and delivers an
adequate amount of data for framework tuning. The dataset is
organized into three distinct categories: normal, benign, and
malignant cases. Among the collected samples, there are 416
images labeled as normal, 120 as benign, and 561 as malignant,
which indicates a minor imbalance in class distribution. The major
reason to choose these datasets is due to their complex natures and
presence of various image distortions, which make them
challenging for accomplishing the lung cancer classification task.

4.4 Model evaluation

This section is focused on discussing the output results of the
Residual-SwishNet approach by indicating the attained scores on
two employed standard datasets named LUNA16 and 1Q-OTH/
NCCD lung cancer data samples, with the employment of various
measures like precision, recall, F1, and Accuracy metrics.

To thoroughly assess the results of our proposed Residual-
SwishNet model, first, we discussed the classification metrics named
precision, recall, and F1-score on both the LUNA16 and IQ-OTH/
NCCD samples, and attained analysis is provided in Figure 6. These
metrics offer a complete understanding of the diagnostic strength
and reliability of our model, which is vital in health imaging tasks
where both false positives and negatives can possess serious clinical

e _
e _

e _

% 91 92 93 9 95 9 97 98 99 100
=IQ-OTH/NCCD ®LUNA16

FIGURE 6

Residual-SwishNet results over the LUNA16 and IQ-OTH/NCCD

datasets using precision, recall, and F1-score measures.
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consequences. Precision reflects the capability of an approach to
appropriately recognize true positive cases among all predicted
positives, which is vital to minimizing unnecessary interventions.
Recall, on the other hand, computes the capacity of the work to
detect all actual positive cases by ensuring that no malignant or
suspicious case is overlooked. Lastly, the Fl-score presents a
harmonic mean of precision and recall, which balances these two
aspects by delivering a single robust indicator of classification
performance, especially under class-imbalanced conditions
common in medical datasets. Using line bar visualizations, we
plotted these metrics across both datasets to showcase how
Residual-SwishNet consistently achieves high scores across all
three metrics, showing the efficacy of our network. These
outcomes confirm that our approach is competent to maintain
high diagnostic accuracy while reducing both false alarms and
missed detections, proving its effectiveness in real-world clinical
screening circumstances.

In addition to evaluating precision, recall, and F1-score, we also
analyzed the accuracy of our proposed model across both datasets,
and the results are shown in Figure 7. Accuracy is one of the most
fundamental metrics in classification, which computes the
proportion of correctly predicted instances over the total number
of predictions. On both the LUNA16 and IQ-OTH/NCCD datasets,
our model consistently outperformed and attained improved
accuracy values. It can be seen from the values provided in
Figure 7 that our approach offers comprehensive capability to
correctly classify a wide range of lung cancer cases, regardless of
their complexity or similarity across classes. The improved accuracy
is due to the better information-capturing capability of the
approach, which ensures minimal misclassification and boosts the
model’s reliability for clinical use.

Next, we have discussed the confusion matrix for both
employed datasets, and visuals are provided in Figure 8. The
confusion matrices shown in Figure 8 not only reflect the
exceptional performance of the proposed model on the LUNA16
and IQ-OTH/NCCD datasets but also serve as a critical tool for
evaluating classification effectiveness. A confusion matrix provides
a comprehensive view of the predictive capabilities of an approach
by presenting true positives, true negatives, false positives, and false
negatives in a structured format. This aids in analyzing explicit
zones where the approach surpasses or needs development, beyond
what single-value metrics like accuracy or Fl-score can convey. In
addition to the visual confusion matrices shown in Figure 8, we also
provide the numerical confusion matrix values in tabular form to
improve clarity in Tables 2, 3 for LUNA-16 and IQ-OTH/NCCD
datasets, respectively. These tables present the exact number of
correctly and incorrectly classified samples for each class in both
datasets, enabling a more precise interpretation of the model’s
performance. Specifically, for the LUNA16 dataset, the model
accurately classifies 99.84% of benign and 99.79% of malignant
cases, with extremely low misclassification rates of 0.16% and 0.21%
respectively, indicating high discriminative power between the two
classes. While for the IQ-OTH/NCCD dataset, presenting a 3-class
problem named normal, benign, and malignant, the confusion
matrix again demonstrates excellent performance with 99.89%,
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FIGURE 7
The Residual-SwishNet results representation over the LUNA16 and IQ-OTH/NCCD datasets using accuracy metrics.

