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Introduction: Lung cancer remains one of the primary causes of cancer-related

deaths globally, emphasizing the urgent need for accurate and early diagnosis to

improve patient outcomes. However, existing computer-aided detection

systems often struggle with suboptimal feature extraction, low classification

accuracy, and limited generalizability across datasets.

Methods: To address these challenges, we propose a deep learning approach

named Residual-SwishNet, explicitly designed for the lung cancer classification

task. More specifically, we modified the ResNet50 framework by replacing the

conventional ReLU activation function with Swish during the feature engineering

phase. Further, we integrate three additional dense layers before the classification

module to obtain an enriched feature representation. Lastly, we employ a Softmax

output layer with Cross-Entropy Loss to tackle the class-imbalance issue.

Results: The approach was rigorously evaluated on 2 publicly accessible datasets,

named LUNA16 and IQOTH/NCCD, using precision, recall, F1-score, and accuracy

as performance metrics. Experimental results demonstrate the superiority of our

technique, achieving classification accuracies of 99.60% and 99.11% on the LUNA16

and IQ-OTH/NCCD datasets.

Discussion: Our approach has significantly outperformed existing state-of-the-

art techniques. These findings highlight the potential of the proposed model as a

robust and reliable tool for lung cancer diagnosis.
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1 Introduction

Lung cancer remains one of the most life-threatening health challenges worldwide,

which originates from the abnormal and uncontrolled proliferation of cells within the lungs

(1). This cancer is mainly categorized into 2 major categories: non-small cell lung cancer

(NSCLC) and small cell lung cancer (SCLC) (2). Among these, NSCLCs are common and

usually develop at a slower rate than SCLCs. Globally, lung cancer continues to be one of

the most frequently identified tumors and a major cause of death. According to reports by

the World Health Organization (WHO) and the International Agency for Research on
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Cancer (IARC), this category of cancer ranked as the second most

diagnosed tumor in 2021, having 2.2 million new cases, exceeded

only by breast cancer. Frighteningly, it was responsible for

approximately 1.8 million deaths out of a total of 9.96 million

cancer-related mortalities (3). The trend continued in 2022 and

resulted in affecting nearly 2.5 million individuals and causing the

same number of deaths, supporting its deadly impact (4). These

alarming figures reflect the urgent need for more accurate, efficient,

and early diagnostic techniques for this deadly disease. Timely

recognition plays a pivotal part in refining prognosis and survival

proportions. In this context, the current research is motivated by

the persuasive challenge of high mortality and diagnostic

complexity associated with lung cancer. This study proposes a

novel deep learning (DL)-based method for recognizing lung

cancer nodules with the aim of enhancing diagnostic reliability

and supporting clinical decision-making. A crucial aspect of lung

cancer analysis involves the detection and assessment of lung

nodules, which are small, abnormal growths that appear on

imaging modalities like chest X-rays and computed tomography

(CT) scans (5). These nodules are either benign or malignant, with

the latter potentially indicating early stages of lung cancer. Effective

evaluation of these nodules is essential, as it can result in prompt

intervention and significantly improved treatment outcomes.

Consequently, routine screening, accurate classification, and

conscientious monitoring of lung nodules form the cornerstone of

modern strategies aimed at reducing the burden of lung cancer and

improving patient care (6).

CT scans stand out as one of the most effective tools among the

numerous imaging modalities used in the recognition of lung

cancer. CT imaging provides a detailed cross-sectional

representation of the chest, which permits clinicians to closely

examine the lungs for signs of malignancy or other abnormalities

(7). Its aptitude to produce high-quality, three-dimensional images

promptly makes it a vital resource for the timely detection,

recognition, and staging of lung tumors. By offering enhanced

visual clarity, CT scans play a critical role in differentiating

between benign and malignant nodules, supporting accurate

clinical assessments (8). Additionally, CT imaging serves as a

guide for subsequent diagnostic measures, like needle biopsies,

and aids in devising appropriate cure strategies and observing

disease progression (9). Despite its diagnostic value, the

traditional manual interpretation of CT scans poses several

challenges. Reviewing a large volume of medical samples is

laborious and mentally taxing for experts. This manual process is

not only labor-intensive but also prone to inconsistencies, as

complex anomalies can go unnoticed or be interpreted differently

by different observers. The inherent subjectivity in image analysis

eventually results in inter-observer variability, which compromises

diagnostic accuracy. Furthermore, with the increasing availability

and use of advanced imaging technologies, the sheer amount of data

generated has placed an added burden on healthcare professionals.

Such limitations demand the requirement for computerized,

intelligent systems that can assist in the accurate and efficient

interpretation of lung imaging data (10).
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Recent advancements in automated lung cancer detection have

increasingly relied on imaging data across several modalities, mostly

through the application of artificial intelligence (AI) and machine

learning (ML) methods. These approaches have appeared as

powerful solutions for analyzing complex medical images, which

empower them to identify the complicated patterns that are hard to

detect through traditional methods (11). AI-driven approaches,

especially when applied to CT scans, are capable of efficiently

processing huge amounts of imaging data, which supports

radiologists in pinpointing minute anomalies associated with lung

tumors or nodules. This capability significantly enhances both the

speed and precision of diagnosis. By automating the analysis

process, AI not only accelerates early detection efforts but also

plays a crucial role in standardizing diagnostic practices across

diverse clinical environments. It reduces reliance on subjective

interpretation, thus minimizing variability between observers and

enhancing consistency in results. The integration of intelligent

diagnostic systems supports healthcare specialists in making

accurate and timely decisions, eventually causing better patient

management and improved treatment outcomes (12). These

innovations underscore the transformative influence of AI in

modern medical imaging and reinforce its value in the fight

against lung cancer (13).

Early efforts in lung cancer detection primarily relied on

traditional ML algorithms, which involved analyzing hand-crafted

features computed frommedical samples (14). Investigators focused

on quantifiable attributes like the outline, texture, and

concentration of suspected lesions in CT scans to perceive and

categorize irregularities. These features were then passed to train

classifiers that aimed to discriminate between the benign and

malignant cases. While this approach yielded encouraging results,

it was constrained by the challenges associated with medical image

complexity (15). One of the key limitations of traditional ML

methods was their dependence on manual feature extraction,

which required significant field knowledge and often failed to

capture delicate or higher-order patterns within the data.

Furthermore, conventional ML techniques struggled to manage

the hierarchical and nonlinear characteristics of medical images,

which limit their capability to generalize across diverse patient

datasets. As a result, their performance in the timely and precise

recognition of lung cancer was suboptimal. The advent of DL

revolutionized the landscape of medical image examination,

mainly in the area of lung cancer classification (16). DL

architectures like convolutional neural networks (CNNs) enabled

models to automatically compute hierarchical and complicated

features right from a given suspected sample (17). Such

architectures eradicate the requirements for a manual feature

learning procedure and significantly improve the ability to

compute fine-grained and abstract patterns associated with

cancerous growths (18–20). DL-based models have demonstrated

exceptional performance in recognizing sophisticated visual cues,

for example, small nodules or early-stage tumors, often

undetectable to the human eye. The end-to-end learning

capability of deep networks allows them to process raw data and
frontiersin.org
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optimize predictions with minimal human intervention, thereby

progressing the correctness, consistency, and reliability of lung

cancer diagnostics (21–23).