99.85%, and 99.78% correctly predicted for each class, respectively.  potential reliability in clinical environments. The sharp correspondence
The extremely low oft-diagonal values confirm the capability of the  between the projected and real labels confirms the robustness of the
approach to avoid confusion between clinically similar categories.  proposed architecture across diverse imaging conditions.
These strong results validate the effectiveness of the proposed To further validate the robustness of Residual-SwishNet, ROC
modifications, like replacing ReLU with Swish activation, curves were generated for both datasets. As shown in Figure 10, the
incorporating three dense layers, and using a Softmax output  model achieves an AUC of approximately 0.97 on LUNA-16 and
layer with Cross-Entropy Loss, in enhancing feature learning and  0.98 on IQ-OTH/NCCD, indicating excellent separability between
decision boundaries, ultimately leading to superior classification  benign and malignant cases across both datasets. The curves rise
precision and reliability. sharply toward the top-left corner, demonstrating a high true-
To qualitatively assess the model’s recognition capability, we  positive rate with minimal false positives, which confirms stable
presented a few example CT scan images marked with both the  generalization beyond accuracy and Fl-score results. These ROC
predicted and original labels in Figure 9. It can be seen from the  curves provide additional evidence that the proposed method
visuals given in Figure 9 that the Residual-SwishNet accurately classifies ~ maintains strong discriminative performance and does not rely
the cases, clearly demonstrating its ability to generalize and correctly ~ on chance-level decision boundaries.
identify critical patterns in complex lung imagery. Such visual validations To further support the interpretability of the proposed model,
strengthen the confidence in our proposed solution by highlighting its ~ we have generated heatmaps using Grad-CAM, and attained visuals
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FIGURE 8
Confusion matrix attained by the Residual-SwishNet over (a) LUNA16, (b) IQ-OTH/NCCD, respectively.
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TABLE 2 Tabular representation of the Confusion matrix for LUNA16
dataset.

Benign Malignant
Actual/predicted
TPR (%)
Benign 99.84 0.16
Malignant 0.21 99.79

are given in Figure 11. These visualizations highlight the explicit
areas within the CT scans that the Residual-SwishNet emphasizes
when making predictions. The activation regions primarily
concentrate on the interior portions of the lungs, indicating that
the model is correctly attending to clinically relevant areas for
feature extraction. This not only validates the internal decision-
making process of the deep learning model but also aligns with
expert radiological understanding, thus reinforcing the clinical
reliability and transparency of the system.

So, after providing a comprehensive assessment of the Residual-
SwishNet approach using multiple performance metrics, including
precision, recall, F1-score, and accuracy, along with visual analysis
through confusion matrices, predicted label overlays, and Grad-
CAM heatmaps, we have confirmed the robustness of our approach
for lung cancer classification. The consistently high scores across
both datasets and the strong qualitative evidence highlight the
effectiveness, robustness, and interpretability of the model in
classifying lung cancer cases. These evaluations confirm that the
model not only attains advanced performance but also offers
transparency in its predictions, which is an essential requirement
for real-world medical applications.

4.5 Comparison with DL approaches

In this part, we have analyzed the performance of the Residual-
SwishNet approach in comparison to numerous well-known DL
approaches for both employed datasets, named LUNA16 and IQ-
OTH/NCCD lung cancer data samples.

First, the scores for the LUNA16 dataset are discussed by using
the standard evaluation measures, namely precision, recall, F1-
score, and accuracy, and the obtained analysis is shown in Table 4.
For evaluation, various DL approaches, i.e., the EfficientNet series
(44), NASNetMobile (45), DenseNet121 (46), MobileNetV2 (47),
and MobileNet (48), are taken as provided in (49). The assessment
in Table 4 clearly displays that the proposed solution ranked

TABLE 3 Tabular representation of the Confusion matrix for IQ-OTH/
NCCD dataset.