Although DL frameworks have meaningfully advanced lung

cancer detection, they are not without limitations. A major concern

is the risk of diagnostic errors, including false positives where non-

cancerous structures are misidentified as malignant and false

negatives, where actual tumors may go undetected. These

misclassifications can have serious clinical implications,

potentially leading to unnecessary interventions or missed

treatment opportunities. Another persistent challenge is the lack

of interpretability in DL models. Many DNNs operate as opaque

systems, making it problematic for medical experts to understand

the reasoning behind a specific prediction, thereby reducing trust

and limiting their integration into decision-critical environments.

In addition, the computational demands of DL models are

substantial. Training and deploying these models typically require

high-performance hardware and significant processing time, which

can be a barrier to real-time application in clinical workflows,

particularly in resource-constrained sites. Furthermore, the

outcomes of DL algorithms can be influenced by disparities in

imaging protocols, scanner types, and image quality. These

inconsistencies across datasets and healthcare institutions may

hinder the generalizability of the models, limiting their robustness

and effectiveness when applied to new or diverse populations.

Addressing these limitations is essential to ensure the safe,

efficient, and wide-scale adoption of DL systems in lung tumor

recognition and classification.

To address the existing challenges of this field, we propose a

refined ResNet50-based model named Residual-SwishNet, designed

to enhance classification performance and model robustness. In our

approach, the conventional activation functions in the

convolutional layers have been replaced with the Swish activation

function, known for its smooth, non-monotonic properties that

enable improved gradient propagation and feature computation.

This modification permits the network to extract complicated

patterns more effectually, specifically in complex or low-contrast

regions of lung scans. Additionally, we introduce three extra dense

layers before the final categorization layer to enrich the feature

space and improve the model’s capacity to recognize benign and

malignant samples. Further, the usage of the cross-entropy loss

method in the softmax layer assists the Residual-SwishNet approach

to tackle the class-imbalance problem. These architectural

enhancements contribute to more reliable predictions and help

mitigate false positives and negatives by offering a more accurate

and interpretable solution for lung cancer classification. The main

contributions of this framework are listed as:
Fron
1. Integration of the Swish activation function in

convolutional layers improves non-linear representation

learning and model convergence, outperforming

traditional functions like ReLU.

2. The addition of three fully connected layers before the

classification unit enhances the capability of the approach
tiers in Oncology 03
to extract deep semantic features, which leads to improved

decision boundaries.

3. The proposed architecture demonstrates better handling of

ambiguous cases due to its high recall ability, which

minimizes the incidence of false positives and negatives in

lung cancer classification.

4. The model is capable of tackling the class-imbalance issue

due to the employment of the cross-entropy loss method in

the softmax layer of the proposed approach.

5. The refined model offers a practical and computationally

efficient solution that bridges the gap between high

accuracy and interpretability, which makes it suitable for

deployment in clinical diagnostic workflows.

6. Massive experimental analysis of our work was performed

using two standard datasets to demonstrate the efficacy of

our method.
The rest of the article comprises the given hierarchy: the related

work is provided in Section 2, whereas the suggested work is

presented in Section 3. The used dataset, performance indicators,

along with a detailed description of achieved outcomes, are given in

Section 4. Lastly, the conclusion is stated in Section 5.
2 Related work

Here, we have discussed the existing works presented to

accomplish the classification task of lung nodules.

Raza et al. (24) proposed a model named Lung-EffNet for

classifying lung cancers. Initially, the approach performed data

augmentation to increase the sample size. After this, the

EfficientNet approach was trained using the concept of transfer

learning via applying its variants from B0 to B4. The work was

tested over the IQ-OTH/NCCD dataset and obtained a

classification score of 99.10%. This work shows good outcomes

for categorizing lung nodules; however, it requires a huge number of

samples to train the model. Nahiduzzaman et al. (25) introduced a

DL method for classifying lung tumors. For this, the model first

applied a preprocessing step to enhance the visual representation of

the input images. After this, the work applied a model named

lightweight parallel depth-wise separable convolutional neural

network (LPDCNN) to compute the relevant information of the

input images. Next, the Ridge-ELM classifier employed the

extracted features from the previous step and performed the

categorization of nodules. The work provides better results for

binary problem; however, it faces performance degradation for

the multiclass classification task. Another DL approach named

FocalNeXt was presented in (26) to execute the classification task

of lung nodules. The work merged the attention strategy of

FocalNet along with the feature computation capability of

ConvNeXt inside the vision transformer model. The work has

attained a classification score of 99.81%, however, at the cost of

an enhanced computing load. Priya et al. (27) proposed a DL model

for lung cancer classification. First, samples were preprocessed to
frontiersin.o
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improve their appearance. Then, the data size was increased by

applying various augmentation techniques. Finally, the work used

the SE-ResNeXt-50 approach to calculate the deep features and

performed the classification job. The work performed well in

recognizing lung cancers; however, it suffered from a high

computational cost.

In (28), a DL method was used to recognize the lung tumors.

First, a step was followed to eliminate the noisy information from

the samples and enhance their visual appearance. The enhanced

samples were then passed to the feature extraction phase, where 6

statistical features were estimated based on Improved Empirical

Wavelet Transforms (IEWT). After this, the calculated visual

characteristics were passed to the Attention-based Convolutional

Neural Network with DenseNet-201Transfer Learning (AtCNN-

DenseNet-201 TL) to accomplish the categorization task. The

approach presents an effective solution to diagnose lung cancer;

however, it faces the model overfitting issue. Murthy et al. (29) used

an ML approach to categorize lung cancer from CT scans. For this,

the Adaptive Median Filter (AMF) was used initially to enhance the

quality of the samples. Next, M-SegNet was used to extract the focal

areas. After this, the visual information from the segmented regions

was computed by computing various types of features named

statistical, deep, and textural features, which were combined to

make the final vector. After this, the classification was accomplished

using the Tree-based Pipeline Optimization Tool with Support

Vector Machine (TPOT_SVM). The approach shows better

outcomes in the recognition of lung nodules; however, the work

is effective for a binary classification task. Mothkura et al. (30)

designed a method for classifying lung tumors. The approach used a

dense CNN to get dense features and performed the classification

task. The work has attained a highest classification rate of 85.21%,

which needs further improvements. In (31), a DL network was

proposed for lung cancer classification. To accomplish this, the

work used s Multimodal Fusion Deep Neural Network (MFDNN)

framework that combined features from various types of visual

samples like medical imaging, genomics, and clinical data, which

was combined for lung cancer classification. The work performed

well in recognizing the lung cancer nodules; however, at the cost of a

huge computing burden. Mohamed et al. (32) suggested a CNN

approach to extract a related group of features and perform the

categorization of samples into relevant groups of lung cancers.