Actual/ Normal Benign Malignant
Predicted TPR (%)
Normal 99.89 0.00 0.11
Benign 0.04 99.85 0.11
Malignant 0.07 0.15 99.78
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highest in all evaluation measures with scores of 99.90%, 99.81%,
99.85%, and 99.60% for the precision, recall, F1-Score, and
accuracy metrics. Further, the EfficientNetB2 model attains
comparable performance with scores of 95.50%, 94.60%, 95.10%,
and 95.40% against the precision, recall, F1-score, and accuracy
measures. Among all DL models, the NASNetMobile approach
shows the worst performance in classifying the lung cancer
samples with scores of 88.25%, 86.65%, 87.65%, and 87.45%
over the precision, recall, F1, and accuracy metrics. The
proposed solution shows the best solution due to its high
recognition power. On the LUNA16 dataset, the comparative
DL models show better results; however, these models are
subject to certain limitations in the context of lung cancer
classification. The EfficientNet and EfficientNetV2 series
techniques present optimized solutions for parameter efficiency;
however, at the cost of compromised accuracy due to their
shortcoming in capturing the complex textural differences
present in lung nodules, as these models employ lightweight
convolutional layers and standard activation functions. Such a
structure of the EfficientNet family limits their feature sensitivity.
Further, NASNetMobile and MobileNet architectures prioritize
computational efficiency for mobile applications but sacrifice
depth and feature extraction capabilities, which also makes them
less suitable for high-detail medical imaging tasks. DenseNet121,
though effective in feature reuse, lacks specialized modifications
tailored to lung cancer detection and does not optimally capture
domain-specific patterns. In contrast, our Residual-SwishNet
enhances feature learning through a ResNet50 backbone
equipped with the Swish activation function, which improves
non-linear learning and gradient flow, and integrates additional
dense layers to refine feature representation. These improvements
enable Residual-SwishNet to better capture fine-grained nodule
characteristics, resulting in superior classification accuracy,
sensitivity, and specificity compared to these general-
purpose models.

Next, the comparison results for the proposed solution are
discussed over the IQ-OTH/NCCD dataset using various DL
models like DenseNet-121 (46), Inception-V3 (50), MobileNet-V2
(47), ResNet-50 (51), ResNet-152 (52), ResNet101 (53), as given in
(54, 55), and the acquired evaluation is given in Table 5. Again, the
results show that our model, named Residual-SwishNet, performs
better than the selected DL approaches in classifying lung cancer
over the IQ-OTH/NCCD dataset with a precision of 99.86%, along
with Fl-score and accuracy values of 98.85% and 99.11%. The
comparative models have proven effective in generic image
classification tasks; however, they exhibit key limitations in
medical imaging contexts. DenseNet-121 and Inception-V3,
despite their depth and feature reuse capabilities, rely on
conventional activation functions and lack targeted optimization
for lung cancer detection. MobileNet-V2 is a lightweight
architecture that compromises feature depth for computational
efficiency, which reduces its ability to extract detailed lung nodule
patterns. Even the deeper ResNet variants are powerful, but
employing ReLU activation and standard architectural setups,
which limit their capacity to capture detailed variations critical in
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FIGURE 9
A visual representation of actual and predicted labels by the Residual-SwishNet.

lung CT scans. In contrast, our Residual-SwishNet builds on  resulted in a more refined feature representation. These
ResNet50 but overcomes these limitations through the integration ~ enhancements allow Residual-SwishNet to extract and process
of the Swish activation, which advances gradient propagation and  intricate features more effectively, resulting in improved results
feature sensitivity. Further, introducing additional dense layers  across all key measures on the IQ-OTH/NCCD dataset.
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ROC curves for both datasets (a) LUNA-16, (b) IQ-OTH/NCCD using the Residual-SwishNet approach.
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FIGURE 11
Heatmap analysis of the proposed approach for lung cancer classification.

4.6 Comparison with the state-of-the-art

In this part, we have evaluated the designed work against
various latest approaches employing the same dataset to validate
its robustness in classifying the lung cancer nodules.

First, we have discussed evaluation results for the LUNA16
dataset by analyzing its outcomes with numerous new works (27,
49, 56-60). Priya et al. (27) suggested a DL framework named SE-
ResNeXt-50 to classify the lung cancer nodules and attained an
accuracy score of 99.15%. In (60), a DCSwinB dual-branch DL

method was proposed that combines CNN-based local feature
extraction with Swin Transformer-based global context modeling,
fused through a Conv-MLP module for enhanced 3D
representation, and attained an accuracy score of 90.96%. The
approach in (49) proposed a CNN approach with an attention
strategy to recognize lung nodules from CT-Scan images. The CNN
unit computed deep features on which an attention module was
employed to recognize the relevant information. The work reported
an accuracy score of 95.40%. Thangavel et al. (56) utilized a DL
model to categorize pulmonary nodules from suspected images.

TABLE 4 Residual-SwishNet comparative analysis with DL models for the LUNA16 dataset.

Framework Precision Recall F1-Score Accuracy
EfficientNet-B0 95.60% 93.50% 95% 95.30%
EfficientNet-B1 95.70% 94.40% 94.90% 95.20%
EfficientNet-B2 95.50% 94.60% 95.10% 95.40%
EfficientNet-B3 95.30% 94.60% 94.70% 95.40%
EfficientNet-V2-B0 95.55% 94.45% 94.85% 95.25%
EfficientNet-V2-B1 95.65% 94.35% 94.75% 95.15%
EfficientNet-V2-B2 95.45% 94.55% 95.35% 94.95%
NASNetMobile 88.25% 86.65% 87.65% 87.45%
DenseNet-121 86.80% 89.10% 88.50% 87.50%
MobileNet-V2 87.30% 88.80% 87.90% 89.00%
MobileNet 87.90% 88.50% 87.40% 88.80%
Proposed 99.90% 99.81% 99.85% 99.60%

Bold values mean result attained by our model.
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TABLE 5 Residual-SwishNet comparative analysis with DL models for the IQ-OTH/NCCD dataset.

Framework Precision Recall F1-Score Accuracy
DenseNet-121 95.50% - 95.50% 95.50%
Inception-V3 96.30% - 95.50% 95.50%
MobileNet-V2 95.90% - 95.80% 95.80%
ResNet-50 92.82% 92.22% 92.83% 94.18%
ResNet-152 87.90% - 87.40% 87.40%
ResNet101 93.26% 86.63% 86.97% 94.43%
Proposed 99.86% 98.84% 98.85% 99.11%

Bold values mean result attained by our model.

Initially, some preprocessing steps were performed to enhance the
visual quality of samples, on which the TNet DL model was applied
to segment the focal regions from the CT-Scan images. After this,
the CenterNet technique was applied to compute visual aspects
from the extracted clusters. At last, the NASNet approach was
applied to execute the classification task. This dense network has
obtained an accuracy score of 99.29%. Next, discussed work in (57)
proposed a model named LungNet-SVM for lung cancer
classification. The approach presented an improved AlexNet
approach for deep features computation, on which the
classification was carried out by the SVM classifier. The work has
achieved an accuracy score of 97.64%. Next, the method in (58)
applied Gabor filters along with an improved Deep Belief Network
(E-DBN) to compute the visual information from the given images.
Further, for the classification task, the approach used numerous
classifiers, with the highest value attained by the SVM classifier with
an accuracy of 99.161%. Alsheikhy et al. (59) used the VGG-19
model with long short-term memory networks (LSTMs) to execute
the classification task of lung cancer nodules. This technique has
stated an accuracy value of 99.42%. The results depicted in Table 6
indicate that the Residual-SwishNet approach has attained the
highest results in terms of all evaluation parameters used in the
assessment compared to all the modern approaches. We have
reported an accuracy score of 99.60% with a performance gain of
2.31%. Further, in terms of precision, the proposed model has

reported a performance gain of 3.98%, which is 3.21% and 3.18% for
the recall and F1-Score, respectively.