Further, the work used an optimization strategy to boost the

model’s running behavior. The work shows better outcomes in

recognizing the relevant cancer groups of the lung; however, the

results need further enhancements.

Hossain et al. (33) employed the concept of the ensemble

approach for categorizing lung cancer nodules. For this, the

approach initially utilized a step to boost the quality of input

samples. After this, the work used the CNN-SVD-Ensemble

approach to compute the relevant set of visual information and

execute the dimensionality reduction. Next, the computed features

were passed to various ML classifiers to perform the cataloguing of

lung nodules. The strategy gains better outputs in diagnosing the

lung tumors; however, it lacks the generalization power. Naseer

et al. (34) proposed a DL approach to perform the lung cancer
Frontiers in Oncology 04
classification task. For this, the approach follows 3 stages, where in

the first step, the work used the UNet approach to segment the lobe

from CT scans. Next, the enhanced UNet framework was used to

compute the nodule mask. In the third stage, the computed masks

were passed to a CNN approach named the AlexNet for deep

features computation and executing the classification task. The

network was tested using the LUNA-16 data sample and attained

an accuracy score of 97.98%. The technique attains better scores;

however, it requires more improvements. Uddin et al. (35) applied a

DL network for lung cancer diagnosis. For this, the work proposed

two dense frameworks to learn a representative set of features and

execute the recognition task. Further, the work has proposed a

hybrid model by joining both networks, and attained a highest

classification accuracy of 93%. This technique exhibits better

performance in categorizing lung cancer nodules; however, the

outcomes need further improvement. In (36), a DL network was

designed for the recognition of lung tumors. For this, initially, the

samples were preprocessed to enhance the visual information by

propagating the sample to the convolution filter and down-

sampling it by employing max pooling. Next, the autoencoder

approach was applied to compute a set of dense features based on

a CNN, and a multispace image reconstruction method was utilized

to lessen error while restructuring the sample to enhance the nodule

recognition ability of the approach. Lastly, the SoftMax classifier

was applied for grouping the samples. Alsallal et al. (37) designed a

framework to identify and classify lung tumors. First, various

transformations were used to advance the visual aspects of the

samples. Next, various structural features were computed by

applying the PyRadiomics library. Next, a dense CNN model was

merged with attention mechanisms to compute a deep set of sample

information. Next, the model used different feature nomination

approaches like Non-negative Matrix Factorization (NMF) and

Recursive Feature Elimination (RFE). Finally, various ML

classifiers like XGBoost and Stacking were applied to perform the

classification task. The work performs well for lung cancer

classification; however, it needs further improvements.

While numerous studies have explored ML and DL methods for

recognizing lung tumor nodules, several limitations remain

unresolved. Many existing approaches struggle with issues such as

limited generalizability, lack of interpretability, and susceptibility to

false predictions. These gaps underline the pressing need for a more

effective and robust solution that can enhance feature

representation, improve diagnostic accuracy, and ensure

consistency across diverse imaging conditions.
3 Proposed method

This study presents a novel DL model named Residual-

SwishNet, which is specifically designed to classify lung CT

images into benign and malignant groups accurately. The

proposed architecture builds upon a refined version of the

ResNet50 CNN model, which is modified to capture relevant and

complex details found in lung cancer imaging. To improve the

learning capability of the approach, we replace the conventional
frontiersin.org
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ReLU activation with the Swish activation within the convolutional

layers. The smooth and non-monotonic behavior of the Swish

activation allows for better gradient flow and the retention of

minor negative values, which enhances feature learning in deep

layers. Furthermore, the architecture is extended by introducing

three additional dense layers before the final classification stage.

These layers strengthen the capability of the technique to extract

deep semantic features and support more precise decision-making.

This enriched feature representation contributes to more reliable

classification outcomes, particularly in cases where tumor

boundaries or nodular characteristics are complicated. Moreover,

to tackle the category imbalance issue, we have used the cross-

entropy loss method in the final classification stage. A workflow of

the model training is provided in Figure 1. For model evaluation,

the employed datasets were partitioned into train and test groups,

and framework parameters were optimized to ensure stable

convergence and robust performance. Residual-SwishNet was

then trained to identify key discriminative features in lung CT

scans and accurately categorize them into their respective classes. A

representation of the designed framework is given in Figure 2.
3.1 Feature calculation

To boost the accuracy of lung cancer classification, it is essential

to compute a robust set of feature representations that effectively

capture the differences between malignant and benign lung tissues.

High-level features, often referred to as semantic features, are vital

in distinguishing such complex visual patterns in CT scan images.

In the proposed Residual-SwishNet framework, we utilize a

modified ResNet50 backbone to extract these discriminative

features. A key enhancement involves replacing the traditional

ReLU activation with the Swish, which advances the aptitude of

our framework to compute complex spatial information by

permitting small negative scores to pass through the network.

This helps retain valuable information during feature learning

and supports deeper, more expressive representations. As a result,

the feature computation stage in Residual-SwishNet becomes more

effective in encoding semantic details crucial for improving

classification performance.
3.2 ResNet50

The base of the proposed Residual-SwishNet framework lies in

the ResNet50 architecture (38), which is a powerful and widely
Frontiers in Oncology 05
adopted deep CNN model known for its use of residual learning.

Unlike traditional CNNs that suffer from vanishing gradients as

layers deepen, the ResNet50 model addresses this issue through

identity-based skip links, which allow gradients to flow more

successfully through backpropagation. These skip links empower

the system to capture residual mappings rather than direct

transformations, which results in both improved convergence and

accuracy in deep architectures.

ResNet50 is structured using multiple residual blocks (RBs),

each consisting of a series of convolutional layers accompanied by

batch normalization and an activation method. The distinguishing

feature of an RB is the shortcut path, which allows the input to avoid

one or more layers and be directly added to the output of the

transformation layers. This process is mathematically represented

as Equation 1.

I = R(o) + o (1)

Where o is the input to the block, R(o) is the residual mapping

learned through convolutional operations, and I is the final output.

This formulation helps hold vital features across layers while

enabling the approach to focus on learning only the necessary

adjustments. Owing to its architectural efficiency and strong feature

extraction capabilities, the ResNet50 model serves as an effective

base for the Residual-SwishNet model in analyzing lung CT images

for cancer classification.
3.3 Residual-SwishNet

The proposed Residual-SwishNet framework builds upon the

ResNet50 architecture (39), which is famous for its residual learning

mechanism and robust feature extraction capabilities. Even though

ResNet50 performs well in solving various image classification

tasks, however comes with certain limitations when applied

directly to medical imaging, mainly for detecting complex

abnormalities in lung CT scans. Specifically, its dependence on

the ReLU activation function leads to the suppression of important

negative activations, which can carry useful information in low-

contrast medical images. Additionally, the standard architecture is

unable to provide sufficient depth in the final layers to fully capture

the complicated variations between benign and malignant tissues.