The main cause of attaining effective scores in comparison to
the latest approaches is because of the robust information learning
capability of the suggested solution. The work in (27) improved
features recalibration but lacked advanced activation mechanisms
to compute complex lung patterns. Further, the work in (60) lacks
to handle the distorted samples. Similarly, a CNN with attention in
(49) enhanced focus on key regions but was limited by the shallow
feature extraction backbone. Further, the approach in (56) followed
a multi-stage pipeline combining which increased complexity and
risked cumulative errors. Earlier models, like improved AlexNet
with SVM (57) and Gabor filters combined with Deep Belief
Networks (E-DBN) and SVM (58), relied on outdated or
manually crafted features, restricting their depth and adaptability.
Furthermore, the method in (59) computed dense features;
however, it suffered from the model overfitting issue. In contrast,
our proposed Residual-SwishNet overcomes these limitations
through an optimized ResNet50 backbone integrated with the
Swish activation function, enhancing nonlinear learning and
preserving critical negative activations. Additionally, we
introduced three dense layers for richer feature abstraction,
creating a streamlined, end-to-end framework that efficiently
learns from lung CT images and outperforms prior methods in
results and robustness on the LUNA16 dataset.

TABLE 6 Residual-SwishNet comparative analysis with new works for the LUNA16 dataset.

References Year Precision Recall F1-Score Accuracy
27) 2025 99.15% 97.58% 98.54% 99.15%

(60) 2025 85.56% 90.56% 90.56% 90.96%

(49) 2024 95.80% 94.69% 95.24% 95.40%

(56) 2024 99.19% 99.22% 99.20% 99.29%

(57) 2023 - 96.37% - 97.64%

(58) 2023 - 98.048% - 99.161%

(59) 2023 99.88% 99.76% 99.82% 99.42%
Proposed 2025 99.90% 99.81% 99.85% 99.60%

Bold values mean result attained by our model.
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TABLE 7 Residual-SwishNet comparative analysis with new works for the IQ-OTH/NCCD dataset.

References Year Precision Recall F1-Score Accuracy
(61) 2025 99.84% 97% 99.79% 99.06%
(62) 2025 99.06% 98.82% 98.94% 99.00%
(63) 2024 90.01% 91.78% 90.88% 89.36%
(64) 2024 99.45% 98.20% 98.82% 97.32%
(65) 2024 98.70% 97.50% 98.24% 98.82%
Proposed 2025 99.86% 98.84% 98.85% 99.11%

Bold values mean result attained by our model.

Next, we have carried out the comparative analysis of the
Residual-SwishNet for the IQ-OTH/NCCD dataset against the
latest approaches (61-65), and the obtained values are provided
in Table 7.

Kumar et al. (61) suggested a DL approach for lung cancer
classification, where VGG19 was used to compute deep features,
while for the classification, the Vision Transformer (ViT) was
applied. This work attained an accuracy of 99.06%. The work in
(62) presented a hybrid approach employing various DL methods
like GoogLeNet, EfficientNet, DarkNet19, and ResNet18 to perform
the diagnosis of lung tumors, and stated an accuracy of 99%.
Venkatraman et al. (63) also designed a DL framework for lung
nodules classification, in which VGG16 was used to compute deep
features, while for the classification task, the SVM approach was
used. The work reported an accuracy value of 89.36%. Further, the
work in (64) employed an improved GoogLeNet approach with
Adaptive Layers named GoogLeNet-AL for recognizing lung cancer
nodules. The technique has acquired a categorization score of
97.32%. Gupta et al. (65) proposed a DL method for lung cancer
classification that presented an enhanced U-Net framework in
which a conventional U-Net model was used for multi-scale
features computation along with the Differentiable Architecture
Search. The work achieved an accuracy of 98.82%. In comparison,
the suggested framework again attained the highest values for all
measures over the IQ-OTH/NCCD dataset in comparison to all
approaches. The improved feature engineering capability, along
with the high recall rate of the proposed approach, assists the model
in attaining robust results. On the IQ-OTH/NCCD dataset, prior
studies revealed several architectural and methodological
limitations. For instance, the work in (61) combined VGG19 with
ViT, but the shallow feature extraction of VGG19 and the data-
hungry nature of ViT limited performance on smaller medical
datasets. Similarly, ensemble models in (62) introduced
unnecessary computational overhead without guaranteeing
significant performance gains. Other works, like those discussed
in (63, 64), were constrained by outdated or shallow backbones that
struggled to extract the complicated visual patterns of lung cancer.
Segmentation-based models like those discussed in (65) added
additional pipeline complexity, which was not optimal for direct
classification tasks. In contrast, our Residual-SwishNet effectively
integrates a deep ResNet50 backbone with Swish activation and
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added dense layers, enabling rich feature learning without excessive
complexity. Further, the inclusion of cross-entropy loss in the final
classification layer helps to tackle the class-imbalance problem. The
overall architectural description of the DeepLungNe assists in
computing fine-grained patterns by minimizing training
inefficiencies and leads to superior classification results across key
performance metrics.

4.7 Cross-dataset evaluation

To evaluate the generalization capability of the proposed model,
we performed cross-dataset experiments using the benign and
malignant classes from two different datasets: LUNA-16 and IQ-
OTH/NCCD, and attained results are provided in Table 8. In the
first setting, the model was trained on the LUNA-16 dataset and
tested on IQ-OTH/NCCD, and attained an accuracy of 65.41%. In
the second setting, the model was trained on IQ-OTH/NCCD and
tested on LUNA-16, resulting in an accuracy of 59.93%.

These results show that the model retains a reasonable level of
recognition ability even when tested on entirely unseen datasets,
which shows that the learned features by the proposed approach
possess a degree of transferability. The better performance when
trained on LUNA-16 is attributed to its larger size and greater
variability, which allow the Residual-SwishNet to learn richer and
more generalizable representations. However, the drop in accuracy
in both cases highlights the challenges posed by differences in image
acquisition protocols, resolution, and noise characteristics between
datasets. Although the cross-dataset results are promising, there is
still room for improvement. Incorporating advanced domain
adaptation methods, more robust data augmentation strategies, or
transfer learning fine-tuning could help bridge the performance gap
and make the model more resilient to domain shifts, ultimately
enhancing its real-world applicability.

TABLE 8 Cross-dataset evaluation of the Residual-SwishNet approach.

Training Dataset = Testing Dataset

Accuracy (%)

LUNA-16 IQ-OTH/NCCD 65.41

LUNA-16 59.93

IQ-OTH/NCCD
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5 Conclusion

This study has introduced a DL approach named Residual-
SwishNet for lung cancer classification. Specifically, we altered the
ResNet50 framework by integrating the Swish activation function,
additional dense layers, and a Softmax output with Cross-Entropy
Loss to enhance learning capacity and classification precision. The
work is evaluated on two standard datasets, named the LUNA16
and IQ-OTH/NCCD datasets, and achieved accuracy scores of
99.60% and 99.11%, outperforming existing state-of-the-art
methods. These results highlight the competency of our approach
to accurately differentiate between benign and malignant lung
nodules by offering potential support in early diagnosis. However,
one limitation of our approach is the increased computational
complexity and training time introduced by model modifications,
which can limit deployment on resource-constrained devices or
real-time applications. The proposed Residual-SwishNet carries
strong clinical relevance, as accurate early differentiation between
benign and malignant lung nodules can support radiologists and
reduce diagnostic delays. However, the study has certain
limitations, including the use of only two publicly available
datasets, which may introduce dataset-specific biases and limit
generalizability. External validation on multi-center clinical data
and more diverse patient populations is still required. Additionally,
although the cross-dataset evaluation shows promising
transferability, the performance gap highlights the need for
further robustness improvements. Future research will focus on
integrating domain adaptation techniques, incorporating 3D
volumetric information, and validating the model in real clinical
workflows to enhance reliability and practical adoption.
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