To address these challenges, we introduce three key modifications

to the original ResNet50 structure, which build the foundation of

the Residual-SwishNet model. First, we incorporate the Swish

activation function into the residual blocks to replace ReLU in the

process of feature capturing. The capability of the Swish method to
FIGURE 1

An overview of model training.
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retain small negative values and promote smoother gradient flow

enhances the power of the model to learn complex and refined

visual features by improving convergence and reducing training

loss. Second, we append 3 extra dense layers before the classification

unit to deepen the semantic understanding behavior of the model,

which improves its discrimination power before executing the final

grouping task. These fully connected layers refine the high-level

features and help the model detect more meaningful patterns

associated with lung abnormalities. Lastly, we have used the

cross-entropy loss technique in the classification layer, which

assists the Residual-SwishNet in tackling the sample imbalance

problem. Despite these enhancements, the overall complexity of the

network remains manageable, which ensures that Residual-

SwishNet is suitable for practical clinical applications. The final

feature representations are passed to a Softmax layer, which outputs

class probabilities for the classification of lung conditions. The

architectural overview of Residual-SwishNet is illustrated in

Figure 3, and a detailed layer-wise structure is provided in

Table 1. The next sections delve into the internal components of

the model in greater detail.

3.3.1 Convolutional layer
In the Residual-SwishNet architecture, convolutional layers

form the foundational component responsible for extracting

spatially-aware features from lung CT scan images. These layers

apply a series of learnable filters to the input image, which enables

the technique to detect local patterns such as edges, textures, and

shapes that are critical for identifying cancerous regions. As the

depth of the network increases, these layers progressively learn

more abstract and complex representations, which are essential for

distinguishing between benign and malignant conditions. -The

operation of a convolutional layer can be mathematically

expressed as Equation 2.
Frontiers in Oncology 06
Fn
j = f (oi∈xj

(Kn
ij *P

n−1
i + bn

j ) (2)

Where Fn
j denotes the output feature map at layer n,  Kn

ij

represents the convolutional kernel applied between input map i

and output map j, ∗ is the convolution operator, bn
j is the bias term, f

(·) denotes the activation function (Swish in our case), and xj denotes

the total features maps. To standardize the input across all samples

and maintain consistency with the architecture, CT scan images are

resized to 224 × 224 pixels before being passed through the network.

In total, the proposed Residual-SwishNet model incorporates 48

convolutional layers, which are distributed across multiple residual

blocks, and each contributes to the hierarchical extraction of features

necessary for accurate lung cancer classification.
3.3.2 Activation layer
To enhance the capacity of the approach to learn fine-grained

features from lung CT images, the proposed Residual-SwishNet

architecture replaces the conventional ReLU activation with the

more advanced Swish activation function after every 2D conv layer.

Swish is famous for its smooth and non-linear behavior that enables

better gradient propagation and feature retention, particularly in

deeper networks. Its ability to pass small negative values in place of

completely discarding them, as ReLU does, assists the proposed

work in preserving complex patterns in medical images that might

otherwise be lost, which is especially critical for detecting early-stage

or low-contrast lung abnormalities (40). Unlike ReLU, which is

piecewise linear and can lead to dead neuron problems, the

employed Swish activation function offers a non-monotonic and

differentiable structure, enabling better optimization and more

stable training. This leads to stronger generalization performance

and improved convergence behavior. A pictorial analysis of the

Swish vs ReLU methods is depicted in Figure 4. The mathematical

expression for the Swish activation is given by Equation 3.
FIGURE 2

Architectural flow of Residual-SwishNet model.
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swish(u) = u �  s(hu) (3)

Where u is the input to the activation layer, s denotes the sigmoid

function, and h is a trainable parameter that scales the input

dynamically. However, in our implementation, the parameter h in the

Swish equation is fixed to 1 (non-trainable), corresponding to the

standard Swish activation rather than the trainable Swish-b variant.

The fixed version provided more stable convergence and avoided
Frontiers in Oncology 07
additional parameters that could lead to overfitting on medical

datasets with limited samples. In the context of lung cancer

classification, in which learning relevant morphological changes is

crucial, the Swish activation approach significantly improves feature

sensitivity and learning depth. Its computational efficiency and stability

under varying learning rates make it particularly suitable for deep

architectures like Residual-SwishNet, which delivers better performance

and faster convergence compared to traditional activation functions.
FIGURE 3

A visual representation of the Residual-SwishNet.
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3.3.3 Pooling layer
In the Residual-SwishNet architecture, pooling layers are

integrated to reduce the spatial dimensions of feature maps while

retaining the most informative patterns. The pooling operation

helps in minimizing redundancy, improving computational

efficiency, and enhancing the ability of the model to manage

spatial variations in lung CT scans by aggregating features from

neighboring pixels. Specifically, an average pooling layer is

employed before the fully connected stages to summarize the

extracted features into a compact vector, which is then passed to

the appended dense layers for further processing and classification.
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3.4 Incorporated dense layers

After the pooling stage, Residual-SwishNet incorporates 3

additional dense layers to refine and enhance the extracted

features before classification. The decision to incorporate three

dense layers in the final stage of Residual-SwishNet was guided by

empirical experimentation conducted during model development.

We evaluated multiple configurations, including one, two, three,

and more than three dense layers. Models with only one or two

dense layers demonstrated weaker feature abstraction and produced

lower classification accuracy, indicating insufficient refinement of

high-level representations. In contrast, architectures with more than

three dense layers began to show signs of overfitting and increased

training instability. The configuration with three dense layers

consistently achieved the most favorable balance between feature

discrimination, computational efficiency, and generalization

capability. These layers are activated using ReLU and are focused

on emphasizing critical patterns associated with lung abnormalities

while filtering out less relevant information. This added depth

improves the capacity of the approach to form a more

discriminative feature representation from CT scans. The

resulting dense feature vector is then forwarded to the Softmax

layer for final classification.
3.5 Softmax layer

The last stage of the Residual-SwishNet framework utilizes a

Softmax layer to convert the dense feature vector into class

probabilities, which causes the model to classify lung CT images

as benign or malignant. The Softmax function normalizes the

outputs of the last dense layer by producing a probability

distribution over the target classes. It is defined as Equation 4.

s(Si) =
exp(Si)

on−1
j=0 exp(Sj)

(4)

where Si is the score for class i, Sj presents the output vectors,

and n shows the total groups. For optimization, the model uses

categorical cross-entropy loss (41), which measures the divergence

between predicted and true class labels and supports learning even

under class imbalance.
4 Results

In this section, a thorough explanation of the employed

datasets, along with the evaluation parameters, is provided.

Further, a vast evaluation of the Residual-SwishNet is performed

to prove the robustness of our network.
4.1 Implementation details

The proposed Residual-SwishNet was implemented using

Python and TensorFlow/Keras. The model was optimized using
FIGURE 4

Pictorial analysis of ReLU and Swish activation (40).
TABLE 1 The layer-wise analysis of Residual-SwishNet.

Layer Residual-SwishNet

Conv_L1_x 7×7, 64

3×3 max pooling

Conv_L2_x 1� 1,   64

3� 3,   64

1� 1, 256

2
66664

3
77775
× 3

Conv_L3_x 1� 1,   128

3� 3,   128

1� 1, 512

2
66664

3
77775
× 4

Conv_L4_x 1� 1,   256

3� 3,   256

1� 1, 1024

2
66664

3
77775
× 6

Conv_L5_x 1� 1,   512

3� 3,   512

1� 1, 2048

2
66664

3
77775
× 3

Average Pooling

Dense Layer1

Dense Layer2

Dense Layer3

Softmax layer
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the Adam optimizer with an initial learning rate of 0.0001, chosen

for stable convergence when training deep residual networks. A

batch size of 32 was used for all experiments to maintain a balance

between training stability and computational efficiency. Both

datasets were divided into 70% training, 10% validation, and 20%

testing splits to enable fair performance evaluation. The model was

trained for 100 epochs with early stopping based on validation loss.

Further, Figure 5 shows the training and validation curves for both

datasets. As the epochs increase, the accuracy for both training and

validation steadily improves, while the loss gradually decreases. The

two curves stay close to each other, which means the model is

learning well and not overfitting. These curves confirm that our

Residual-SwishNet trains smoothly and generalizes well to

unseen data.
4.2 Evaluation parameters

To measure the classification outcomes of the proposed

Residual-SwishNet technique, we have used the standard

evaluation parameters named accuracy, precision, recall, and F1-

Score, which are computed as mentioned in Equations 5–8.

Accuracy =
TP + TN

TP + FP + TN + FN
(5)
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Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 − Score =
(2� Pr ecision� Re call)
( Pr ecision + Re call)

(8)
4.3 Dataset

To train and test the proposed approach, we utilized two

standard online repositories of lung cancer samples, namely

LUNA-16 (42) and IQ-OTH/NCCD lung cancer dataset (43),

both of which were accessed on July 01, 2025. The LUNA16

dataset, a curated subset of the publicly available LIDC-IDRI

repository, is a broadly recognized standard for tuning networks

for lung cancer diagnosis. It contains chest CT scans that have been

meticulously annotated by expert radiologists, who evaluated each

scan to confirm the incidence, locality, and characteristics of

pulmonary nodules. As part of its refinement, the LUNA16

dataset excludes CT images with slice thicknesses greater than 2.5

mm to ensure consistent imaging quality across the dataset. The
FIGURE 5

LUNA-16 Training curves (a), LUNA-16 Loss curves (b), IQ-OTH/NCCD Training curves (c), IQ-OTH/NCCD Loss Curves (d), respectively.
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complete dataset comprises 888 CT scans, which are reviewed by

four radiologists, providing reliable annotations of the size, location,

shape, and density of nodules. These images focus specifically on the

lung regions containing nodules, allowing the framework to extract

appropriate patterns. To facilitate the lung tumors classification

task, the nodules were divided into two categories based on the

mean malignancy score assigned by radiologists. Nodules with a

mean score of 2.5 or below were categorized as benign, indicating

non-cancerous conditions, while those with a mean score of 3.5 or

higher were classified as malignant, reflecting a higher likelihood of

cancer. The second data sample utilized in this work is the IQ-

OTH/NCCD lung cancer dataset, which was gathered at the

National Center for Cancer Diseases in Iraq over a period of 3

months during the fall of 2019. This sample comprises a total of

1,190 CT image slices obtained from 110 victims and delivers an

adequate amount of data for framework tuning. The dataset is

organized into three distinct categories: normal, benign, and

malignant cases. Among the collected samples, there are 416

images labeled as normal, 120 as benign, and 561 as malignant,

which indicates a minor imbalance in class distribution. The major

reason to choose these datasets is due to their complex natures and

presence of various image distortions, which make them

challenging for accomplishing the lung cancer classification task.
4.4 Model evaluation

This section is focused on discussing the output results of the

Residual-SwishNet approach by indicating the attained scores on

two employed standard datasets named LUNA16 and IQ-OTH/

NCCD lung cancer data samples, with the employment of various

measures like precision, recall, F1, and Accuracy metrics.

To thoroughly assess the results of our proposed Residual-

SwishNet model, first, we discussed the classification metrics named

precision, recall, and F1-score on both the LUNA16 and IQ-OTH/

NCCD samples, and attained analysis is provided in Figure 6. These

metrics offer a complete understanding of the diagnostic strength

and reliability of our model, which is vital in health imaging tasks

where both false positives and negatives can possess serious clinical
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consequences. Precision reflects the capability of an approach to

appropriately recognize true positive cases among all predicted

positives, which is vital to minimizing unnecessary interventions.

Recall, on the other hand, computes the capacity of the work to

detect all actual positive cases by ensuring that no malignant or

suspicious case is overlooked. Lastly, the F1-score presents a

harmonic mean of precision and recall, which balances these two

aspects by delivering a single robust indicator of classification

performance, especially under class-imbalanced conditions

common in medical datasets. Using line bar visualizations, we

plotted these metrics across both datasets to showcase how

Residual-SwishNet consistently achieves high scores across all

three metrics, showing the efficacy of our network. These

outcomes confirm that our approach is competent to maintain

high diagnostic accuracy while reducing both false alarms and

missed detections, proving its effectiveness in real-world clinical

screening circumstances.

In addition to evaluating precision, recall, and F1-score, we also

analyzed the accuracy of our proposed model across both datasets,

and the results are shown in Figure 7. Accuracy is one of the most

fundamental metrics in classification, which computes the

proportion of correctly predicted instances over the total number

of predictions. On both the LUNA16 and IQ-OTH/NCCD datasets,

our model consistently outperformed and attained improved

accuracy values. It can be seen from the values provided in

Figure 7 that our approach offers comprehensive capability to

correctly classify a wide range of lung cancer cases, regardless of

their complexity or similarity across classes. The improved accuracy

is due to the better information-capturing capability of the

approach, which ensures minimal misclassification and boosts the

model’s reliability for clinical use.

Next, we have discussed the confusion matrix for both

employed datasets, and visuals are provided in Figure 8. The

confusion matrices shown in Figure 8 not only reflect the

exceptional performance of the proposed model on the LUNA16

and IQ-OTH/NCCD datasets but also serve as a critical tool for

evaluating classification effectiveness. A confusion matrix provides

a comprehensive view of the predictive capabilities of an approach

by presenting true positives, true negatives, false positives, and false

negatives in a structured format. This aids in analyzing explicit

zones where the approach surpasses or needs development, beyond

what single-value metrics like accuracy or F1-score can convey. In

addition to the visual confusion matrices shown in Figure 8, we also

provide the numerical confusion matrix values in tabular form to

improve clarity in Tables 2, 3 for LUNA-16 and IQ-OTH/NCCD

datasets, respectively. These tables present the exact number of

correctly and incorrectly classified samples for each class in both

datasets, enabling a more precise interpretation of the model’s

performance. Specifically, for the LUNA16 dataset, the model

accurately classifies 99.84% of benign and 99.79% of malignant

cases, with extremely low misclassification rates of 0.16% and 0.21%

respectively, indicating high discriminative power between the two

classes. While for the IQ-OTH/NCCD dataset, presenting a 3-class

problem named normal, benign, and malignant, the confusion

matrix again demonstrates excellent performance with 99.89%,
FIGURE 6

Residual-SwishNet results over the LUNA16 and IQ-OTH/NCCD
datasets using precision, recall, and F1-score measures.
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99.85%, and 99.78% correctly predicted for each class, respectively.

The extremely low off-diagonal values confirm the capability of the

approach to avoid confusion between clinically similar categories.

These strong results validate the effectiveness of the proposed

modifications, like replacing ReLU with Swish activation,

incorporating three dense layers, and using a Softmax output

layer with Cross-Entropy Loss, in enhancing feature learning and

decision boundaries, ultimately leading to superior classification

precision and reliability.

To qualitatively assess the model’s recognition capability, we

presented a few example CT scan images marked with both the

predicted and original labels in Figure 9. It can be seen from the

visuals given in Figure 9 that the Residual-SwishNet accurately classifies

the cases, clearly demonstrating its ability to generalize and correctly

identify critical patterns in complex lung imagery. Such visual validations

strengthen the confidence in our proposed solution by highlighting its
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potential reliability in clinical environments. The sharp correspondence

between the projected and real labels confirms the robustness of the

proposed architecture across diverse imaging conditions.

To further validate the robustness of Residual-SwishNet, ROC

curves were generated for both datasets. As shown in Figure 10, the

model achieves an AUC of approximately 0.97 on LUNA-16 and

0.98 on IQ-OTH/NCCD, indicating excellent separability between

benign and malignant cases across both datasets. The curves rise

sharply toward the top-left corner, demonstrating a high true-

positive rate with minimal false positives, which confirms stable

generalization beyond accuracy and F1-score results. These ROC

curves provide additional evidence that the proposed method

maintains strong discriminative performance and does not rely

on chance-level decision boundaries.

To further support the interpretability of the proposed model,

we have generated heatmaps using Grad-CAM, and attained visuals
FIGURE 8

Confusion matrix attained by the Residual-SwishNet over (a) LUNA16, (b) IQ-OTH/NCCD, respectively.
FIGURE 7

The Residual-SwishNet results representation over the LUNA16 and IQ-OTH/NCCD datasets using accuracy metrics.
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are given in Figure 11. These visualizations highlight the explicit

areas within the CT scans that the Residual-SwishNet emphasizes

when making predictions. The activation regions primarily

concentrate on the interior portions of the lungs, indicating that

the model is correctly attending to clinically relevant areas for

feature extraction. This not only validates the internal decision-

making process of the deep learning model but also aligns with

expert radiological understanding, thus reinforcing the clinical

reliability and transparency of the system.

So, after providing a comprehensive assessment of the Residual-

SwishNet approach using multiple performance metrics, including

precision, recall, F1-score, and accuracy, along with visual analysis

through confusion matrices, predicted label overlays, and Grad-

CAM heatmaps, we have confirmed the robustness of our approach

for lung cancer classification. The consistently high scores across

both datasets and the strong qualitative evidence highlight the

effectiveness, robustness, and interpretability of the model in

classifying lung cancer cases. These evaluations confirm that the

model not only attains advanced performance but also offers

transparency in its predictions, which is an essential requirement

for real-world medical applications.
4.5 Comparison with DL approaches

In this part, we have analyzed the performance of the Residual-

SwishNet approach in comparison to numerous well-known DL

approaches for both employed datasets, named LUNA16 and IQ-

OTH/NCCD lung cancer data samples.

First, the scores for the LUNA16 dataset are discussed by using

the standard evaluation measures, namely precision, recall, F1-

score, and accuracy, and the obtained analysis is shown in Table 4.

For evaluation, various DL approaches, i.e., the EfficientNet series

(44), NASNetMobile (45), DenseNet121 (46), MobileNetV2 (47),

and MobileNet (48), are taken as provided in (49). The assessment

in Table 4 clearly displays that the proposed solution ranked
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highest in all evaluation measures with scores of 99.90%, 99.81%,

99.85%, and 99.60% for the precision, recall, F1-Score, and

accuracy metrics. Further, the EfficientNetB2 model attains

comparable performance with scores of 95.50%, 94.60%, 95.10%,

and 95.40% against the precision, recall, F1-score, and accuracy

measures. Among all DL models, the NASNetMobile approach

shows the worst performance in classifying the lung cancer

samples with scores of 88.25%, 86.65%, 87.65%, and 87.45%

over the precision, recall, F1, and accuracy metrics. The

proposed solution shows the best solution due to its high

recognition power. On the LUNA16 dataset, the comparative

DL models show better results; however, these models are

subject to certain limitations in the context of lung cancer

classification. The EfficientNet and EfficientNetV2 series

techniques present optimized solutions for parameter efficiency;

however, at the cost of compromised accuracy due to their

shortcoming in capturing the complex textural differences

present in lung nodules, as these models employ lightweight

convolutional layers and standard activation functions. Such a

structure of the EfficientNet family limits their feature sensitivity.

Further, NASNetMobile and MobileNet architectures prioritize

computational efficiency for mobile applications but sacrifice

depth and feature extraction capabilities, which also makes them

less suitable for high-detail medical imaging tasks. DenseNet121,

though effective in feature reuse, lacks specialized modifications

tailored to lung cancer detection and does not optimally capture

domain-specific patterns. In contrast, our Residual-SwishNet

enhances feature learning through a ResNet50 backbone

equipped with the Swish activation function, which improves

non-linear learning and gradient flow, and integrates additional

dense layers to refine feature representation. These improvements

enable Residual-SwishNet to better capture fine-grained nodule

characteristics, resulting in superior classification accuracy,

sensitivity, and specificity compared to these general-

purpose models.

Next, the comparison results for the proposed solution are

discussed over the IQ-OTH/NCCD dataset using various DL

models like DenseNet-121 (46), Inception-V3 (50), MobileNet-V2

(47), ResNet-50 (51), ResNet-152 (52), ResNet101 (53), as given in

(54, 55), and the acquired evaluation is given in Table 5. Again, the

results show that our model, named Residual-SwishNet, performs

better than the selected DL approaches in classifying lung cancer

over the IQ-OTH/NCCD dataset with a precision of 99.86%, along

with F1-score and accuracy values of 98.85% and 99.11%. The

comparative models have proven effective in generic image

classification tasks; however, they exhibit key limitations in

medical imaging contexts. DenseNet-121 and Inception-V3,

despite their depth and feature reuse capabilities, rely on

conventional activation functions and lack targeted optimization

for lung cancer detection. MobileNet-V2 is a lightweight

architecture that compromises feature depth for computational

efficiency, which reduces its ability to extract detailed lung nodule

patterns. Even the deeper ResNet variants are powerful, but

employing ReLU activation and standard architectural setups,

which limit their capacity to capture detailed variations critical in
TABLE 2 Tabular representation of the Confusion matrix for LUNA16
dataset.

Actual/predicted
Benign Malignant

TPR (%)

Benign 99.84 0.16

Malignant 0.21 99.79
TABLE 3 Tabular representation of the Confusion matrix for IQ-OTH/
NCCD dataset.

Actual/
Predicted

Normal Benign Malignant

TPR (%)

Normal 99.89 0.00 0.11

Benign 0.04 99.85 0.11

Malignant 0.07 0.15 99.78
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lung CT scans. In contrast, our Residual-SwishNet builds on

ResNet50 but overcomes these limitations through the integration

of the Swish activation, which advances gradient propagation and

feature sensitivity. Further, introducing additional dense layers
Frontiers in Oncology 13
resulted in a more refined feature representation. These

enhancements allow Residual-SwishNet to extract and process

intricate features more effectively, resulting in improved results

across all key measures on the IQ-OTH/NCCD dataset.
FIGURE 9

A visual representation of actual and predicted labels by the Residual-SwishNet.
FIGURE 10

ROC curves for both datasets (a) LUNA-16, (b) IQ-OTH/NCCD using the Residual-SwishNet approach.
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4.6 Comparison with the state-of-the-art

In this part, we have evaluated the designed work against

various latest approaches employing the same dataset to validate

its robustness in classifying the lung cancer nodules.

First, we have discussed evaluation results for the LUNA16

dataset by analyzing its outcomes with numerous new works (27,

49, 56–60). Priya et al. (27) suggested a DL framework named SE-

ResNeXt-50 to classify the lung cancer nodules and attained an

accuracy score of 99.15%. In (60), a DCSwinB dual-branch DL
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method was proposed that combines CNN-based local feature

extraction with Swin Transformer-based global context modeling,

fused through a Conv-MLP module for enhanced 3D

representation, and attained an accuracy score of 90.96%. The

approach in (49) proposed a CNN approach with an attention

strategy to recognize lung nodules from CT-Scan images. The CNN

unit computed deep features on which an attention module was

employed to recognize the relevant information. The work reported

an accuracy score of 95.40%. Thangavel et al. (56) utilized a DL

model to categorize pulmonary nodules from suspected images.
FIGURE 11

Heatmap analysis of the proposed approach for lung cancer classification.
TABLE 4 Residual-SwishNet comparative analysis with DL models for the LUNA16 dataset.

Framework Precision Recall F1-Score Accuracy

EfficientNet-B0 95.60% 93.50% 95% 95.30%

EfficientNet-B1 95.70% 94.40% 94.90% 95.20%

EfficientNet-B2 95.50% 94.60% 95.10% 95.40%

EfficientNet-B3 95.30% 94.60% 94.70% 95.40%

EfficientNet-V2-B0 95.55% 94.45% 94.85% 95.25%

EfficientNet-V2-B1 95.65% 94.35% 94.75% 95.15%

EfficientNet-V2-B2 95.45% 94.55% 95.35% 94.95%

NASNetMobile 88.25% 86.65% 87.65% 87.45%

DenseNet-121 86.80% 89.10% 88.50% 87.50%

MobileNet-V2 87.30% 88.80% 87.90% 89.00%

MobileNet 87.90% 88.50% 87.40% 88.80%

Proposed 99.90% 99.81% 99.85% 99.60%
Bold values mean result attained by our model.
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Initially, some preprocessing steps were performed to enhance the

visual quality of samples, on which the TNet DL model was applied

to segment the focal regions from the CT-Scan images. After this,

the CenterNet technique was applied to compute visual aspects

from the extracted clusters. At last, the NASNet approach was

applied to execute the classification task. This dense network has

obtained an accuracy score of 99.29%. Next, discussed work in (57)

proposed a model named LungNet-SVM for lung cancer

classification. The approach presented an improved AlexNet

approach for deep features computation, on which the

classification was carried out by the SVM classifier. The work has

achieved an accuracy score of 97.64%. Next, the method in (58)

applied Gabor filters along with an improved Deep Belief Network

(E-DBN) to compute the visual information from the given images.

Further, for the classification task, the approach used numerous

classifiers, with the highest value attained by the SVM classifier with

an accuracy of 99.161%. Alsheikhy et al. (59) used the VGG-19

model with long short-term memory networks (LSTMs) to execute

the classification task of lung cancer nodules. This technique has

stated an accuracy value of 99.42%. The results depicted in Table 6

indicate that the Residual-SwishNet approach has attained the

highest results in terms of all evaluation parameters used in the

assessment compared to all the modern approaches. We have

reported an accuracy score of 99.60% with a performance gain of

2.31%. Further, in terms of precision, the proposed model has
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reported a performance gain of 3.98%, which is 3.21% and 3.18% for

the recall and F1-Score, respectively.

The main cause of attaining effective scores in comparison to

the latest approaches is because of the robust information learning

capability of the suggested solution. The work in (27) improved

features recalibration but lacked advanced activation mechanisms

to compute complex lung patterns. Further, the work in (60) lacks

to handle the distorted samples. Similarly, a CNN with attention in

(49) enhanced focus on key regions but was limited by the shallow

feature extraction backbone. Further, the approach in (56) followed

a multi-stage pipeline combining which increased complexity and

risked cumulative errors. Earlier models, like improved AlexNet

with SVM (57) and Gabor filters combined with Deep Belief

Networks (E-DBN) and SVM (58), relied on outdated or

manually crafted features, restricting their depth and adaptability.

Furthermore, the method in (59) computed dense features;

however, it suffered from the model overfitting issue. In contrast,

our proposed Residual-SwishNet overcomes these limitations

through an optimized ResNet50 backbone integrated with the

Swish activation function, enhancing nonlinear learning and

preserving critical negative activations. Additionally, we

introduced three dense layers for richer feature abstraction,

creating a streamlined, end-to-end framework that efficiently

learns from lung CT images and outperforms prior methods in

results and robustness on the LUNA16 dataset.
TABLE 5 Residual-SwishNet comparative analysis with DL models for the IQ-OTH/NCCD dataset.

Framework Precision Recall F1-Score Accuracy

DenseNet-121 95.50% – 95.50% 95.50%

Inception-V3 96.30% – 95.50% 95.50%

MobileNet-V2 95.90% – 95.80% 95.80%

ResNet-50 92.82% 92.22% 92.83% 94.18%

ResNet-152 87.90% – 87.40% 87.40%

ResNet101 93.26% 86.63% 86.97% 94.43%

Proposed 99.86% 98.84% 98.85% 99.11%
Bold values mean result attained by our model.
TABLE 6 Residual-SwishNet comparative analysis with new works for the LUNA16 dataset.

References Year Precision Recall F1-Score Accuracy

(27) 2025 99.15% 97.58% 98.54% 99.15%

(60) 2025 85.56% 90.56% 90.56% 90.96%

(49) 2024 95.80% 94.69% 95.24% 95.40%

(56) 2024 99.19% 99.22% 99.20% 99.29%

(57) 2023 – 96.37% – 97.64%

(58) 2023 – 98.048% – 99.161%

(59) 2023 99.88% 99.76% 99.82% 99.42%

Proposed 2025 99.90% 99.81% 99.85% 99.60%
Bold values mean result attained by our model.
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Next, we have carried out the comparative analysis of the

Residual-SwishNet for the IQ-OTH/NCCD dataset against the

latest approaches (61–65), and the obtained values are provided

in Table 7.

Kumar et al. (61) suggested a DL approach for lung cancer

classification, where VGG19 was used to compute deep features,

while for the classification, the Vision Transformer (ViT) was

applied. This work attained an accuracy of 99.06%. The work in

(62) presented a hybrid approach employing various DL methods

like GoogLeNet, EfficientNet, DarkNet19, and ResNet18 to perform

the diagnosis of lung tumors, and stated an accuracy of 99%.

Venkatraman et al. (63) also designed a DL framework for lung

nodules classification, in which VGG16 was used to compute deep

features, while for the classification task, the SVM approach was

used. The work reported an accuracy value of 89.36%. Further, the

work in (64) employed an improved GoogLeNet approach with

Adaptive Layers named GoogLeNet-AL for recognizing lung cancer

nodules. The technique has acquired a categorization score of

97.32%. Gupta et al. (65) proposed a DL method for lung cancer

classification that presented an enhanced U-Net framework in

which a conventional U-Net model was used for multi-scale

features computation along with the Differentiable Architecture

Search. The work achieved an accuracy of 98.82%. In comparison,

the suggested framework again attained the highest values for all

measures over the IQ-OTH/NCCD dataset in comparison to all

approaches. The improved feature engineering capability, along

with the high recall rate of the proposed approach, assists the model

in attaining robust results. On the IQ-OTH/NCCD dataset, prior

studies revealed several architectural and methodological

limitations. For instance, the work in (61) combined VGG19 with

ViT, but the shallow feature extraction of VGG19 and the data-

hungry nature of ViT limited performance on smaller medical

datasets. Similarly, ensemble models in (62) introduced

unnecessary computational overhead without guaranteeing

significant performance gains. Other works, like those discussed

in (63, 64), were constrained by outdated or shallow backbones that

struggled to extract the complicated visual patterns of lung cancer.

Segmentation-based models like those discussed in (65) added

additional pipeline complexity, which was not optimal for direct

classification tasks. In contrast, our Residual-SwishNet effectively

integrates a deep ResNet50 backbone with Swish activation and
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added dense layers, enabling rich feature learning without excessive

complexity. Further, the inclusion of cross-entropy loss in the final

classification layer helps to tackle the class-imbalance problem. The

overall architectural description of the DeepLungNe assists in

computing fine-grained patterns by minimizing training

inefficiencies and leads to superior classification results across key

performance metrics.
4.7 Cross-dataset evaluation

To evaluate the generalization capability of the proposed model,

we performed cross-dataset experiments using the benign and

malignant classes from two different datasets: LUNA-16 and IQ-

OTH/NCCD, and attained results are provided in Table 8. In the

first setting, the model was trained on the LUNA-16 dataset and

tested on IQ-OTH/NCCD, and attained an accuracy of 65.41%. In

the second setting, the model was trained on IQ-OTH/NCCD and

tested on LUNA-16, resulting in an accuracy of 59.93%.

These results show that the model retains a reasonable level of

recognition ability even when tested on entirely unseen datasets,

which shows that the learned features by the proposed approach

possess a degree of transferability. The better performance when

trained on LUNA-16 is attributed to its larger size and greater

variability, which allow the Residual-SwishNet to learn richer and

more generalizable representations. However, the drop in accuracy

in both cases highlights the challenges posed by differences in image

acquisition protocols, resolution, and noise characteristics between

datasets. Although the cross-dataset results are promising, there is

still room for improvement. Incorporating advanced domain

adaptation methods, more robust data augmentation strategies, or

transfer learning fine-tuning could help bridge the performance gap

and make the model more resilient to domain shifts, ultimately

enhancing its real-world applicability.
TABLE 8 Cross-dataset evaluation of the Residual-SwishNet approach.

Training Dataset Testing Dataset Accuracy (%)

LUNA-16 IQ-OTH/NCCD 65.41

IQ-OTH/NCCD LUNA-16 59.93
TABLE 7 Residual-SwishNet comparative analysis with new works for the IQ-OTH/NCCD dataset.

References Year Precision Recall F1-Score Accuracy

(61) 2025 99.84% 97% 99.79% 99.06%

(62) 2025 99.06% 98.82% 98.94% 99.00%

(63) 2024 90.01% 91.78% 90.88% 89.36%

(64) 2024 99.45% 98.20% 98.82% 97.32%

(65) 2024 98.70% 97.50% 98.24% 98.82%

Proposed 2025 99.86% 98.84% 98.85% 99.11%
Bold values mean result attained by our model.
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5 Conclusion

This study has introduced a DL approach named Residual-

SwishNet for lung cancer classification. Specifically, we altered the

ResNet50 framework by integrating the Swish activation function,

additional dense layers, and a Softmax output with Cross-Entropy

Loss to enhance learning capacity and classification precision. The

work is evaluated on two standard datasets, named the LUNA16

and IQ-OTH/NCCD datasets, and achieved accuracy scores of

99.60% and 99.11%, outperforming existing state-of-the-art

methods. These results highlight the competency of our approach

to accurately differentiate between benign and malignant lung

nodules by offering potential support in early diagnosis. However,

one limitation of our approach is the increased computational

complexity and training time introduced by model modifications,

which can limit deployment on resource-constrained devices or

real-time applications. The proposed Residual-SwishNet carries

strong clinical relevance, as accurate early differentiation between

benign and malignant lung nodules can support radiologists and

reduce diagnostic delays. However, the study has certain

limitations, including the use of only two publicly available

datasets, which may introduce dataset-specific biases and limit

generalizability. External validation on multi-center clinical data

and more diverse patient populations is still required. Additionally,

although the cross-dataset evaluation shows promising

transferability, the performance gap highlights the need for

further robustness improvements. Future research will focus on

integrating domain adaptation techniques, incorporating 3D

volumetric information, and validating the model in real clinical

workflows to enhance reliability and practical adoption.
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